1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::Linear::BlackList
*/
#ifndef EWOMS_BLACK_LIST_HH
#define EWOMS_BLACK_LIST_HH
#include "overlaptypes.hh"
#if HAVE_MPI
#include <opm/models/parallel/mpibuffer.hh>
#include <dune/grid/common/datahandleif.hh>
#include <dune/grid/common/gridenums.hh>
#endif // HAVE_MPI
#include <iostream>
#include <algorithm>
namespace Opm {
namespace Linear {
/*!
* \brief Expresses which degrees of freedom are blacklisted for the parallel linear
* solvers and which domestic indices they correspond to.
*/
class BlackList
{
public:
struct PeerBlackListedEntry {
Index nativeIndexOfPeer;
Index myOwnNativeIndex;
};
using PeerBlackList = std::vector<PeerBlackListedEntry>;
using PeerBlackLists = std::map<ProcessRank, PeerBlackList>;
BlackList()
{ }
BlackList(const BlackList&) = default;
bool hasIndex(Index nativeIdx) const
{ return nativeBlackListedIndices_.count(nativeIdx) > 0; }
void addIndex(Index nativeIdx)
{ nativeBlackListedIndices_.insert(nativeIdx); }
Index nativeToDomestic(Index nativeIdx) const
{
auto it = nativeToDomesticMap_.find(nativeIdx);
if (it == nativeToDomesticMap_.end())
return -1;
return it->second;
}
void setPeerList(ProcessRank peerRank, const PeerBlackList& peerBlackList)
{ peerBlackLists_[peerRank] = peerBlackList; }
template <class DomesticOverlap>
void updateNativeToDomesticMap([[maybe_unused]] const DomesticOverlap& domesticOverlap)
{
#if HAVE_MPI
auto peerListIt = peerBlackLists_.begin();
const auto& peerListEndIt = peerBlackLists_.end();
for (; peerListIt != peerListEndIt; ++peerListIt) {
sendGlobalIndices_(peerListIt->first,
peerListIt->second,
domesticOverlap);
}
peerListIt = peerBlackLists_.begin();
for (; peerListIt != peerListEndIt; ++peerListIt) {
receiveGlobalIndices_(peerListIt->first, domesticOverlap);
}
peerListIt = peerBlackLists_.begin();
for (; peerListIt != peerListEndIt; ++peerListIt) {
numGlobalIdxSendBuff_.at(peerListIt->first).wait();
globalIdxSendBuff_.at(peerListIt->first).wait();
}
#endif // HAVE_MPI
}
void print() const
{
std::cout << "my own blacklisted indices:\n";
auto idxIt = nativeBlackListedIndices_.begin();
const auto& idxEndIt = nativeBlackListedIndices_.end();
for (; idxIt != idxEndIt; ++idxIt)
std::cout << " (native index: " << *idxIt
<< ", domestic index: " << nativeToDomestic(*idxIt) << ")\n";
std::cout << "blacklisted indices of the peers in my own domain:\n";
auto peerListIt = peerBlackLists_.begin();
const auto& peerListEndIt = peerBlackLists_.end();
for (; peerListIt != peerListEndIt; ++peerListIt) {
ProcessRank peerRank = peerListIt->first;
std::cout << " peer " << peerRank << ":\n";
auto idx2It = peerListIt->second.begin();
const auto& idx2EndIt = peerListIt->second.end();
for (; idx2It != idx2EndIt; ++ idx2It)
std::cout << " (native index: " << idx2It->myOwnNativeIndex
<< ", native peer index: " << idx2It->nativeIndexOfPeer << ")\n";
}
}
private:
#if HAVE_MPI
template <class DomesticOverlap>
void sendGlobalIndices_(ProcessRank peerRank,
const PeerBlackList& peerIndices,
const DomesticOverlap& domesticOverlap)
{
auto& numIdxBuff = numGlobalIdxSendBuff_[peerRank];
auto& idxBuff = globalIdxSendBuff_[peerRank];
numIdxBuff.resize(1);
numIdxBuff[0] = static_cast<unsigned>(peerIndices.size());
numIdxBuff.send(peerRank);
idxBuff.resize(2*peerIndices.size());
for (size_t i = 0; i < peerIndices.size(); ++i) {
// global index
Index myNativeIdx = peerIndices[i].myOwnNativeIndex;
Index myDomesticIdx = domesticOverlap.nativeToDomestic(myNativeIdx);
idxBuff[2*i + 0] = domesticOverlap.domesticToGlobal(myDomesticIdx);
// native peer index
idxBuff[2*i + 1] = peerIndices[i].nativeIndexOfPeer;
}
idxBuff.send(peerRank);
}
template <class DomesticOverlap>
void receiveGlobalIndices_(ProcessRank peerRank,
const DomesticOverlap& domesticOverlap)
{
MpiBuffer<unsigned> numGlobalIdxBuf(1);
numGlobalIdxBuf.receive(peerRank);
unsigned numIndices = numGlobalIdxBuf[0];
MpiBuffer<Index> globalIdxBuf(2*numIndices);
globalIdxBuf.receive(peerRank);
for (unsigned i = 0; i < numIndices; ++i) {
Index globalIdx = globalIdxBuf[2*i + 0];
Index nativeIdx = globalIdxBuf[2*i + 1];
nativeToDomesticMap_[nativeIdx] = domesticOverlap.globalToDomestic(globalIdx);
}
}
#endif // HAVE_MPI
std::set<Index> nativeBlackListedIndices_;
std::map<Index, Index> nativeToDomesticMap_;
#if HAVE_MPI
std::map<ProcessRank, MpiBuffer<unsigned>> numGlobalIdxSendBuff_;
std::map<ProcessRank, MpiBuffer<Index>> globalIdxSendBuff_;
#endif // HAVE_MPI
PeerBlackLists peerBlackLists_;
};
} // namespace Linear
} // namespace Opm
#endif
|