1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::Simulator
*/
#ifndef EWOMS_SIMULATOR_HH
#define EWOMS_SIMULATOR_HH
#include <opm/models/io/restart.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/timer.hh>
#include <opm/models/utils/timerguard.hh>
#include <opm/models/parallel/mpiutil.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <dune/common/version.hh>
#include <dune/common/parallel/mpihelper.hh>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <vector>
#include <string>
#include <memory>
namespace Opm
{
namespace detail
{
inline auto getMPIHelperCommunication()
{
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 7)
return Dune::MPIHelper::getCommunication();
#else
return Dune::MPIHelper::getCollectiveCommunication();
#endif
}
} // end namespace detail
} // end namespace Opm
#define EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(code) \
{ \
const auto& comm = ::Opm::detail::getMPIHelperCommunication(); \
bool exceptionThrown = false; \
try { code; } \
catch (const Dune::Exception& e) { \
exceptionThrown = true; \
std::cerr << "Process " << comm.rank() << " threw a fatal exception: " \
<< e.what() << ". Abort!" << std::endl; \
} \
catch (const std::exception& e) { \
exceptionThrown = true; \
std::cerr << "Process " << comm.rank() << " threw a fatal exception: " \
<< e.what() << ". Abort!" << std::endl; \
} \
catch (...) { \
exceptionThrown = true; \
std::cerr << "Process " << comm.rank() << " threw a fatal exception. " \
<<" Abort!" << std::endl; \
} \
\
if (comm.max(exceptionThrown)) \
std::abort(); \
}
namespace Opm {
/*!
* \ingroup Common
*
* \brief Manages the initializing and running of time dependent
* problems.
*
* This class instantiates the grid, the model and the problem to be
* simlated and runs the simulation loop. The time axis is treated as
* a sequence of "episodes" which are defined as time intervals for
* which the problem exhibits boundary conditions and source terms
* that do not depend on time.
*/
template <class TypeTag>
class Simulator
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Vanguard = GetPropType<TypeTag, Properties::Vanguard>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using MPIComm = typename Dune::MPIHelper::MPICommunicator;
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 7)
using Communication = Dune::Communication<MPIComm>;
#else
using Communication = Dune::CollectiveCommunication<MPIComm>;
#endif
public:
// do not allow to copy simulators around
Simulator(const Simulator& ) = delete;
Simulator(bool verbose = true)
:Simulator(Communication(), verbose)
{
}
Simulator(Communication comm, bool verbose = true)
{
TimerGuard setupTimerGuard(setupTimer_);
setupTimer_.start();
verbose_ = verbose && comm.rank() == 0;
timeStepIdx_ = 0;
startTime_ = 0.0;
time_ = 0.0;
endTime_ = EWOMS_GET_PARAM(TypeTag, Scalar, EndTime);
timeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, InitialTimeStepSize);
assert(timeStepSize_ > 0);
const std::string& predetTimeStepFile =
EWOMS_GET_PARAM(TypeTag, std::string, PredeterminedTimeStepsFile);
if (!predetTimeStepFile.empty()) {
std::ifstream is(predetTimeStepFile);
while (!is.eof()) {
Scalar dt;
is >> dt;
forcedTimeSteps_.push_back(dt);
}
}
episodeIdx_ = 0;
episodeStartTime_ = 0;
episodeLength_ = std::numeric_limits<Scalar>::max();
finished_ = false;
if (verbose_)
std::cout << "Allocating the simulation vanguard\n" << std::flush;
int exceptionThrown = 0;
std::string what;
try
{ vanguard_.reset(new Vanguard(*this)); }
catch (const std::exception& e) {
exceptionThrown = 1;
what = e.what();
if (comm.size() > 1) {
what += " (on rank " + std::to_string(comm.rank()) + ")";
}
if (verbose_)
std::cerr << "Rank " << comm.rank() << " threw an exception: " << e.what() << std::endl;
}
if (comm.max(exceptionThrown)) {
auto all_what = gatherStrings(what);
assert(!all_what.empty());
throw std::runtime_error("Allocating the simulation vanguard failed: " + all_what.front());
}
if (verbose_)
std::cout << "Distributing the vanguard's data\n" << std::flush;
try
{ vanguard_->loadBalance(); }
catch (const std::exception& e) {
exceptionThrown = 1;
