1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::CuvetteProblem
*/
#ifndef EWOMS_CUVETTE_PROBLEM_HH
#define EWOMS_CUVETTE_PROBLEM_HH
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>
#include <opm/material/fluidmatrixinteractions/ThreePhaseParkerVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
#include <opm/material/constraintsolvers/MiscibleMultiPhaseComposition.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <string>
namespace Opm {
template <class TypeTag>
class CuvetteProblem;
}
namespace Opm::Properties {
// create a new type tag for the cuvette steam injection problem
namespace TTag {
struct CuvetteBaseProblem {};
}
// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::CuvetteBaseProblem> { using type = Dune::YaspGrid<2>; };
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::CuvetteBaseProblem> { using type = Opm::CuvetteProblem<TypeTag>; };
// Set the fluid system
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::CuvetteBaseProblem>
{ using type = Opm::H2OAirMesityleneFluidSystem<GetPropType<TypeTag, Properties::Scalar>>; };
// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::CuvetteBaseProblem> { static constexpr bool value = true; };
// Set the maximum time step
template<class TypeTag>
struct MaxTimeStepSize<TypeTag, TTag::CuvetteBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 600.;
};
// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::CuvetteBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Traits = Opm::ThreePhaseMaterialTraits<
Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::naplPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
public:
using type = Opm::ThreePhaseParkerVanGenuchten<Traits>;
};
// set the energy storage law for the solid phase
template<class TypeTag>
struct SolidEnergyLaw<TypeTag, TTag::CuvetteBaseProblem>
{ using type = Opm::ConstantSolidHeatCapLaw<GetPropType<TypeTag, Properties::Scalar>>; };
// Set the thermal conduction law
template<class TypeTag>
struct ThermalConductionLaw<TypeTag, TTag::CuvetteBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
// define the material law parameterized by absolute saturations
using type = Opm::SomertonThermalConductionLaw<FluidSystem, Scalar>;
};
// The default for the end time of the simulation
template<class TypeTag>
struct EndTime<TypeTag, TTag::CuvetteBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 180;
};
// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::CuvetteBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1;
};
// The default DGF file to load
template<class TypeTag>
struct GridFile<TypeTag, TTag::CuvetteBaseProblem> { static constexpr auto value = "./data/cuvette_11x4.dgf"; };
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief Non-isothermal three-phase gas injection problem where a hot gas
* is injected into a unsaturated porous medium with a residually
* trapped NAPL contamination.
*
* The domain is a quasi-two-dimensional container (cuvette). Its
* dimensions are 1.5 m x 0.74 m. The top and bottom boundaries are
* closed, the right boundary is a free-flow boundary allowing fluids
* to escape. From the left, an injection of a hot water-air mixture
* is injected. The set-up is aimed at remediating an initial NAPL
* (Non-Aquoeus Phase Liquid) contamination in the domain. The
* contamination is initially placed partly into the ambient coarse
* sand and partly into a fine sand lens.
*
* This simulation can be varied through assigning different boundary conditions
* at the left boundary as described in Class (2001):
* Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in
* NAPL-kontaminierten poroesen Medien, Dissertation, Eigenverlag des Instituts
* fuer Wasserbau
*
* To see the basic effect and the differences to scenarios with pure
* steam or pure air injection, it is sufficient to simulate this
* problem to about 2-3 hours simulation time. Complete remediation
* of the domain requires much longer (about 10 days simulated time).
