1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiscreteFractureLocalResidual
*/
#ifndef EWOMS_DISCRETE_FRACTURE_LOCAL_RESIDUAL_BASE_HH
#define EWOMS_DISCRETE_FRACTURE_LOCAL_RESIDUAL_BASE_HH
#include <opm/models/immiscible/immisciblelocalresidual.hh>
namespace Opm {
/*!
* \ingroup DiscreteFractureModel
*
* \brief Calculates the local residual of the discrete fracture
* immiscible multi-phase model.
*/
template <class TypeTag>
class DiscreteFractureLocalResidual : public ImmiscibleLocalResidual<TypeTag>
{
using ParentType = ImmiscibleLocalResidual<TypeTag>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
public:
/*!
* \brief Adds the amount all conservation quantities (e.g. phase
* mass) within a single fluid phase
*
* \copydetails Doxygen::storageParam
* \copydetails Doxygen::dofCtxParams
* \copydetails Doxygen::phaseIdxParam
*/
void addPhaseStorage(EqVector& storage,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx,
unsigned phaseIdx) const
{
EqVector phaseStorage(0.0);
ParentType::addPhaseStorage(phaseStorage, elemCtx, dofIdx, timeIdx, phaseIdx);
const auto& problem = elemCtx.problem();
const auto& fractureMapper = problem.fractureMapper();
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
if (!fractureMapper.isFractureVertex(globalIdx)) {
// don't do anything in addition to the immiscible model for degrees of
// freedom that do not feature fractures
storage += phaseStorage;
return;
}
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
const auto& scv = elemCtx.stencil(timeIdx).subControlVolume(dofIdx);
// reduce the matrix storage by the fracture volume
phaseStorage *= 1 - intQuants.fractureVolume()/scv.volume();
// add the storage term inside the fractures
const auto& fsFracture = intQuants.fractureFluidState();
phaseStorage[conti0EqIdx + phaseIdx] +=
intQuants.fracturePorosity()*
fsFracture.saturation(phaseIdx) *
fsFracture.density(phaseIdx) *
intQuants.fractureVolume()/scv.volume();
EnergyModule::addFracturePhaseStorage(phaseStorage, intQuants, scv,
phaseIdx);
// add the result to the overall storage term
storage += phaseStorage;
}
/*!
* \copydoc FvBaseLocalResidual::computeFlux
*/
void computeFlux(RateVector& flux,
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx) const
{
ParentType::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
unsigned i = extQuants.interiorIndex();
unsigned j = extQuants.exteriorIndex();
unsigned I = elemCtx.globalSpaceIndex(i, timeIdx);
unsigned J = elemCtx.globalSpaceIndex(j, timeIdx);
const auto& fractureMapper = elemCtx.problem().fractureMapper();
if (!fractureMapper.isFractureEdge(I, J))
// do nothing if the edge from i to j is not part of a
// fracture
return;
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
Scalar scvfArea = scvf.area();
// advective mass fluxes of all phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// reduce the matrix mass flux by the width of the scv
// face that is occupied by the fracture. As usual, the
// fracture is shared between two SCVs, so the its width
// needs to be divided by two.
flux[conti0EqIdx + phaseIdx] *=
1 - extQuants.fractureWidth() / (2 * scvfArea);
// intensive quantities of the upstream and the downstream DOFs
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
flux[conti0EqIdx + phaseIdx] +=
extQuants.fractureVolumeFlux(phaseIdx) * up.fractureFluidState().density(phaseIdx);
}
EnergyModule::handleFractureFlux(flux, elemCtx, scvfIdx, timeIdx);
}
};
} // namespace Opm
#endif
|