what = e.what();
if (comm.size() > 1) {
what += " (on rank " + std::to_string(comm.rank()) + ")";
}
if (verbose_)
std::cerr << "Rank " << comm.rank() << " threw an exception: " << e.what() << std::endl;
}
if (comm.max(exceptionThrown)) {
auto all_what = gatherStrings(what);
assert(!all_what.empty());
throw std::runtime_error("Could not distribute the vanguard data: " + all_what.front());
}
if (verbose_)
std::cout << "Allocating the model\n" << std::flush;
model_.reset(new Model(*this));
if (verbose_)
std::cout << "Allocating the problem\n" << std::flush;
problem_.reset(new Problem(*this));
if (verbose_)
std::cout << "Initializing the model\n" << std::flush;
try
{ model_->finishInit(); }
catch (const std::exception& e) {
exceptionThrown = 1;
what = e.what();
if (comm.size() > 1) {
what += " (on rank " + std::to_string(comm.rank()) + ")";
}
if (verbose_)
std::cerr << "Rank " << comm.rank() << " threw an exception: " << e.what() << std::endl;
}
if (comm.max(exceptionThrown)) {
auto all_what = gatherStrings(what);
assert(!all_what.empty());
throw std::runtime_error("Could not initialize the model: " + all_what.front());
}
if (verbose_)
std::cout << "Initializing the problem\n" << std::flush;
try
{ problem_->finishInit(); }
catch (const std::exception& e) {
exceptionThrown = 1;
what = e.what();
if (comm.size() > 1) {
what += " (on rank " + std::to_string(comm.rank()) + ")";
}
if (verbose_)
std::cerr << "Rank " << comm.rank() << " threw an exception: " << e.what() << std::endl;
}
if (comm.max(exceptionThrown)) {
auto all_what = gatherStrings(what);
assert(!all_what.empty());
throw std::runtime_error("Could not initialize the problem: " + all_what.front());
}
setupTimer_.stop();
if (verbose_)
std::cout << "Simulator successfully set up\n" << std::flush;
}
/*!
* \brief Registers all runtime parameters used by the simulation.
*/
static void registerParameters()
{
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EndTime,
"The simulation time at which the simulation is finished [s]");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, InitialTimeStepSize,
"The size of the initial time step [s]");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, RestartTime,
"The simulation time at which a restart should be attempted [s]");
EWOMS_REGISTER_PARAM(TypeTag, std::string, PredeterminedTimeStepsFile,
"A file with a list of predetermined time step sizes (one "
"time step per line)");
Vanguard::registerParameters();
Model::registerParameters();
Problem::registerParameters();
}
/*!
* \brief Return a reference to the grid manager of simulation
*/
Vanguard& vanguard()
{ return *vanguard_; }
/*!
* \brief Return a reference to the grid manager of simulation
*/
const Vanguard& vanguard() const
{ return *vanguard_; }
/*!
* \brief Return the grid view for which the simulation is done
*/
const GridView& gridView() const
{ return vanguard_->gridView(); }
/*!
* \brief Return the physical model used in the simulation
*/
Model& model()
{ return *model_; }
/*!
* \brief Return the physical model used in the simulation
*/
const Model& model() const
{ return *model_; }
/*!
* \brief Return the object which specifies the pysical setup of
* the simulation
*/
Problem& problem()
{ return *problem_; }
/*!
* \brief Return the object which specifies the pysical setup of
* the simulation
*/
const Problem& problem() const
{ return *problem_; }
/*!
* \brief Set the time of the start of the simulation.
*
* \param t The time \f$\mathrm{[s]}\f$ which should be jumped to
*/
void setStartTime(Scalar t)
{ startTime_ = t; }
/*!
* \brief Return the time of the start of the simulation.
*/
Scalar startTime() const
{ return startTime_; }
/*!
* \brief Set the current simulated time, don't change the current
* time step index.
*
* \param t The time \f$\mathrm{[s]}\f$ which should be jumped to
*/
void setTime(Scalar t)
{ time_ = t; }
/*!
* \brief Set the current simulated time and the time step index.
*
* \param t The time \f$\mathrm{[s]}\f$ which should be jumped to
* \param stepIdx The new time step index
*/
void setTime(Scalar t, unsigned stepIdx)
{
time_ = t;
timeStepIdx_ = stepIdx;
}
/*!
