1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::Linear::DomesticOverlapFromBCRSMatrix
*/
#ifndef EWOMS_DOMESTIC_OVERLAP_FROM_BCRS_MATRIX_HH
#define EWOMS_DOMESTIC_OVERLAP_FROM_BCRS_MATRIX_HH
#include "foreignoverlapfrombcrsmatrix.hh"
#include "blacklist.hh"
#include "globalindices.hh"
#include <opm/models/parallel/mpibuffer.hh>
#include <algorithm>
#include <limits>
#include <set>
#include <map>
#include <vector>
namespace Opm {
namespace Linear {
/*!
* \brief This class creates and manages the foreign overlap given an
* initial list of border indices and a BCRS matrix.
*
* The foreign overlap are all (row) indices which overlap with the
* some of the current process's local indices.
*/
class DomesticOverlapFromBCRSMatrix
{
using ForeignOverlap = Opm::Linear::ForeignOverlapFromBCRSMatrix;
using GlobalIndices = Opm::Linear::GlobalIndices<ForeignOverlap>;
public:
// overlaps should never be copied!
DomesticOverlapFromBCRSMatrix(const DomesticOverlapFromBCRSMatrix&) = delete;
/*!
* \brief Constructs the foreign overlap given a BCRS matrix and
* an initial list of border indices.
*/
template <class BCRSMatrix>
DomesticOverlapFromBCRSMatrix(const BCRSMatrix& A,
const BorderList& borderList,
const BlackList& blackList,
unsigned overlapSize)
: foreignOverlap_(A, borderList, blackList, overlapSize)
, blackList_(blackList)
, globalIndices_(foreignOverlap_)
{
myRank_ = 0;
worldSize_ = 1;
#if HAVE_MPI
int tmp;
MPI_Comm_rank(MPI_COMM_WORLD, &tmp);
myRank_ = static_cast<ProcessRank>(tmp);
MPI_Comm_size(MPI_COMM_WORLD, &tmp);
worldSize_ = static_cast<unsigned>(tmp);
#endif // HAVE_MPI
buildDomesticOverlap_();
updateMasterRanks_();
blackList_.updateNativeToDomesticMap(*this);
setupDebugMapping_();
}
void check() const
{
#ifndef NDEBUG
// check consistency of global indices
for (unsigned domIdx = 0; domIdx < numDomestic(); ++domIdx) {
assert(globalToDomestic(domesticToGlobal(domIdx)) == static_cast<Index>(domIdx));
}
#endif // NDEBUG
// send the foreign overlap for which we are master to the
// peers
std::map<int, MpiBuffer<unsigned> *> sizeBufferMap;
auto peerIt = peerSet_.begin();
const auto& peerEndIt = peerSet_.end();
for (; peerIt != peerEndIt; ++peerIt) {
auto& buffer = *(new MpiBuffer<unsigned>(1));
sizeBufferMap[*peerIt] = &buffer;
buffer[0] = foreignOverlap_.foreignOverlapWithPeer(*peerIt).size();
buffer.send(*peerIt);
}
peerIt = peerSet_.begin();
for (; peerIt != peerEndIt; ++peerIt) {
MpiBuffer<unsigned> rcvBuffer(1);
rcvBuffer.receive(*peerIt);
assert(rcvBuffer[0] == domesticOverlapWithPeer_.find(*peerIt)->second.size());
}
peerIt = peerSet_.begin();
for (; peerIt != peerEndIt; ++peerIt) {
sizeBufferMap[*peerIt]->wait();
delete sizeBufferMap[*peerIt];
}
}
/*!
* \brief Returns the rank of the current process.
*/
ProcessRank myRank() const
{ return myRank_; }
/*!
* \brief Returns the number of processes in the global MPI communicator.
*/
unsigned worldSize() const
{ return worldSize_; }
/*!
* \brief Return the set of process ranks which share an overlap
* with the current process.
*/
const PeerSet& peerSet() const
{ return peerSet_; }
/*!
* \brief Returns true iff a domestic index is a border index.
*/
bool isBorder(Index domesticIdx) const
{
return isLocal(domesticIdx)
&& foreignOverlap_.isBorder(mapExternalToInternal_(domesticIdx));
}
/*!
* \brief Returns true iff a domestic index is on the border with
* a given peer process.
*/
bool isBorderWith(Index domesticIdx, ProcessRank peerRank) const
{
return isLocal(domesticIdx)
&& foreignOverlap_.isBorderWith(mapExternalToInternal_(domesticIdx),
peerRank);
}
/*!