*/
template <class TypeTag>
class CuvetteProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using ThermalConductionLawParams = GetPropType<TypeTag, Properties::ThermalConductionLawParams>;
using SolidEnergyLawParams = GetPropType<TypeTag, Properties::SolidEnergyLawParams>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Model = GetPropType<TypeTag, Properties::Model>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
// copy some indices for convenience
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { naplPhaseIdx = FluidSystem::naplPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { H2OIdx = FluidSystem::H2OIdx };
enum { airIdx = FluidSystem::airIdx };
enum { NAPLIdx = FluidSystem::NAPLIdx };
enum { conti0EqIdx = Indices::conti0EqIdx };
// Grid and world dimension
enum { dimWorld = GridView::dimensionworld };
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
CuvetteProblem(Simulator& simulator)
: ParentType(simulator)
, eps_(1e-6)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
if (Opm::Valgrind::IsRunning())
FluidSystem::init(/*minT=*/283.15, /*maxT=*/500.0, /*nT=*/20,
/*minp=*/0.8e5, /*maxp=*/2e5, /*np=*/10);
else
FluidSystem::init(/*minT=*/283.15, /*maxT=*/500.0, /*nT=*/200,
/*minp=*/0.8e5, /*maxp=*/2e5, /*np=*/100);
// intrinsic permeabilities
fineK_ = this->toDimMatrix_(6.28e-12);
coarseK_ = this->toDimMatrix_(9.14e-10);
// porosities
finePorosity_ = 0.42;
coarsePorosity_ = 0.42;
// parameters for the capillary pressure law
#if 1
// three-phase Parker -- van Genuchten law
fineMaterialParams_.setVgAlpha(0.0005);
coarseMaterialParams_.setVgAlpha(0.005);
fineMaterialParams_.setVgN(4.0);
coarseMaterialParams_.setVgN(4.0);
coarseMaterialParams_.setkrRegardsSnr(true);
fineMaterialParams_.setkrRegardsSnr(true);
// residual saturations
fineMaterialParams_.setSwr(0.1201);
fineMaterialParams_.setSwrx(0.1201);
fineMaterialParams_.setSnr(0.0701);
fineMaterialParams_.setSgr(0.0101);
coarseMaterialParams_.setSwr(0.1201);
coarseMaterialParams_.setSwrx(0.1201);
coarseMaterialParams_.setSnr(0.0701);
coarseMaterialParams_.setSgr(0.0101);
#else
// linear material law
fineMaterialParams_.setPcMinSat(gasPhaseIdx, 0);
fineMaterialParams_.setPcMaxSat(gasPhaseIdx, 0);
fineMaterialParams_.setPcMinSat(naplPhaseIdx, 0);
fineMaterialParams_.setPcMaxSat(naplPhaseIdx, -1000);
fineMaterialParams_.setPcMinSat(waterPhaseIdx, 0);
fineMaterialParams_.setPcMaxSat(waterPhaseIdx, -10000);
coarseMaterialParams_.setPcMinSat(gasPhaseIdx, 0);
coarseMaterialParams_.setPcMaxSat(gasPhaseIdx, 0);
coarseMaterialParams_.setPcMinSat(naplPhaseIdx, 0);
coarseMaterialParams_.setPcMaxSat(naplPhaseIdx, -100);
coarseMaterialParams_.setPcMinSat(waterPhaseIdx, 0);
coarseMaterialParams_.setPcMaxSat(waterPhaseIdx, -1000);
// residual saturations
fineMaterialParams_.setResidSat(waterPhaseIdx, 0.1201);
fineMaterialParams_.setResidSat(naplPhaseIdx, 0.0701);
fineMaterialParams_.setResidSat(gasPhaseIdx, 0.0101);
coarseMaterialParams_.setResidSat(waterPhaseIdx, 0.1201);
coarseMaterialParams_.setResidSat(naplPhaseIdx, 0.0701);
coarseMaterialParams_.setResidSat(gasPhaseIdx, 0.0101);
#endif
fineMaterialParams_.finalize();
coarseMaterialParams_.finalize();
// initialize parameters for the thermal conduction law
computeThermalCondParams_(thermalCondParams_, finePorosity_);
// assume constant volumetric heat capacity and granite
solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
* 2700.0); // density of granite [kg/m^3]
solidEnergyLawParams_.finalize();
initInjectFluidState_();
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::shouldWriteRestartFile
*
* This problem writes a restart file after every time step.
*/
bool shouldWriteRestartFile() const
{ return true; }
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return std::string("cuvette_") + Model::name(); }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return 293.15; /* [K] */ }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return finePorosity_;
else
return coarsePorosity_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineMaterialParams_;
else
return coarseMaterialParams_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template <class Context>
const ThermalConductionLawParams &
thermalConductionParams(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return thermalCondParams_; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onRightBoundary_(pos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
values.setNoFlow();
}
else if (onLeftBoundary_(pos)) {
// injection
RateVector molarRate;
// inject with the same composition as the gas phase of
// the injection fluid state
Scalar molarInjectionRate = 0.3435; // [mol/(m^2 s)]
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
molarRate[conti0EqIdx + compIdx] =
-molarInjectionRate