* \brief Return the number of seconds of simulated time which have elapsed since the
* start time.
*
* To get the time after the time integration, you have to add
* timeStepSize() to time().
*/
Scalar time() const
{ return time_; }
/*!
* \brief Set the time of simulated seconds at which the simulation runs.
*
* \param t The time \f$\mathrm{[s]}\f$ at which the simulation is finished
*/
void setEndTime(Scalar t)
{ endTime_ = t; }
/*!
* \brief Returns the number of (simulated) seconds which the simulation
* runs.
*/
Scalar endTime() const
{ return endTime_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed to
* set up and initialize the simulation
*/
const Timer& setupTimer() const
{ return setupTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed to
* run the simulation
*/
const Timer& executionTimer() const
{ return executionTimer_; }
Timer& executionTimer()
{ return executionTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed for
* pre- and postprocessing of the solutions.
*/
const Timer& prePostProcessTimer() const
{ return prePostProcessTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed for
* linarizing the solutions.
*/
const Timer& linearizeTimer() const
{ return linearizeTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed by
* the solver.
*/
const Timer& solveTimer() const
{ return solveTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed to
* the solutions of the non-linear system of equations.
*/
const Timer& updateTimer() const
{ return updateTimer_; }
/*!
* \brief Returns a reference to the timer object which measures the time needed to
* write the visualization output
*/
const Timer& writeTimer() const
{ return writeTimer_; }
/*!
* \brief Set the current time step size to a given value.
*
* If the step size would exceed the length of the current
* episode, the timeStep() method will take care that the step
* size won't exceed the episode or the end of the simulation,
* though.
*
* \param timeStepSize The new value for the time step size \f$\mathrm{[s]}\f$
*/
void setTimeStepSize(Scalar value)
{
timeStepSize_ = value;
}
/*!
* \brief Set the current time step index to a given value.
*
* \param timeStepIndex The new value for the time step index
*/
void setTimeStepIndex(unsigned value)
{ timeStepIdx_ = value; }
/*!
* \brief Returns the time step length \f$\mathrm{[s]}\f$ so that we
* don't miss the beginning of the next episode or cross
* the end of the simlation.
*/
Scalar timeStepSize() const
{ return timeStepSize_; }
/*!
* \brief Returns number of time steps which have been
* executed since the beginning of the simulation.
*/
int timeStepIndex() const
{ return timeStepIdx_; }
/*!
* \brief Specify whether the simulation is finished
*
* \param yesno If true the simulation is considered finished
* before the end time is reached, else it is only
* considered finished if the end time is reached.
*/
void setFinished(bool yesno = true)
{ finished_ = yesno; }
/*!
* \brief Returns true if the simulation is finished.
*
* This is the case if either setFinished(true) has been called or
* if the end time is reached.
*/
bool finished() const
{
assert(timeStepSize_ >= 0.0);
Scalar eps =
std::max(Scalar(std::abs(this->time())), timeStepSize())
*std::numeric_limits<Scalar>::epsilon()*1e3;
return finished_ || (this->time()*(1.0 + eps) >= endTime());
}
/*!
* \brief Returns true if the simulation is finished after the
* time level is incremented by the current time step size.
*/
bool willBeFinished() const
{
static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e3;
return finished_ || (this->time() + timeStepSize_)*(1.0 + eps) >= endTime();
}
/*!
* \brief Aligns the time step size to the episode boundary and to
* the end time of the simulation.
*/
Scalar maxTimeStepSize() const
{
if (finished())
return 0.0;
return std::min(episodeMaxTimeStepSize(),
std::max<Scalar>(0.0, endTime() - this->time()));
}
/*!
* \brief Change the current episode of the simulation.
*
* \param episodeStartTime Time when the episode began \f$\mathrm{[s]}\f$
* \param episodeLength Length of the episode \f$\mathrm{[s]}\f$
*/
void startNextEpisode(Scalar episodeStartTime, Scalar episodeLength)
{
++episodeIdx_;
episodeStartTime_ = episodeStartTime;
episodeLength_ = episodeLength;
}
/*!
* \brief Start the next episode, but don't change the episode
* identifier.