* \brief Returns the number of indices on the front within a given
* peer rank's grid partition.
*/
size_t numFront(ProcessRank peerRank) const
{ return foreignOverlap_.numFront(peerRank); }
/*!
* \brief Returns true iff a domestic index is on the front.
*/
bool isFront(Index domesticIdx) const
{
if (isLocal(domesticIdx))
return false;
Index internalDomesticIdx = mapExternalToInternal_(domesticIdx);
// check wether the border distance of the domestic overlap is
// maximal for the index
const auto& domOverlap = domesticOverlapByIndex_[internalDomesticIdx];
return domOverlap.size() > 0
&& domOverlap.begin()->second == foreignOverlap_.overlapSize();
}
/*!
* \brief Returns the object which represents the black-listed native indices.
*/
const BlackList& blackList() const
{ return blackList_; }
/*!
* \brief Returns the number of processes which "see" a given
* index.
*/
size_t numPeers(Index domesticIdx) const
{ return domesticOverlapByIndex_[mapExternalToInternal_(domesticIdx)].size(); }
/*!
* \brief Returns the size of the overlap region
*/
unsigned overlapSize() const
{ return foreignOverlap_.overlapSize(); }
/*!
* \brief Returns the number native indices
*
* I.e. the number of indices of the "raw" grid partition of the
* local process (including the indices in ghost and overlap
* elements).
*/
size_t numNative() const
{ return foreignOverlap_.numNative(); }
/*!
* \brief Returns the number local indices
*
* I.e. indices in the interior or on the border of the process'
* domain.
*/
size_t numLocal() const
{ return foreignOverlap_.numLocal(); }
/*!
* \brief Returns the number domestic indices.
*
* The domestic indices are defined as the process' local indices
* plus its domestic overlap (i.e. indices for which it is not
* neither master nor are on the process border).
*/
size_t numDomestic() const
{ return globalIndices_.numDomestic(); }
/*!
* \brief Return true if a domestic index is local for the process
*
* I.e. the entity for this index is in the interior or on the
* border of the process' domain.
*/
bool isLocal(Index domesticIdx) const
{ return mapExternalToInternal_(domesticIdx) < static_cast<Index>(numLocal()); }
/*!
* \brief Return true iff the current process is the master of a
* given domestic index.
*/
bool iAmMasterOf(Index domesticIdx) const
{
if (!isLocal(domesticIdx))
return false;
return foreignOverlap_.iAmMasterOf(mapExternalToInternal_(domesticIdx));
}
/*!
* \brief Return the rank of a master process for a domestic index
*/
ProcessRank masterRank(Index domesticIdx) const
{ return masterRank_[static_cast<unsigned>(mapExternalToInternal_(domesticIdx))]; }
/*!
* \brief Print the foreign overlap for debugging purposes.
*/
void print() const
{ globalIndices_.print(); }
/*!
* \brief Returns a domestic index given a global one
*/
Index globalToDomestic(Index globalIdx) const
{
Index internalIdx = globalIndices_.globalToDomestic(globalIdx);
if (internalIdx < 0)
return -1;
return mapInternalToExternal_(internalIdx);
}
/*!
* \brief Returns a global index given a domestic one
*/
Index domesticToGlobal(Index domIdx) const
{ return globalIndices_.domesticToGlobal(mapExternalToInternal_(domIdx)); }
/*!
* \brief Returns a native index given a domestic one
*/
Index domesticToNative(Index domIdx) const
{
Index internalIdx = mapExternalToInternal_(domIdx);
if (internalIdx >= static_cast<Index>(numLocal()))
return -1;
return foreignOverlap_.localToNative(internalIdx);
}
/*!
* \brief Returns a domestic index given a native one
*/
Index nativeToDomestic(Index nativeIdx) const
{
Index localIdx = foreignOverlap_.nativeToLocal(nativeIdx);
if (localIdx < 0)
return localIdx;
return mapInternalToExternal_(localIdx);
}
/*!
* \brief Returns true if a given domestic index is either in the
* foreign or in the domestic overlap.
*/
bool isInOverlap(Index domesticIdx) const
{
return !this->isLocal(domesticIdx)
|| this->foreignOverlap_.isInOverlap(mapExternalToInternal_(domesticIdx));
}
/*!
* \brief Returns true if a given domestic index is a front index
* for a peer rank.
*/
bool isFrontFor(ProcessRank peerRank, Index domesticIdx) const
{
Index internalIdx = mapExternalToInternal_(domesticIdx);
return this->foreignOverlap_.isFrontFor(peerRank, internalIdx);
}
/*!