* injectFluidState_.moleFraction(gasPhaseIdx, compIdx);
// calculate the total mass injection rate [kg / (m^2 s)
Scalar massInjectionRate =
molarInjectionRate
* injectFluidState_.averageMolarMass(gasPhaseIdx);
// set the boundary rate vector [J / (m^2 s)]
values.setMolarRate(molarRate);
values.setEnthalpyRate(-injectFluidState_.enthalpy(gasPhaseIdx) * massInjectionRate);
}
else
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx,
unsigned timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/false);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool isContaminated_(const GlobalPosition& pos) const
{
return (0.20 <= pos[0]) && (pos[0] <= 0.80) && (0.4 <= pos[1])
&& (pos[1] <= 0.65);
}
bool isFineMaterial_(const GlobalPosition& pos) const
{
if (0.13 <= pos[0] && 1.20 >= pos[0] && 0.32 <= pos[1] && pos[1] <= 0.57)
return true;
else if (pos[1] <= 0.15 && 1.20 <= pos[0])
return true;
else
return false;
}
template <class FluidState, class Context>
void initialFluidState_(FluidState& fs, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
fs.setTemperature(293.0 /*[K]*/);
Scalar pw = 1e5;
if (isContaminated_(pos)) {
fs.setSaturation(waterPhaseIdx, 0.12);
fs.setSaturation(naplPhaseIdx, 0.07);
fs.setSaturation(gasPhaseIdx, 1 - 0.12 - 0.07);
// set the capillary pressures
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
Scalar pc[numPhases];
MaterialLaw::capillaryPressures(pc, matParams, fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fs.setPressure(phaseIdx, pw + (pc[phaseIdx] - pc[waterPhaseIdx]));
// compute the phase compositions
using MMPC = Opm::MiscibleMultiPhaseComposition<Scalar, FluidSystem>;
typename FluidSystem::template ParameterCache<Scalar> paramCache;
MMPC::solve(fs, paramCache, /*setViscosity=*/true, /*setEnthalpy=*/true);
}
else {
fs.setSaturation(waterPhaseIdx, 0.12);
fs.setSaturation(gasPhaseIdx, 1 - fs.saturation(waterPhaseIdx));
fs.setSaturation(naplPhaseIdx, 0);
// set the capillary pressures
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
Scalar pc[numPhases];
MaterialLaw::capillaryPressures(pc, matParams, fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fs.setPressure(phaseIdx, pw + (pc[phaseIdx] - pc[waterPhaseIdx]));
// compute the phase compositions
using MMPC = Opm::MiscibleMultiPhaseComposition<Scalar, FluidSystem>;
typename FluidSystem::template ParameterCache<Scalar> paramCache;
MMPC::solve(fs, paramCache, /*setViscosity=*/true, /*setEnthalpy=*/true);
// set the contaminant mole fractions to zero. this is a little bit hacky...
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setMoleFraction(phaseIdx, NAPLIdx, 0.0);
if (phaseIdx == naplPhaseIdx)
continue;
Scalar sumx = 0;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
sumx += fs.moleFraction(phaseIdx, compIdx);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
fs.setMoleFraction(phaseIdx, compIdx,
fs.moleFraction(phaseIdx, compIdx) / sumx);
}
}
}
void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
{
Scalar lambdaGranite = 2.8; // [W / (K m)]
// create a Fluid state which has all phases present
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setTemperature(293.15);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setPressure(phaseIdx, 1.0135e5);
}
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar lambdaSaturated;
if (FluidSystem::isLiquid(phaseIdx)) {
Scalar lambdaFluid = FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
lambdaSaturated =
std::pow(lambdaGranite, (1 - poro))
+
std::pow(lambdaFluid, poro);
}
else
lambdaSaturated = std::pow(lambdaGranite, (1 - poro));
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
if (!FluidSystem::isLiquid(phaseIdx))
params.setVacuumLambda(lambdaSaturated);
}
}
void initInjectFluidState_()
{
injectFluidState_.setTemperature(383.0); // [K]
injectFluidState_.setPressure(gasPhaseIdx, 1e5); // [Pa]
injectFluidState_.setSaturation(gasPhaseIdx, 1.0); // [-]
Scalar xgH2O = 0.417;
injectFluidState_.setMoleFraction(gasPhaseIdx, H2OIdx, xgH2O); // [-]
injectFluidState_.setMoleFraction(gasPhaseIdx, airIdx, 1 - xgH2O); // [-]
injectFluidState_.setMoleFraction(gasPhaseIdx, NAPLIdx, 0.0); // [-]
// set the specific enthalpy of the gas phase
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updatePhase(injectFluidState_, gasPhaseIdx);
Scalar h = FluidSystem::enthalpy(injectFluidState_, paramCache, gasPhaseIdx);
injectFluidState_.setEnthalpy(gasPhaseIdx, h);
}
DimMatrix fineK_;
DimMatrix coarseK_;
Scalar finePorosity_;
Scalar coarsePorosity_;
MaterialLawParams fineMaterialParams_;
MaterialLawParams coarseMaterialParams_;
ThermalConductionLawParams thermalCondParams_;
SolidEnergyLawParams solidEnergyLawParams_;
Opm::CompositionalFluidState<Scalar, FluidSystem> injectFluidState_;
const Scalar eps_;
};
} // namespace Opm
#endif
|