*
* \param len Length of the episode \f$\mathrm{[s]}\f$, infinite if not
* specified.
*/
void startNextEpisode(Scalar len = std::numeric_limits<Scalar>::max())
{
++episodeIdx_;
episodeStartTime_ = startTime_ + time_;
episodeLength_ = len;
}
/*!
* \brief Sets the index of the current episode.
*
* Use this method with care!
*/
void setEpisodeIndex(int episodeIdx)
{ episodeIdx_ = episodeIdx; }
/*!
* \brief Returns the index of the current episode.
*
* The first episode has the index 0.
*/
int episodeIndex() const
{ return episodeIdx_; }
/*!
* \brief Returns the absolute time when the current episode
* started \f$\mathrm{[s]}\f$.
*/
Scalar episodeStartTime() const
{ return episodeStartTime_; }
/*!
* \brief Sets the length in seconds of the current episode.
*
* Use this method with care!
*/
void setEpisodeLength(Scalar dt)
{ episodeLength_ = dt; }
/*!
* \brief Returns the length of the current episode in
* simulated time \f$\mathrm{[s]}\f$.
*/
Scalar episodeLength() const
{ return episodeLength_; }
/*!
* \brief Returns true if the current episode has just been started at the
* current time.
*/
bool episodeStarts() const
{
static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e3;
return this->time() <= (episodeStartTime_ - startTime())*(1 + eps);
}
/*!
* \brief Returns true if the current episode is finished at the
* current time.
*/
bool episodeIsOver() const
{
static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e3;
return this->time() >= (episodeStartTime_ - startTime() + episodeLength())*(1 - eps);
}
/*!
* \brief Returns true if the current episode will be finished
* after the current time step.
*/
bool episodeWillBeOver() const
{
static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e3;
return this->time() + timeStepSize()
>= (episodeStartTime_ - startTime() + episodeLength())*(1 - eps);
}
/*!
* \brief Aligns the time step size to the episode boundary if the
* current time step crosses the boundary of the current episode.
*/
Scalar episodeMaxTimeStepSize() const
{
// if the current episode is over and the simulation
// wants to give it some extra time, we will return
// the time step size it suggested instead of trying
// to align it to the end of the episode.
if (episodeIsOver())
return 0.0;
// make sure that we don't exceed the end of the
// current episode.
return std::max<Scalar>(0.0,
(episodeStartTime() + episodeLength())
- (this->time() + this->startTime()));
}
/*
* \}
*/
/*!
* \brief Runs the simulation using a given problem class.
*
* This method makes sure that time steps sizes are aligned to
* episode boundaries, amongst other stuff.
*/
void run()
{
// create TimerGuard objects to hedge for exceptions
TimerGuard setupTimerGuard(setupTimer_);
TimerGuard executionTimerGuard(executionTimer_);
TimerGuard prePostProcessTimerGuard(prePostProcessTimer_);
TimerGuard writeTimerGuard(writeTimer_);
setupTimer_.start();
Scalar restartTime = EWOMS_GET_PARAM(TypeTag, Scalar, RestartTime);
if (restartTime > -1e30) {
// try to restart a previous simulation
time_ = restartTime;
Restart res;
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(res.deserializeBegin(*this, time_));
if (verbose_)
std::cout << "Deserialize from file '" << res.fileName() << "'\n" << std::flush;
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(this->deserialize(res));
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->deserialize(res));
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(model_->deserialize(res));
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(res.deserializeEnd());
if (verbose_)
std::cout << "Deserialization done."
<< " Simulator time: " << time() << humanReadableTime(time())
<< " Time step index: " << timeStepIndex()
<< " Episode index: " << episodeIndex()
<< "\n" << std::flush;
}
else {
// if no restart is done, apply the initial solution
if (verbose_)
std::cout << "Applying the initial solution of the \"" << problem_->name()
<< "\" problem\n" << std::flush;
Scalar oldTimeStepSize = timeStepSize_;
int oldTimeStepIdx = timeStepIdx_;
timeStepSize_ = 0.0;
timeStepIdx_ = -1;
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(model_->applyInitialSolution());
// write initial condition
if (problem_->shouldWriteOutput())
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->writeOutput());
timeStepSize_ = oldTimeStepSize;
timeStepIdx_ = oldTimeStepIdx;
}
setupTimer_.stop();
executionTimer_.start();
bool episodeBegins = episodeIsOver() || (timeStepIdx_ == 0);
// do the time steps
while (!finished()) {
prePostProcessTimer_.start();
if (episodeBegins) {
// notify the problem that a new episode has just been
// started.