* \brief Returns true iff a domestic index is seen by a peer rank.
*/
bool peerHasIndex(int peerRank, Index domesticIdx) const
{
return foreignOverlap_.peerHasIndex(peerRank,
mapExternalToInternal_(domesticIdx));
}
/*!
* \brief Returns number of indices which are contained in the
* foreign overlap with a peer.
*/
size_t foreignOverlapSize(ProcessRank peerRank) const
{ return foreignOverlap_.foreignOverlapWithPeer(peerRank).size(); }
/*!
* \brief Returns the domestic index given an offset in the
* foreign overlap of a peer process with the local
* process.
*/
Index foreignOverlapOffsetToDomesticIdx(ProcessRank peerRank, unsigned overlapOffset) const
{
Index internalIdx =
foreignOverlap_.foreignOverlapWithPeer(peerRank)[overlapOffset].index;
return mapInternalToExternal_(internalIdx);
}
/*!
* \brief Returns number of indices which are contained in the
* domestic overlap with a peer.
*/
size_t domesticOverlapSize(ProcessRank peerRank) const
{ return domesticOverlapWithPeer_.at(peerRank).size(); }
/*!
* \brief Returns the domestic index given an offset in the
* domestic overlap of a peer process with the local
* process.
*/
Index domesticOverlapOffsetToDomesticIdx(ProcessRank peerRank, Index overlapOffset) const
{
Index internalIdx = domesticOverlapWithPeer_.at(peerRank)[overlapOffset];
return mapInternalToExternal_(internalIdx);
}
protected:
void buildDomesticOverlap_()
{
// copy the set of peers from the foreign overlap
peerSet_ = foreignOverlap_.peerSet();
// resize the array which stores the number of peers for
// each entry.
domesticOverlapByIndex_.resize(numLocal());
borderDistance_.resize(numLocal(), 0);
PeerSet::const_iterator peerIt;
PeerSet::const_iterator peerEndIt = peerSet_.end();
// send the overlap indices to all peer processes
peerIt = peerSet_.begin();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
sendIndicesToPeer_(peerRank);
}
// receive our overlap from the processes to all peer processes
peerIt = peerSet_.begin();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
receiveIndicesFromPeer_(peerRank);
}
// wait until all send operations complete
peerIt = peerSet_.begin();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
waitSendIndices_(peerRank);
}
}
void updateMasterRanks_()
{
size_t nLocal = numLocal();
size_t nDomestic = numDomestic();
masterRank_.resize(nDomestic);
// take the master ranks for the local indices from the
// foreign overlap
for (unsigned i = 0; i < nLocal; ++i) {
masterRank_[i] = foreignOverlap_.masterRank(static_cast<Index>(i));
}
// for non-local indices, initially use INT_MAX as their master
// rank
for (size_t i = nLocal; i < nDomestic; ++i)
masterRank_[i] = std::numeric_limits<ProcessRank>::max();
// for the non-local indices, take the peer process for which
// a given local index is in the interior
auto peerIt = peerSet_.begin();
const auto& peerEndIt = peerSet_.end();
for (; peerIt != peerEndIt; ++peerIt) {
const auto& overlapWithPeer = domesticOverlapWithPeer_.find(*peerIt)->second;
auto idxIt = overlapWithPeer.begin();
const auto& idxEndIt = overlapWithPeer.end();
for (; idxIt != idxEndIt; ++idxIt) {
if (*idxIt >= 0 && foreignOverlap_.isLocal(*idxIt))
continue; // ignore border indices
masterRank_[static_cast<unsigned>(*idxIt)] = std::min(masterRank_[static_cast<unsigned>(*idxIt)], *peerIt);
}
}
}
void sendIndicesToPeer_([[maybe_unused]] ProcessRank peerRank)
{
#if HAVE_MPI
const auto& foreignOverlap = foreignOverlap_.foreignOverlapWithPeer(peerRank);
// first, send a message containing the number of additional
// indices stemming from the overlap (i.e. without the border
// indices)
size_t numIndices = foreignOverlap.size();
numIndicesSendBuffer_[peerRank] = new MpiBuffer<size_t>(1);
(*numIndicesSendBuffer_[peerRank])[0] = numIndices;
numIndicesSendBuffer_[peerRank]->send(peerRank);
// create MPI buffers
indicesSendBuffer_[peerRank] = new MpiBuffer<IndexDistanceNpeers>(numIndices);
// then send the additional indices themselfs
