1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::InfiltrationProblem
*/
#ifndef EWOMS_INFILTRATION_PROBLEM_HH
#define EWOMS_INFILTRATION_PROBLEM_HH
#include <opm/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>
#include <opm/material/fluidmatrixinteractions/ThreePhaseParkerVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
namespace Opm {
template <class TypeTag>
class InfiltrationProblem;
}
namespace Opm::Properties {
namespace TTag {
struct InfiltrationBaseProblem {};
}
// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::InfiltrationBaseProblem> { using type = Dune::YaspGrid<2>; };
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::InfiltrationBaseProblem> { using type = Opm::InfiltrationProblem<TypeTag>; };
// Set the fluid system
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::InfiltrationBaseProblem>
{ using type = Opm::H2OAirMesityleneFluidSystem<GetPropType<TypeTag, Properties::Scalar>>; };
// Enable gravity?
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::InfiltrationBaseProblem> { static constexpr bool value = true; };
// Write newton convergence?
template<class TypeTag>
struct NewtonWriteConvergence<TypeTag, TTag::InfiltrationBaseProblem> { static constexpr bool value = false; };
// -1 backward differences, 0: central differences, +1: forward differences
template<class TypeTag>
struct NumericDifferenceMethod<TypeTag, TTag::InfiltrationBaseProblem> { static constexpr int value = 1; };
// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::InfiltrationBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Traits= Opm::ThreePhaseMaterialTraits<
Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::naplPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
public:
using type = Opm::ThreePhaseParkerVanGenuchten<Traits>;
};
// The default for the end time of the simulation
template<class TypeTag>
struct EndTime<TypeTag, TTag::InfiltrationBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 6e3;
};
// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::InfiltrationBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 60;
};
// The default DGF file to load
template<class TypeTag>
struct GridFile<TypeTag, TTag::InfiltrationBaseProblem>
{ static constexpr auto value = "./data/infiltration_50x3.dgf"; };
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup TestProblems
* \brief Isothermal NAPL infiltration problem where LNAPL
* contaminates the unsaturated and the saturated groundwater
* zone.
*
* The 2D domain of this test problem is 500 m long and 10 m deep,
* where the lower part represents a slightly inclined groundwater
* table, and the upper part is the vadose zone. A LNAPL (Non-Aqueous
* Phase Liquid which is lighter than water) infiltrates (modelled
* with a Neumann boundary condition) into the vadose zone. Upon
* reaching the water table, it spreads (since lighter than water) and
* migrates on top of the water table in the direction of the slope.
* On its way through the vadose zone, it leaves a trace of residually
* trapped immobile NAPL, which can in the following dissolve and
* evaporate slowly, and eventually be transported by advection and
* diffusion.
*
* Left and right boundaries are constant hydraulic head boundaries
* (Dirichlet), Top and bottom are Neumann boundaries, all no-flow
* except for the small infiltration zone in the upper left part.
*/
template <class TypeTag>
class InfiltrationProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Model = GetPropType<TypeTag, Properties::Model>;
// copy some indices for convenience
using Indices = GetPropType<TypeTag, Properties::Indices>;
enum {
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
// number of phases/components
numPhases = FluidSystem::numPhases,
// component indices
NAPLIdx = FluidSystem::NAPLIdx,
H2OIdx = FluidSystem::H2OIdx,
airIdx = FluidSystem::airIdx,
// phase indices
waterPhaseIdx = FluidSystem::waterPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
naplPhaseIdx = FluidSystem::naplPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
InfiltrationProblem(Simulator& simulator)
: ParentType(simulator)
, eps_(1e-6)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
temperature_ = 273.15 + 10.0; // -> 10 degrees Celsius
FluidSystem::init(/*tempMin=*/temperature_ - 1,
/*tempMax=*/temperature_ + 1,
/*nTemp=*/3,
/*pressMin=*/0.8 * 1e5,
/*pressMax=*/3 * 1e5,
/*nPress=*/200);
// intrinsic permeabilities
fineK_ = this->toDimMatrix_(1e-11);
coarseK_ = this->toDimMatrix_(1e-11);
// porosities
porosity_ = 0.40;
// residual saturations
materialParams_.setSwr(0.12);
materialParams_.setSwrx(0.12);
materialParams_.setSnr(0.07);
materialParams_.setSgr(0.03);
// parameters for the three-phase van Genuchten law
materialParams_.setVgAlpha(0.0005);
materialParams_.setVgN(4.);
materialParams_.setkrRegardsSnr(false);
materialParams_.finalize();
materialParams_.checkDefined();
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::shouldWriteRestartFile
*
* This problem writes a restart file after every time step.
*/
bool shouldWriteRestartFile() const
{ return true; }
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "infiltration_" << Model::name();
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return temperature_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix&
intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return porosity_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams&
materialLawParams(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return materialParams_; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector molarRate(0.0);
molarRate[conti0EqIdx + NAPLIdx] = -0.001;
values.setMolarRate(molarRate);
Opm::Valgrind::CheckDefined(values);
}
else
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
Opm::Valgrind::CheckDefined(values);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{ return onUpperBoundary_(pos) && 50 < pos[0] && pos[0] < 75; }
template <class FluidState, class Context>
void initialFluidState_(FluidState& fs, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition pos = context.pos(spaceIdx, timeIdx);
Scalar y = pos[1];
Scalar x = pos[0];
Scalar densityW = 1000.0;
Scalar pc = 9.81 * densityW * (y - (5 - 5e-4 * x));
if (pc < 0.0)
pc = 0.0;
// set pressures
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
Scalar Sw = matParams.Swr();
Scalar Swr = matParams.Swr();
Scalar Sgr = matParams.Sgr();
if (Sw < Swr)
Sw = Swr;
if (Sw > 1 - Sgr)
Sw = 1 - Sgr;
Scalar Sg = 1 - Sw;
Opm::Valgrind::CheckDefined(Sw);
Opm::Valgrind::CheckDefined(Sg);
fs.setSaturation(waterPhaseIdx, Sw);
fs.setSaturation(gasPhaseIdx, Sg);
fs.setSaturation(naplPhaseIdx, 0);
// set temperature of all phases
fs.setTemperature(temperature_);
// compute pressures
Scalar pcAll[numPhases];
Scalar pg = 1e5;
if (onLeftBoundary_(pos))
pg += 10e3;
MaterialLaw::capillaryPressures(pcAll, matParams, fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fs.setPressure(phaseIdx, pg + (pcAll[phaseIdx] - pcAll[gasPhaseIdx]));
// set composition of gas phase
fs.setMoleFraction(gasPhaseIdx, H2OIdx, 1e-6);
fs.setMoleFraction(gasPhaseIdx, airIdx,
1 - fs.moleFraction(gasPhaseIdx, H2OIdx));
fs.setMoleFraction(gasPhaseIdx, NAPLIdx, 0);
using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
typename FluidSystem::template ParameterCache<Scalar> paramCache;
CFRP::solve(fs, paramCache, gasPhaseIdx,
/*setViscosity=*/true,
/*setEnthalpy=*/false);
fs.setMoleFraction(waterPhaseIdx, H2OIdx,
1 - fs.moleFraction(waterPhaseIdx, H2OIdx));
}
bool isFineMaterial_(const GlobalPosition& pos) const
{ return 70. <= pos[0] && pos[0] <= 85. && 7.0 <= pos[1] && pos[1] <= 7.50; }
DimMatrix fineK_;
DimMatrix coarseK_;
Scalar porosity_;
MaterialLawParams materialParams_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Opm
#endif
|