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->beginEpisode());
if (finished()) {
// the problem can chose to terminate the simulation in
// beginEpisode(), so we have handle this case.
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endEpisode());
prePostProcessTimer_.stop();
break;
}
}
episodeBegins = false;
if (verbose_) {
std::cout << "Begin time step " << timeStepIndex() + 1 << ". "
<< "Start time: " << this->time() << " seconds" << humanReadableTime(this->time())
<< ", step size: " << timeStepSize() << " seconds" << humanReadableTime(timeStepSize())
<< "\n";
}
// pre-process the current solution
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->beginTimeStep());
if (finished()) {
// the problem can chose to terminate the simulation in
// beginTimeStep(), so we have handle this case.
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endTimeStep());
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endEpisode());
prePostProcessTimer_.stop();
break;
}
prePostProcessTimer_.stop();
try {
// execute the time integration scheme
problem_->timeIntegration();
}
catch (...) {
// exceptions in the time integration might be recoverable. clean up in
// case they are
const auto& model = problem_->model();
prePostProcessTimer_ += model.prePostProcessTimer();
linearizeTimer_ += model.linearizeTimer();
solveTimer_ += model.solveTimer();
updateTimer_ += model.updateTimer();
throw;
}
const auto& model = problem_->model();
prePostProcessTimer_ += model.prePostProcessTimer();
linearizeTimer_ += model.linearizeTimer();
solveTimer_ += model.solveTimer();
updateTimer_ += model.updateTimer();
// post-process the current solution
prePostProcessTimer_.start();
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endTimeStep());
prePostProcessTimer_.stop();
// write the result to disk
writeTimer_.start();
if (problem_->shouldWriteOutput())
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->writeOutput());
writeTimer_.stop();
// do the next time integration
Scalar oldDt = timeStepSize();
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->advanceTimeLevel());
if (verbose_) {
std::cout << "Time step " << timeStepIndex() + 1 << " done. "
<< "CPU time: " << executionTimer_.realTimeElapsed() << " seconds" << humanReadableTime(executionTimer_.realTimeElapsed())
<< ", end time: " << this->time() + oldDt << " seconds" << humanReadableTime(this->time() + oldDt)
<< ", step size: " << oldDt << " seconds" << humanReadableTime(oldDt)
<< "\n" << std::flush;
}
// advance the simulated time by the current time step size
time_ += oldDt;
++timeStepIdx_;
prePostProcessTimer_.start();
// notify the problem if an episode is finished
if (episodeIsOver()) {
// Notify the problem about the end of the current episode...
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->endEpisode());
episodeBegins = true;
}
else {
Scalar dt;
if (timeStepIdx_ < static_cast<int>(forcedTimeSteps_.size()))
// use the next time step size from the input file
dt = forcedTimeSteps_[timeStepIdx_];
else
// ask the problem to provide the next time step size
dt = std::min(maxTimeStepSize(), problem_->nextTimeStepSize());
assert(finished() || dt > 0);
setTimeStepSize(dt);
}
prePostProcessTimer_.stop();
// write restart file if mandated by the problem
writeTimer_.start();
if (problem_->shouldWriteRestartFile())
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(serialize());
writeTimer_.stop();
}
executionTimer_.stop();
EWOMS_CATCH_PARALLEL_EXCEPTIONS_FATAL(problem_->finalize());
}
/*!
* \brief Given a time step size in seconds, return it in a format which is more
* easily parsable by humans.
