File: pvsboundaryratevector.hh

package info (click to toggle)
opm-models 2022.10%2Bds-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,216 kB
  • sloc: cpp: 37,910; ansic: 1,897; sh: 277; xml: 182; makefile: 10
file content (204 lines) | stat: -rw-r--r-- 7,834 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/
/*!
 * \file
 *
 * \copydoc Opm::PvsBoundaryRateVector
 */
#ifndef EWOMS_PVS_BOUNDARY_RATE_VECTOR_HH
#define EWOMS_PVS_BOUNDARY_RATE_VECTOR_HH

#include "pvsproperties.hh"

#include <opm/models/common/energymodule.hh>
#include <opm/material/common/Valgrind.hpp>

namespace Opm {

/*!
 * \ingroup PvsModel
 *
 * \brief Implements a rate vector on the boundary for the fully
 *        implicit compositional multi-phase primary variable
 *        switching compositional model.
 */
template <class TypeTag>
class PvsBoundaryRateVector : public GetPropType<TypeTag, Properties::RateVector>
{
    using ParentType = GetPropType<TypeTag, Properties::RateVector>;
    using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
    using Indices = GetPropType<TypeTag, Properties::Indices>;

    enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
    enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
    enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
    enum { conti0EqIdx = Indices::conti0EqIdx };
    enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };

    using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
    using Toolbox = Opm::MathToolbox<Evaluation>;

public:
    PvsBoundaryRateVector()
        : ParentType()
    {}

    /*!
     * \copydoc
     * ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(Scalar)
     */
    PvsBoundaryRateVector(const Evaluation& value)
        : ParentType(value)
    {}

    /*!
     * \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(const
     * ImmiscibleBoundaryRateVector& )
     */
    PvsBoundaryRateVector(const PvsBoundaryRateVector& value) = default;
    PvsBoundaryRateVector& operator=(const PvsBoundaryRateVector& value) = default;

    /*!
     * \copydoc ImmiscibleBoundaryRateVector::setFreeFlow
     */
    template <class Context, class FluidState>
    void setFreeFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState)
    {
        ExtensiveQuantities extQuants;
        extQuants.updateBoundary(context, bfIdx, timeIdx, fluidState);
        const auto& insideIntQuants = context.intensiveQuantities(bfIdx, timeIdx);
        unsigned focusDofIdx = context.focusDofIndex();
        unsigned interiorDofIdx = context.interiorScvIndex(bfIdx, timeIdx);

        ////////
        // advective fluxes of all components in all phases
        ////////
        (*this) = Evaluation(0.0);
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            Evaluation density;
            if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) {
                if (focusDofIdx == interiorDofIdx)
                    density = fluidState.density(phaseIdx);
                else
                    density = Opm::getValue(fluidState.density(phaseIdx));
            }
            else if (focusDofIdx == interiorDofIdx)
                density = insideIntQuants.fluidState().density(phaseIdx);
            else
                density = Opm::getValue(insideIntQuants.fluidState().density(phaseIdx));

            for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
                Evaluation molarity;
                if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) {
                    if (focusDofIdx == interiorDofIdx)
                        molarity = fluidState.molarity(phaseIdx, compIdx);
                    else
                        molarity = Opm::getValue(fluidState.molarity(phaseIdx, compIdx));
                }
                else if (focusDofIdx == interiorDofIdx)
                    molarity = insideIntQuants.fluidState().molarity(phaseIdx, compIdx);
                else
                    molarity = Opm::getValue(insideIntQuants.fluidState().molarity(phaseIdx, compIdx));

                // add advective flux of current component in current
                // phase
                (*this)[conti0EqIdx + compIdx] += extQuants.volumeFlux(phaseIdx)*molarity;
            }

            if (enableEnergy) {
                Evaluation specificEnthalpy;
                if (fluidState.pressure(phaseIdx) > insideIntQuants.fluidState().pressure(phaseIdx)) {
                    if (focusDofIdx == interiorDofIdx)
                        specificEnthalpy = fluidState.enthalpy(phaseIdx);
                    else
                        specificEnthalpy = Opm::getValue(fluidState.enthalpy(phaseIdx));
                }
                else if (focusDofIdx == interiorDofIdx)
                    specificEnthalpy = insideIntQuants.fluidState().enthalpy(phaseIdx);
                else
                    specificEnthalpy = Opm::getValue(insideIntQuants.fluidState().enthalpy(phaseIdx));

                Evaluation enthalpyRate = density*extQuants.volumeFlux(phaseIdx)*specificEnthalpy;
                EnergyModule::addToEnthalpyRate(*this, enthalpyRate);
            }
        }

        if (enableEnergy)
            // heat conduction
            EnergyModule::addToEnthalpyRate(*this, EnergyModule::thermalConductionRate(extQuants));

#ifndef NDEBUG
        for (unsigned i = 0; i < numEq; ++i)
            Opm::Valgrind::CheckDefined((*this)[i]);
#endif
    }

    /*!
     * \copydoc ImmiscibleBoundaryRateVector::setInFlow
     */
    template <class Context, class FluidState>
    void setInFlow(const Context& context,
                   unsigned bfIdx,
                   unsigned timeIdx,
                   const FluidState& fluidState)
    {
        this->setFreeFlow(context, bfIdx, timeIdx, fluidState);

        // we only allow fluxes in the direction opposite to the outer unit normal
        for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            Evaluation& val = this->operator[](eqIdx);
            val = Toolbox::min(0.0, val);
        }
    }

    /*!
     * \copydoc ImmiscibleBoundaryRateVector::setOutFlow
     */
    template <class Context, class FluidState>
    void setOutFlow(const Context& context,
                    unsigned bfIdx,
                    unsigned timeIdx,
                    const FluidState& fluidState)
    {
        this->setFreeFlow(context, bfIdx, timeIdx, fluidState);

        // we only allow fluxes in the same direction as the outer unit normal
        for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
            Evaluation& val = this->operator[](eqIdx);
            val = Toolbox::max(0.0, val);
        }
    }

    /*!
     * \copydoc ImmiscibleBoundaryRateVector::setNoFlow
     */
    void setNoFlow()
    { (*this) = Evaluation(0.0); }
};

} // namespace Opm

#endif