1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::Linear::CombinedCriterion
*/
#ifndef EWOMS_COMBINED_CRITERION_HH
#define EWOMS_COMBINED_CRITERION_HH
#include "convergencecriterion.hh"
#include <iostream>
namespace Opm {
namespace Linear {
/*! \addtogroup Linear
* \{
*/
/*!
* \brief Convergence criterion which looks at the absolute value of the residual and
* fails if the linear solver stagnates.
*
* For the CombinedCriterion, the error of the solution is defined as \f[ e^k = \max_i\{
* \left| r^k_i \right| \}\;, \f]
*
* where \f$r^k = \mathbf{A} x^k - b \f$ is the residual for the k-th iterative solution
* vector \f$x^k\f$.
*
* In addition, to the reduction of the maximum residual, the linear solver is aborted
* early if the residual goes below or above absolute limits.
*/
template <class Vector, class CollectiveCommunication>
class CombinedCriterion : public ConvergenceCriterion<Vector>
{
using Scalar = typename Vector::field_type;
using BlockType = typename Vector::block_type;
public:
CombinedCriterion(const CollectiveCommunication& comm)
: comm_(comm)
{}
CombinedCriterion(const CollectiveCommunication& comm,
Scalar residualReductionTolerance,
Scalar absResidualTolerance = 0.0,
Scalar maxResidual = 0.0)
: comm_(comm),
residualReductionTolerance_(residualReductionTolerance),
absResidualTolerance_(absResidualTolerance),
maxResidual_(maxResidual)
{ }
/*!
* \brief Sets the residual reduction tolerance.
*/
void setResidualReductionTolerance(Scalar tol)
{ residualReductionTolerance_ = tol; }
/*!
* \brief Returns the tolerance of the residual reduction of the solution.
*/
Scalar residualReductionTolerance() const
{ return residualReductionTolerance_; }
/*!
* \brief Returns the reduction of the maximum of the residual compared to the
* initial solution.
*/
Scalar residualReduction() const
{ return residualError_/std::max<Scalar>(1e-20, initialResidualError_); }
/*!
* \brief Sets the maximum absolute tolerated residual.
*/
void setAbsResidualTolerance(Scalar tol)
{ absResidualTolerance_ = tol; }
/*!
* \brief Returns the tolerated maximum of the the infinity norm of the absolute
* residual.
*/
Scalar absResidualTolerance() const
{ return absResidualTolerance_; }
/*!
* \brief Returns the infinity norm of the absolute residual.
*/
Scalar absResidual() const
{ return residualError_; }
/*!
* \copydoc ConvergenceCriterion::setInitial(const Vector& , const Vector& )
*/
void setInitial(const Vector& curSol, const Vector& curResid) override
{
updateErrors_(curSol, curSol, curResid);
stagnates_ = false;
// to avoid divisions by zero, make sure that we don't use an initial error of 0
residualError_ = std::max<Scalar>(residualError_,
std::numeric_limits<Scalar>::min()*1e10);
initialResidualError_ = residualError_;
lastResidualError_ = residualError_;
}
/*!
* \copydoc ConvergenceCriterion::update(const Vector&, const Vector&, const Vector&)
*/
void update(const Vector& curSol, const Vector& changeIndicator, const Vector& curResid) override
{ updateErrors_(curSol, changeIndicator, curResid); }
/*!
* \copydoc ConvergenceCriterion::converged()
*/
bool converged() const override
{
// we're converged if the solution is better than the tolerance
// fix-point and residual tolerance.
return
residualReduction() <= residualReductionTolerance() ||
absResidual() <= absResidualTolerance();
}
/*!
* \copydoc ConvergenceCriterion::failed()
*/
bool failed() const override
{ return !converged() && (stagnates_ || residualError_ > maxResidual_); }
/*!
* \copydoc ConvergenceCriterion::accuracy()
*
* For the accuracy we only take the residual into account,
*/
Scalar accuracy() const override
{ return residualError_/initialResidualError_; }
/*!
* \copydoc ConvergenceCriterion::printInitial()
*/
void printInitial(std::ostream& os = std::cout) const override
{
os << std::setw(20) << "iteration ";
os << std::setw(20) << "residual ";
os << std::setw(20) << "reduction ";
os << std::setw(20) << "rate ";
os << std::endl;
}
/*!
* \copydoc ConvergenceCriterion::print()
*/
void print(Scalar iter, std::ostream& os = std::cout) const override
{
const Scalar eps = std::numeric_limits<Scalar>::min()*1e10;
os << std::setw(20) << iter << " ";
os << std::setw(20) << absResidual() << " ";
os << std::setw(20) << accuracy() << " ";
os << std::setw(20) << lastResidualError_/std::max<Scalar>(residualError_, eps) << " ";
os << std::endl << std::flush;
}
private:
// update the weighted absolute residual
void updateErrors_(const Vector&, const Vector& changeIndicator, const Vector& curResid)
{
lastResidualError_ = residualError_;
residualError_ = 0.0;
stagnates_ = true;
for (size_t i = 0; i < curResid.size(); ++i) {
for (unsigned j = 0; j < BlockType::dimension; ++j) {
residualError_ =
std::max<Scalar>(residualError_,
std::abs(curResid[i][j]));
if (stagnates_ && changeIndicator[i][j] != 0.0)
// only stagnation means that we've failed!
stagnates_ = false;
}
}
residualError_ = comm_.max(residualError_);
// the linear solver only stagnates if all processes stagnate
stagnates_ = comm_.min(stagnates_);
}
const CollectiveCommunication& comm_;
// the infinity norm of the residual of the last iteration
Scalar lastResidualError_;
// the infinity norm of the residual of the current iteration
Scalar residualError_;
// the infinity norm of the residual of the initial solution
Scalar initialResidualError_;
// the minimum reduction of the residual norm where the solution is to be considered
// converged
Scalar residualReductionTolerance_;
// the maximum residual norm for the residual for the solution to be considered to be
// converged
Scalar absResidualTolerance_;
// The maximum error which is tolerated before we fail.
Scalar maxResidual_;
// does the linear solver seem to stagnate, i.e. were the last two solutions
// identical?
bool stagnates_;
};
//! \} end documentation
}} // end namespace Linear, Opm
#endif
|