*
* e.g. 874000.0 will become "10.12 days"
*/
static std::string humanReadableTime(Scalar timeInSeconds, bool isAmendment=true)
{
std::ostringstream oss;
oss << std::setprecision(4);
if (isAmendment)
oss << " (";
if (timeInSeconds >= 365.25*24*60*60) {
int years = static_cast<int>(timeInSeconds/(365.25*24*60*60));
int days = static_cast<int>((timeInSeconds - years*(365.25*24*60*60))/(24*60*60));
double accuracy = 1e-2;
double hours =
std::round(1.0/accuracy*
(timeInSeconds
- years*(365.25*24*60*60)
- days*(24*60*60))/(60*60))
*accuracy;
oss << years << " years, " << days << " days, " << hours << " hours";
}
else if (timeInSeconds >= 24.0*60*60) {
int days = static_cast<int>(timeInSeconds/(24*60*60));
int hours = static_cast<int>((timeInSeconds - days*(24*60*60))/(60*60));
double accuracy = 1e-2;
double minutes =
std::round(1.0/accuracy*
(timeInSeconds
- days*(24*60*60)
- hours*(60*60))/60)
*accuracy;
oss << days << " days, " << hours << " hours, " << minutes << " minutes";
}
else if (timeInSeconds >= 60.0*60) {
int hours = static_cast<int>(timeInSeconds/(60*60));
int minutes = static_cast<int>((timeInSeconds - hours*(60*60))/60);
double accuracy = 1e-2;
double seconds =
std::round(1.0/accuracy*
(timeInSeconds
- hours*(60*60)
- minutes*60))
*accuracy;
oss << hours << " hours, " << minutes << " minutes, " << seconds << " seconds";
}
else if (timeInSeconds >= 60.0) {
int minutes = static_cast<int>(timeInSeconds/60);
double accuracy = 1e-3;
double seconds =
std::round(1.0/accuracy*
(timeInSeconds
- minutes*60))
*accuracy;
oss << minutes << " minutes, " << seconds << " seconds";
}
else if (!isAmendment)
oss << timeInSeconds << " seconds";
else
return "";
if (isAmendment)
oss << ")";
return oss.str();
}
/*!
* \name Saving/restoring the simulation state
* \{
*/
/*!
* \brief This method writes the complete state of the simulation
* to the harddisk.
*
* The file will start with the prefix returned by the name()
* method, has the current time of the simulation clock in it's
* name and uses the extension <tt>.ers</tt>. (Ewoms ReStart
* file.) See Opm::Restart for details.
*/
void serialize()
{
using Restarter = Restart;
Restarter res;
res.serializeBegin(*this);
if (gridView().comm().rank() == 0)
std::cout << "Serialize to file '" << res.fileName() << "'"
<< ", next time step size: " << timeStepSize()
<< "\n" << std::flush;
this->serialize(res);
problem_->serialize(res);
model_->serialize(res);
res.serializeEnd();
}
/*!
* \brief Write the time manager's state to a restart file.
*
* \tparam Restarter The type of the object which takes care to serialize
* data
* \param restarter The serializer object
*/
template <class Restarter>
void serialize(Restarter& restarter)
{
restarter.serializeSectionBegin("Simulator");
restarter.serializeStream()
<< episodeIdx_ << " "
<< episodeStartTime_ << " "
<< episodeLength_ << " "
<< startTime_ << " "
<< time_ << " "
<< timeStepIdx_ << " ";
restarter.serializeSectionEnd();
}
/*!
* \brief Read the time manager's state from a restart file.
*
* \tparam Restarter The type of the object which takes care to deserialize
* data
* \param restarter The deserializer object
*/
template <class Restarter>
void deserialize(Restarter& restarter)
{
restarter.deserializeSectionBegin("Simulator");
restarter.deserializeStream()
>> episodeIdx_
>> episodeStartTime_
>> episodeLength_
>> startTime_
>> time_
>> timeStepIdx_;
restarter.deserializeSectionEnd();
}
private:
std::unique_ptr<Vanguard> vanguard_;
std::unique_ptr<Model> model_;
std::unique_ptr<Problem> problem_;
int episodeIdx_;
Scalar episodeStartTime_;
Scalar episodeLength_;
Timer setupTimer_;
Timer executionTimer_;
Timer prePostProcessTimer_;
Timer linearizeTimer_;
Timer solveTimer_;
Timer updateTimer_;
Timer writeTimer_;
std::vector<Scalar> forcedTimeSteps_;
Scalar startTime_;
Scalar time_;
Scalar endTime_;
Scalar timeStepSize_;
int timeStepIdx_;
bool finished_;
bool verbose_;
};
namespace Properties {
template<class TypeTag>
struct Simulator<TypeTag, TTag::NumericModel> { using type = ::Opm::Simulator<TypeTag>; };
}
} // namespace Opm
#endif
|