File: infiltrationproblem.hh

package info (click to toggle)
opm-models 2022.10%2Bds-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,216 kB
  • sloc: cpp: 37,910; ansic: 1,897; sh: 277; xml: 182; makefile: 10
file content (491 lines) | stat: -rw-r--r-- 15,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/
/*!
 * \file
 * \copydoc Opm::InfiltrationProblem
 */
#ifndef EWOMS_INFILTRATION_PROBLEM_HH
#define EWOMS_INFILTRATION_PROBLEM_HH

#include <opm/models/pvs/pvsproperties.hh>

#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2OAirMesityleneFluidSystem.hpp>
#include <opm/material/fluidmatrixinteractions/ThreePhaseParkerVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/common/Valgrind.hpp>

#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>

#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>

#include <sstream>
#include <string>

namespace Opm {
template <class TypeTag>
class InfiltrationProblem;
}

namespace Opm::Properties {

namespace TTag {
struct InfiltrationBaseProblem {};
}

// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::InfiltrationBaseProblem> { using type = Dune::YaspGrid<2>; };

// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::InfiltrationBaseProblem> { using type = Opm::InfiltrationProblem<TypeTag>; };

// Set the fluid system
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::InfiltrationBaseProblem>
{ using type = Opm::H2OAirMesityleneFluidSystem<GetPropType<TypeTag, Properties::Scalar>>; };

// Enable gravity?
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::InfiltrationBaseProblem> { static constexpr bool value = true; };

// Write newton convergence?
template<class TypeTag>
struct NewtonWriteConvergence<TypeTag, TTag::InfiltrationBaseProblem> { static constexpr bool value = false; };

// -1 backward differences, 0: central differences, +1: forward differences
template<class TypeTag>
struct NumericDifferenceMethod<TypeTag, TTag::InfiltrationBaseProblem> { static constexpr int value = 1; };

// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::InfiltrationBaseProblem>
{
private:
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;

    using Traits= Opm::ThreePhaseMaterialTraits<
        Scalar,
        /*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
        /*nonWettingPhaseIdx=*/FluidSystem::naplPhaseIdx,
        /*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;

public:
    using type = Opm::ThreePhaseParkerVanGenuchten<Traits>;
};

// The default for the end time of the simulation
template<class TypeTag>
struct EndTime<TypeTag, TTag::InfiltrationBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 6e3;
};

// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::InfiltrationBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 60;
};

// The default DGF file to load
template<class TypeTag>
struct GridFile<TypeTag, TTag::InfiltrationBaseProblem>
{ static constexpr auto value = "./data/infiltration_50x3.dgf"; };

} // namespace Opm::Properties

namespace Opm {
/*!
 * \ingroup TestProblems
 * \brief Isothermal NAPL infiltration problem where LNAPL
 *        contaminates the unsaturated and the saturated groundwater
 *        zone.
 *
 * The 2D domain of this test problem is 500 m long and 10 m deep,
 * where the lower part represents a slightly inclined groundwater
 * table, and the upper part is the vadose zone.  A LNAPL (Non-Aqueous
 * Phase Liquid which is lighter than water) infiltrates (modelled
 * with a Neumann boundary condition) into the vadose zone. Upon
 * reaching the water table, it spreads (since lighter than water) and
 * migrates on top of the water table in the direction of the slope.
 * On its way through the vadose zone, it leaves a trace of residually
 * trapped immobile NAPL, which can in the following dissolve and
 * evaporate slowly, and eventually be transported by advection and
 * diffusion.
 *
 * Left and right boundaries are constant hydraulic head boundaries
 * (Dirichlet), Top and bottom are Neumann boundaries, all no-flow
 * except for the small infiltration zone in the upper left part.
 */
template <class TypeTag>
class InfiltrationProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
    using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;

    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
    using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using EqVector = GetPropType<TypeTag, