1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::Linear::OverlappingBCRSMatrix
*/
#ifndef EWOMS_OVERLAPPING_BCRS_MATRIX_HH
#define EWOMS_OVERLAPPING_BCRS_MATRIX_HH
#include <opm/simulators/linalg/domesticoverlapfrombcrsmatrix.hh>
#include <opm/simulators/linalg/globalindices.hh>
#include <opm/simulators/linalg/blacklist.hh>
#include <opm/models/parallel/mpibuffer.hh>
#include <opm/material/common/Valgrind.hpp>
#include <dune/istl/scalarproducts.hh>
#include <dune/istl/io.hh>
#include <algorithm>
#include <set>
#include <map>
#include <iostream>
#include <vector>
#include <memory>
namespace Opm {
namespace Linear {
/*!
* \brief An overlap aware block-compressed row storage (BCRS) matrix.
*/
template <class BCRSMatrix>
class OverlappingBCRSMatrix : public BCRSMatrix
{
using ParentType = BCRSMatrix;
public:
using Overlap = Opm::Linear::DomesticOverlapFromBCRSMatrix;
private:
using Entries = std::vector<std::set<Index> >;
public:
using ColIterator = typename ParentType::ColIterator;
using ConstColIterator = typename ParentType::ConstColIterator;
using block_type = typename ParentType::block_type;
using field_type = typename ParentType::field_type;
// no real copying done at the moment
OverlappingBCRSMatrix(const OverlappingBCRSMatrix& other)
: ParentType(other)
{}
template <class NativeBCRSMatrix>
OverlappingBCRSMatrix(const NativeBCRSMatrix& nativeMatrix,
const BorderList& borderList,
const BlackList& blackList,
unsigned overlapSize)
{
overlap_ = std::make_shared<Overlap>(nativeMatrix, borderList, blackList, overlapSize);
myRank_ = 0;
#if HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &myRank_);
#endif // HAVE_MPI
// build the overlapping matrix from the non-overlapping
// matrix and the overlap
build_(nativeMatrix);
}
// this constructor is required to make the class compatible with the SeqILU class of
// Dune >= 2.7.
OverlappingBCRSMatrix(size_t,
size_t,
typename BCRSMatrix::BuildMode)
{ throw std::logic_error("OverlappingBCRSMatrix objects cannot be build from scratch!"); }
~OverlappingBCRSMatrix()
{
if (overlap_.use_count() == 0)
return;
// delete all MPI buffers
const PeerSet& peerSet = overlap_->peerSet();
typename PeerSet::const_iterator peerIt = peerSet.begin();
typename PeerSet::const_iterator peerEndIt = peerSet.end();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
delete rowSizesRecvBuff_[peerRank];
delete rowIndicesRecvBuff_[peerRank];
delete entryColIndicesRecvBuff_[peerRank];
delete entryValuesRecvBuff_[peerRank];
delete numRowsSendBuff_[peerRank];
delete rowSizesSendBuff_[peerRank];
delete rowIndicesSendBuff_[peerRank];
delete entryColIndicesSendBuff_[peerRank];
delete entryValuesSendBuff_[peerRank];
}
}
ParentType& asParent()
{ return *this; }
const ParentType& asParent() const
{ return *this; }
/*!
* \brief Returns the domestic overlap for the process.
*/
const Overlap& overlap() const
{ return *overlap_; }
/*!
* \brief Assign and syncronize the overlapping matrix from a non-overlapping one.
*/
void assignAdd(const ParentType& nativeMatrix)
{
// copy the native entries
assignFromNative(nativeMatrix);
// communicate and add the contents of overlapping rows
syncAdd();
}
/*!
* \brief Assign and syncronize the overlapping matrix from a
* non-overlapping one.
*
* The non-master entries are copied from the master
*/
template <class NativeBCRSMatrix>
void assignCopy(const NativeBCRSMatrix& nativeMatrix)
{
// copy the native entries
assignFromNative(nativeMatrix);
// communicate and add the contents of overlapping rows
syncCopy();
}
/*!
* \brief Set the identity matrix on the main diagonal of front indices.
*/
void resetFront()
{
// create an identity matrix
block_type idMatrix(0.0);
for (unsigned i = 0; i < idMatrix.size(); ++i)
idMatrix[i][i] = 1.0;
int numLocal = overlap_->numLocal();
int numDomestic = overlap_->numDomestic();
for (int domRowIdx = numLocal; domRowIdx < numDomestic; ++domRowIdx) {
if (overlap_->isFront(domRowIdx)) {
// set the front rows to a diagonal 1
(*this)[domRowIdx] = 0.0;
(*this)[domRowIdx][domRowIdx] = idMatrix;
}
}
}
void print() const
{
overlap_->print();
for (int i = 0; i < this->N(); ++i) {
if (overlap_->isLocal(i))
std::cout << " ";
else
std::cout << "*";
std::cout << "row " << i << " ";
using ColIt = typename BCRSMatrix::ConstColIterator;
ColIt colIt = (*this)[i].begin();
ColIt colEndIt = (*this)[i].end();
for (int j = 0; j < this->M(); ++j) {
if (colIt != colEndIt && j == colIt.index()) {
++colIt;
if (overlap_->isBorder(j))
std::cout << "|";
else if (overlap_->isLocal(j))
std::cout << "X";
else
std::cout << "*";
}
else
std::cout << " ";
}
std::cout << "\n" << std::flush;
}
Dune::printSparseMatrix(std::cout,
*static_cast<const BCRSMatrix *>(this),
"M",
"row");
}
template <class NativeBCRSMatrix>
void assignFromNative(const NativeBCRSMatrix& nativeMatrix)
{
// first, set everything to 0,
BCRSMatrix::operator=(0.0);
// then copy the domestic entries of the native matrix to the overlapping matrix
for (unsigned nativeRowIdx = 0; nativeRowIdx < nativeMatrix.N(); ++nativeRowIdx) {
Index domesticRowIdx = overlap_->nativeToDomestic(static_cast<Index>(nativeRowIdx));
if (domesticRowIdx < 0) {
continue; // row corresponds to a black-listed entry
}
auto nativeColIt = nativeMatrix[nativeRowIdx].begin();
const auto& nativeColEndIt = nativeMatrix[nativeRowIdx].end();
for (; nativeColIt != nativeColEndIt; ++nativeColIt) {
Index domesticColIdx = overlap_->nativeToDomestic(static_cast<Index>(nativeColIt.index()));
// make sure to include all off-diagonal entries, even those which belong
// to DOFs which are managed by a peer process. For this, we have to
// re-map the column index of the black-listed index to a native one.
if (domesticColIdx < 0)
domesticColIdx = overlap_->blackList().nativeToDomestic(static_cast<Index>(nativeColIt.index()));
if (domesticColIdx < 0)
// there is no domestic index which corresponds to a black-listed
// one. this can happen if the grid overlap is larger than the
// algebraic one...
continue;
// we need to copy the block matrices manually since it seems that (at
// least some versions of) Dune have an endless recursion bug when
// assigning dense matrices of different field type
const auto& src = *nativeColIt;
auto& dest = (*this)[static_cast<unsigned>(domesticRowIdx)][static_cast<unsigned>(domesticColIdx)];
for (unsigned i = 0; i < src.rows; ++i) {
for (unsigned j = 0; j < src.cols; ++j) {
dest[i][j] = static_cast<field_type>(src[i][j]);
}
}
}
}
}
// communicates and adds up the contents of overlapping rows
void syncAdd()
{
// first, send all entries to the peers
const PeerSet& peerSet = overlap_->peerSet();
typename PeerSet::const_iterator peerIt = peerSet.begin();
typename PeerSet::const_iterator peerEndIt = peerSet.end();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
sendEntries_(peerRank);
}
// then, receive entries from the peers
peerIt = peerSet.begin();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
receiveAddEntries_(peerRank);
}
// finally, make sure that everything which we send was
// received by the peers
peerIt = peerSet.begin();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
entryValuesSendBuff_[peerRank]->wait();
}
}
// communicates and copies the contents of overlapping rows from
// the master
void syncCopy()
{
// first, send all entries to the peers
const PeerSet& peerSet = overlap_->peerSet();
typename PeerSet::const_iterator peerIt = peerSet.begin();
typename PeerSet::const_iterator peerEndIt = peerSet.end();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
sendEntries_(peerRank);
}
// then, receive entries from the peers
peerIt = peerSet.begin();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
receiveCopyEntries_(peerRank);
}
// finally, make sure that everything which we send was
// received by the peers
peerIt = peerSet.begin();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
entryValuesSendBuff_[peerRank]->wait();
}
}
private:
template <class NativeBCRSMatrix>
void build_(const NativeBCRSMatrix& nativeMatrix)
{
size_t numDomestic = overlap_->numDomestic();
// allocate the rows
this->setSize(numDomestic, numDomestic);
this->setBuildMode(ParentType::random);
// communicate the entries
buildIndices_(nativeMatrix);
}
template <class NativeBCRSMatrix>
void buildIndices_(const NativeBCRSMatrix& nativeMatrix)
{
/////////
// first, add all local matrix entries
/////////
entries_.resize(overlap_->numDomestic());
for (unsigned nativeRowIdx = 0; nativeRowIdx < nativeMatrix.N(); ++nativeRowIdx) {
int domesticRowIdx = overlap_->nativeToDomestic(static_cast<Index>(nativeRowIdx));
if (domesticRowIdx < 0)
continue;
auto nativeColIt = nativeMatrix[nativeRowIdx].begin();
const auto& nativeColEndIt = nativeMatrix[nativeRowIdx].end();
for (; nativeColIt != nativeColEndIt; ++nativeColIt) {
int domesticColIdx = overlap_->nativeToDomestic(static_cast<Index>(nativeColIt.index()));
// make sure to include all off-diagonal entries, even those which belong
// to DOFs which are managed by a peer process. For this, we have to
// re-map the column index of the black-listed index to a native one.
if (domesticColIdx < 0) {
domesticColIdx = overlap_->blackList().nativeToDomestic(static_cast<Index>(nativeColIt.index()));
}
if (domesticColIdx < 0)
continue;
entries_[static_cast<unsigned>(domesticRowIdx)].insert(domesticColIdx);
}
}
/////////
// add the indices for all additional entries
/////////
// first, send all our indices to all peers
const PeerSet& peerSet = overlap_->peerSet();
typename PeerSet::const_iterator peerIt = peerSet.begin();
typename PeerSet::const_iterator peerEndIt = peerSet.end();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
sendIndices_(nativeMatrix, peerRank);
}
// then recieve all indices from the peers
peerIt = peerSet.begin();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
receiveIndices_(peerRank);
}
// wait until all send operations are completed
peerIt = peerSet.begin();
for (; peerIt != peerEndIt; ++peerIt) {
ProcessRank peerRank = *peerIt;
numRowsSendBuff_[peerRank]->wait();
rowSizesSendBuff_[peerRank]->wait();
rowIndicesSendBuff_[peerRank]->wait();
entryColIndicesSendBuff_[peerRank]->wait();
// convert the global indices in the send buffers to domestic
// ones
globalToDomesticBuff_(*rowIndicesSendBuff_[peerRank]);
globalToDomesticBuff_(*entryColIndicesSendBuff_[peerRank]);
}
/////////
// actually initialize the BCRS matrix structure
/////////
// set the row sizes
size_t numDomestic = overlap_->numDomestic();
for (unsigned rowIdx = 0; rowIdx < numDomestic; ++rowIdx) {
unsigned numCols = 0;
const auto& colIndices = entries_[rowIdx];
auto colIdxIt = colIndices.begin();
const auto& colIdxEndIt = colIndices.end();
for (; colIdxIt != colIdxEndIt; ++colIdxIt) {
if (*colIdxIt < 0)
// the matrix for the local process does not know about this DOF
continue;
++numCols;
}
this->setrowsize(rowIdx, numCols);
}
this->endrowsizes();
// set the indices
for (unsigned rowIdx = 0; rowIdx < numDomestic; ++rowIdx) {
const auto& colIndices = entries_[rowIdx];
auto colIdxIt = colIndices.begin();
const auto& colIdxEndIt = colIndices.end();
for (; colIdxIt != colIdxEndIt; ++colIdxIt) {
if (*colIdxIt < 0)
// the matrix for the local process does not know about this DOF
continue;
this->addindex(rowIdx, static_cast<unsigned>(*colIdxIt));
}
}
this->endindices();
// free the memory occupied by the array of the matrix entries
entries_.clear();
}
// send the overlap indices to a peer
template <class NativeBCRSMatrix>
void sendIndices_([[maybe_unused]] const NativeBCRSMatrix& nativeMatrix,
[[maybe_unused]] ProcessRank peerRank)
{
#if HAVE_MPI
// send size of foreign overlap to peer
size_t numOverlapRows = overlap_->foreignOverlapSize(peerRank);
numRowsSendBuff_[peerRank] = new MpiBuffer<unsigned>(1);
(*numRowsSendBuff_[peerRank])[0] = static_cast<unsigned>(numOverlapRows);
numRowsSendBuff_[peerRank]->send(peerRank);
// allocate the buffers which hold the global indices of each row and the number
// of entries which need to be communicated by the respective row
rowIndicesSendBuff_[peerRank] = new MpiBuffer<Index>(numOverlapRows);
rowSizesSendBuff_[peerRank] = new MpiBuffer<unsigned>(numOverlapRows);
// compute the sets of the indices of the entries which need to be send to the peer
using ColumnIndexSet = std::set<int>;
using EntryTuples = std::map<int, ColumnIndexSet>;
EntryTuples entryIndices;
unsigned numEntries = 0; // <- total number of matrix entries to be send to the peer
for (unsigned overlapOffset = 0; overlapOffset < numOverlapRows; ++overlapOffset) {
Index domesticRowIdx = overlap_->foreignOverlapOffsetToDomesticIdx(peerRank, overlapOffset);
Index nativeRowIdx = overlap_->domesticToNative(domesticRowIdx);
Index globalRowIdx = overlap_->domesticToGlobal(domesticRowIdx);
ColumnIndexSet& colIndices = entryIndices[globalRowIdx];
auto nativeColIt = nativeMatrix[static_cast<unsigned>(nativeRowIdx)].begin();
const auto& nativeColEndIt = nativeMatrix[static_cast<unsigned>(nativeRowIdx)].end();
for (; nativeColIt != nativeColEndIt; ++nativeColIt) {
unsigned nativeColIdx = static_cast<unsigned>(nativeColIt.index());
Index domesticColIdx = overlap_->nativeToDomestic(static_cast<Index>(nativeColIdx));
if (domesticColIdx < 0)
// the native column index may be blacklisted, use the corresponding
// index in the domestic overlap.
domesticColIdx = overlap_->blackList().nativeToDomestic(static_cast<Index>(nativeColIdx));
if (domesticColIdx < 0)
// the column may still not be known locally, i.e. the corresponding
// DOF of the row is at the process's front. we don't need this
// entry.
continue;
Index globalColIdx = overlap_->domesticToGlobal(domesticColIdx);
colIndices.insert(globalColIdx);
++numEntries;
}
};
// fill the send buffers
entryColIndicesSendBuff_[peerRank] = new MpiBuffer<Index>(numEntries);
Index overlapEntryIdx = 0;
for (unsigned overlapOffset = 0; overlapOffset < numOverlapRows; ++overlapOffset) {
Index domesticRowIdx = overlap_->foreignOverlapOffsetToDomesticIdx(peerRank, overlapOffset);
Index globalRowIdx = overlap_->domesticToGlobal(domesticRowIdx);
(*rowIndicesSendBuff_[peerRank])[overlapOffset] = globalRowIdx;
const ColumnIndexSet& colIndexSet = entryIndices[globalRowIdx];
auto* rssb = rowSizesSendBuff_[peerRank];
(*rssb)[overlapOffset] = static_cast<unsigned>(colIndexSet.size());
for (auto it = colIndexSet.begin(); it != colIndexSet.end(); ++it) {
int globalColIdx = *it;
(*entryColIndicesSendBuff_[peerRank])[static_cast<unsigned>(overlapEntryIdx)] = globalColIdx;
++ overlapEntryIdx;
}
}
// actually communicate with the peer
rowSizesSendBuff_[peerRank]->send(peerRank);
rowIndicesSendBuff_[peerRank]->send(peerRank);
entryColIndicesSendBuff_[peerRank]->send(peerRank);
// create the send buffers for the values of the matrix
// entries
entryValuesSendBuff_[peerRank] = new MpiBuffer<block_type>(numEntries);
#endif // HAVE_MPI
}
// receive the overlap indices to a peer
void receiveIndices_([[maybe_unused]] ProcessRank peerRank)
{
#if HAVE_MPI
// receive size of foreign overlap to peer
unsigned numOverlapRows;
auto& numRowsRecvBuff = numRowsRecvBuff_[peerRank];
numRowsRecvBuff.resize(1);
numRowsRecvBuff.receive(peerRank);
numOverlapRows = numRowsRecvBuff[0];
// create receive buffer for the row sizes and receive them
// from the peer
rowSizesRecvBuff_[peerRank] = new MpiBuffer<unsigned>(numOverlapRows);
rowIndicesRecvBuff_[peerRank] = new MpiBuffer<Index>(numOverlapRows);
rowSizesRecvBuff_[peerRank]->receive(peerRank);
rowIndicesRecvBuff_[peerRank]->receive(peerRank);
// calculate the total number of indices which are send by the
// peer
unsigned totalIndices = 0;
for (unsigned i = 0; i < numOverlapRows; ++i)
totalIndices += (*rowSizesRecvBuff_[peerRank])[i];
// create the buffer to store the column indices of the matrix entries
entryColIndicesRecvBuff_[peerRank] = new MpiBuffer<Index>(totalIndices);
entryValuesRecvBuff_[peerRank] = new MpiBuffer<block_type>(totalIndices);
// communicate with the peer
entryColIndicesRecvBuff_[peerRank]->receive(peerRank);
// convert the global indices in the receive buffers to
// domestic ones
globalToDomesticBuff_(*rowIndicesRecvBuff_[peerRank]);
globalToDomesticBuff_(*entryColIndicesRecvBuff_[peerRank]);
// add the entries to the global entry map
unsigned k = 0;
for (unsigned i = 0; i < numOverlapRows; ++i) {
Index domRowIdx = (*rowIndicesRecvBuff_[peerRank])[i];
for (unsigned j = 0; j < (*rowSizesRecvBuff_[peerRank])[i]; ++j) {
Index domColIdx = (*entryColIndicesRecvBuff_[peerRank])[k];
entries_[static_cast<unsigned>(domRowIdx)].insert(domColIdx);
++k;
}
}
#endif // HAVE_MPI
}
void sendEntries_([[maybe_unused]] ProcessRank peerRank)
{
#if HAVE_MPI
auto &mpiSendBuff = *entryValuesSendBuff_[peerRank];
auto &mpiRowIndicesSendBuff = *rowIndicesSendBuff_[peerRank];
auto &mpiRowSizesSendBuff = *rowSizesSendBuff_[peerRank];
