1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::FixPointCriterion
*/
#ifndef EWOMS_ISTL_FIXPOINT_CRITERION_HH
#define EWOMS_ISTL_FIXPOINT_CRITERION_HH
#include "convergencecriterion.hh"
#include <opm/material/common/Unused.hpp>
namespace Opm {
namespace Linear {
/*! \addtogroup Linear
* \{
*/
/*!
* \brief Provides a convergence criterion for the linear solvers
* which looks at the weighted maximum of the difference
* between two iterations.
*
* For the FixPointCriterion, the error of the solution is defined
* as
* \f[ e^k = \max_i\{ \left| w_i \delta^k_i \right| \}\;, \f]
*
* where \f$\delta = x^k - x^{k + 1} \f$ is the difference between
* two consequtive iterative solution vectors \f$x^k\f$ and \f$x^{k + 1}\f$
* and \f$w_i\f$ is the weight of the \f$i\f$-th degree of freedom.
*
* This criterion requires that the block type of the
* vector is a Dune::FieldVector
*/
template <class Vector, class CollectiveCommunication>
class FixPointCriterion : public ConvergenceCriterion<Vector>
{
using Scalar = typename Vector::field_type;
using BlockType = typename Vector::block_type;
public:
FixPointCriterion(const CollectiveCommunication& comm) : comm_(comm)
{}
FixPointCriterion(const CollectiveCommunication& comm,
const Vector& weightVec, Scalar reduction)
: comm_(comm), weightVec_(weightVec), tolerance_(reduction)
{}
/*!
* \brief Sets the relative weight of a primary variable
*
* For the FixPointCriterion, the error of the solution is defined
* as
* \f[ e^k = \max_i\{ \left| w_i \delta^k_i \right| \}\;, \f]
*
* where \f$\delta = x^k - x^{k + 1} \f$ is the difference between
* two consequtive iterative solution vectors \f$x^k\f$ and \f$x^{k + 1}\f$
* and \f$w_i\f$ is the weight of the \f$i\f$-th degree of freedom.
*
* This method is specific to the FixPointCriterion.
*
* \param weightVec A Dune::BlockVector<Dune::FieldVector<Scalar, n> >
* with the relative weights of the degrees of freedom
*/
void setWeight(const Vector& weightVec)
{ weightVec_ = weightVec; }
/*!
* \brief Return the relative weight of a primary variable
*
* For the FixPointCriterion, the error of the solution is defined
* as
* \f[ e^k = \max_i\{ \left| w_i \delta^k_i \right| \}\;, \f]
*
* where \f$\delta = x^k - x^{k + 1} \f$ is the difference between
* two consequtive iterative solution vectors \f$x^k\f$ and \f$x^{k + 1}\f$
* and \f$w_i\f$ is the weight of the \f$i\f$-th degree of freedom.
*
* This method is specific to the FixPointCriterion.
*
* \param outerIdx The index of the outer vector (i.e. Dune::BlockVector)
* \param innerIdx The index of the inner vector (i.e. Dune::FieldVector)
*/
Scalar weight(int outerIdx, int innerIdx) const
{ return (weightVec_.size() == 0) ? 1.0 : weightVec_[outerIdx][innerIdx]; }
/*!
* \brief Set the maximum allowed weighted maximum difference between two
* iterations
*/
/*!
* \brief Set the maximum allowed maximum difference between two
* iterationsfor the solution considered to be converged.
*/
void setTolerance(Scalar tol)
{ tolerance_ = tol; }
/*!
* \brief Return the maximum allowed weighted difference between two
* iterations for the solution considered to be converged.
*/
Scalar tolerance() const
{ return tolerance_; }
/*!
* \copydoc ConvergenceCriterion::setInitial(const Vector&, const Vector&)
*/
void setInitial(const Vector& curSol, const Vector&)
{
lastSol_ = curSol;
delta_ = 1000 * tolerance_;
}
/*!
* \copydoc ConvergenceCriterion::update(const Vector&, const Vector&, const Vector&)
*/
void update(const Vector& curSol,
const Vector&,
const Vector&)
{
assert(curSol.size() == lastSol_.size());
delta_ = 0.0;
for (size_t i = 0; i < curSol.size(); ++i) {
for (size_t j = 0; j < BlockType::dimension; ++j) {
delta_ =
std::max(delta_, weight(i, j)*std::abs(curSol[i][j] - lastSol_[i][j]));
}
}
delta_ = comm_.max(delta_);
lastSol_ = curSol;
}
/*!
* \copydoc ConvergenceCriterion::converged()
*/
bool converged() const
{ return accuracy() < tolerance(); }
/*!
* \copydoc ConvergenceCriterion::accuracy()
*/
Scalar accuracy() const
{ return delta_; }
private:
const CollectiveCommunication& comm_;
Vector lastSol_; // solution of the last iteration
Vector weightVec_; // solution of the last iteration
Scalar delta_; // the maximum of the absolute weighted difference of the
// last two iterations
Scalar tolerance_; // the maximum allowed delta for the solution to be
// considered converged
};
//! \} end documentation
}} // end namespace Linear, Opm
#endif
|