auto overlapIt = foreignOverlap.begin();
const auto& overlapEndIt = foreignOverlap.end();
for (unsigned i = 0; overlapIt != overlapEndIt; ++overlapIt, ++i) {
Index localIdx = overlapIt->index;
BorderDistance borderDistance = overlapIt->borderDistance;
size_t numPeers = foreignOverlap_.foreignOverlapByLocalIndex(localIdx).size();
IndexDistanceNpeers tmp;
tmp.index = globalIndices_.domesticToGlobal(localIdx);
tmp.borderDistance = borderDistance;
tmp.numPeers = static_cast<unsigned>(numPeers);
(*indicesSendBuffer_[peerRank])[i] = tmp;
}
indicesSendBuffer_[peerRank]->send(peerRank);
#endif // HAVE_MPI
}
void waitSendIndices_(ProcessRank peerRank)
{
numIndicesSendBuffer_[peerRank]->wait();
delete numIndicesSendBuffer_[peerRank];
indicesSendBuffer_[peerRank]->wait();
delete indicesSendBuffer_[peerRank];
}
void receiveIndicesFromPeer_([[maybe_unused]] ProcessRank peerRank)
{
#if HAVE_MPI
// receive the number of additional indices
int numIndices = -1;
MpiBuffer<size_t> numIndicesRecvBuff(1);
numIndicesRecvBuff.receive(peerRank);
numIndices = static_cast<int>(numIndicesRecvBuff[0]);
// receive the additional indices themselfs
MpiBuffer<IndexDistanceNpeers> recvBuff(static_cast<size_t>(numIndices));
recvBuff.receive(peerRank);
for (unsigned i = 0; i < static_cast<unsigned>(numIndices); ++i) {
Index globalIdx = recvBuff[i].index;
BorderDistance borderDistance = recvBuff[i].borderDistance;
// if the index is not already known, add it to the
// domestic indices
if (!globalIndices_.hasGlobalIndex(globalIdx)) {
Index newDomesticIdx = static_cast<Index>(globalIndices_.numDomestic());
globalIndices_.addIndex(newDomesticIdx, globalIdx);
size_t newSize = globalIndices_.numDomestic();
borderDistance_.resize(newSize, std::numeric_limits<int>::max());
domesticOverlapByIndex_.resize(newSize);
}
// convert the global index into a domestic one
Index domesticIdx = globalIndices_.globalToDomestic(globalIdx);
// extend the domestic overlap
domesticOverlapByIndex_[static_cast<unsigned>(domesticIdx)][static_cast<unsigned>(peerRank)] = borderDistance;
domesticOverlapWithPeer_[static_cast<unsigned>(peerRank)].push_back(domesticIdx);
//assert(borderDistance >= 0);
assert(globalIdx >= 0);
assert(domesticIdx >= 0);
assert(!(borderDistance == 0 && !foreignOverlap_.isLocal(domesticIdx)));
assert(!(borderDistance > 0 && foreignOverlap_.isLocal(domesticIdx)));
borderDistance_[static_cast<unsigned>(domesticIdx)] = std::min(borderDistance, borderDistance_[static_cast<unsigned>(domesticIdx)]);
}
#endif // HAVE_MPI
}
// this method is intended to set up the code mapping code for
// mapping domestic indices to the same ones used by a sequential
// grid. this requires detailed knowledge about how a grid
// distributes the degrees of freedom over multiple processes, but
// it can simplify debugging considerably because the indices can
// be made identical for the parallel and the sequential
// computations.
//
// by default, this method does nothing
void setupDebugMapping_()
{}
// this method is intended to map domestic indices to the ones
// used by a sequential grid.
//
// by default, this method does nothing
Index mapInternalToExternal_(Index internalIdx) const
{ return internalIdx; }
// this method is intended to map the indices used by a sequential
// to grid domestic indices ones.
//
// by default, this method does nothing
Index mapExternalToInternal_(Index externalIdx) const
{ return externalIdx; }
ProcessRank myRank_;
unsigned worldSize_;
ForeignOverlap foreignOverlap_;
BlackList blackList_;
DomesticOverlapByRank domesticOverlapWithPeer_;
OverlapByIndex domesticOverlapByIndex_;
std::vector<BorderDistance> borderDistance_;
std::vector<ProcessRank> masterRank_;
std::map<ProcessRank, MpiBuffer<size_t> *> numIndicesSendBuffer_;
std::map<ProcessRank, MpiBuffer<IndexDistanceNpeers> *> indicesSendBuffer_;
GlobalIndices globalIndices_;
PeerSet peerSet_;
};
} // namespace Linear
} // namespace Opm
#endif
|