auto &mpiColIndicesSendBuff = *entryColIndicesSendBuff_[peerRank];
// fill the send buffer
unsigned k = 0;
for (unsigned i = 0; i < mpiRowIndicesSendBuff.size(); ++i) {
Index domRowIdx = mpiRowIndicesSendBuff[i];
for (Index j = 0; j < static_cast<Index>(mpiRowSizesSendBuff[i]); ++j)
{
// move to the next column which is in the overlap
Index domColIdx = mpiColIndicesSendBuff[k];
// add the values of this column to the send buffer
mpiSendBuff[k] = (*this)[static_cast<unsigned>(domRowIdx)][static_cast<unsigned>(domColIdx)];
++k;
}
}
mpiSendBuff.send(peerRank);
#endif // HAVE_MPI
}
void receiveAddEntries_([[maybe_unused]] ProcessRank peerRank)
{
#if HAVE_MPI
auto &mpiRecvBuff = *entryValuesRecvBuff_[peerRank];
auto &mpiRowIndicesRecvBuff = *rowIndicesRecvBuff_[peerRank];
auto &mpiRowSizesRecvBuff = *rowSizesRecvBuff_[peerRank];
auto &mpiColIndicesRecvBuff = *entryColIndicesRecvBuff_[peerRank];
mpiRecvBuff.receive(peerRank);
// retrieve the values from the receive buffer
unsigned k = 0;
for (unsigned i = 0; i < mpiRowIndicesRecvBuff.size(); ++i) {
Index domRowIdx = mpiRowIndicesRecvBuff[i];
for (unsigned j = 0; j < mpiRowSizesRecvBuff[i]; ++j, ++k) {
Index domColIdx = mpiColIndicesRecvBuff[k];
if (domColIdx < 0)
// the matrix for the current process does not know about this DOF
continue;
(*this)[static_cast<unsigned>(domRowIdx)][static_cast<unsigned>(domColIdx)] += mpiRecvBuff[k];
}
}
#endif // HAVE_MPI
}
void receiveCopyEntries_([[maybe_unused]] int peerRank)
{
#if HAVE_MPI
MpiBuffer<block_type> &mpiRecvBuff = *entryValuesRecvBuff_[peerRank];
MpiBuffer<Index> &mpiRowIndicesRecvBuff = *rowIndicesRecvBuff_[peerRank];
MpiBuffer<unsigned> &mpiRowSizesRecvBuff = *rowSizesRecvBuff_[peerRank];
MpiBuffer<Index> &mpiColIndicesRecvBuff = *entryColIndicesRecvBuff_[peerRank];
mpiRecvBuff.receive(peerRank);
// retrieve the values from the receive buffer
unsigned k = 0;
for (unsigned i = 0; i < mpiRowIndicesRecvBuff.size(); ++i) {
Index domRowIdx = mpiRowIndicesRecvBuff[i];
for (unsigned j = 0; j < mpiRowSizesRecvBuff[i]; ++j, ++k) {
Index domColIdx = mpiColIndicesRecvBuff[k];
if (domColIdx < 0)
// the matrix for the current process does not know about this DOF
continue;
(*this)[static_cast<unsigned>(domRowIdx)][static_cast<unsigned>(domColIdx)] = mpiRecvBuff[k];
}
}
#endif // HAVE_MPI
}
void globalToDomesticBuff_(MpiBuffer<Index>& idxBuff)
{
for (unsigned i = 0; i < idxBuff.size(); ++i)
idxBuff[i] = overlap_->globalToDomestic(idxBuff[i]);
}
int myRank_;
Entries entries_;
std::shared_ptr<Overlap> overlap_;
std::map<ProcessRank, MpiBuffer<unsigned> *> numRowsSendBuff_;
std::map<ProcessRank, MpiBuffer<unsigned> *> rowSizesSendBuff_;
std::map<ProcessRank, MpiBuffer<Index> *> rowIndicesSendBuff_;
std::map<ProcessRank, MpiBuffer<Index> *> entryColIndicesSendBuff_;
std::map<ProcessRank, MpiBuffer<block_type> *> entryValuesSendBuff_;
std::map<ProcessRank, MpiBuffer<unsigned> > numRowsRecvBuff_;
std::map<ProcessRank, MpiBuffer<unsigned> *> rowSizesRecvBuff_;
std::map<ProcessRank, MpiBuffer<Index> *> rowIndicesRecvBuff_;
std::map<ProcessRank, MpiBuffer<Index> *> entryColIndicesRecvBuff_;
std::map<ProcessRank, MpiBuffer<block_type> *> entryValuesRecvBuff_;
};
} // namespace Linear
} // namespace Opm
#endif
|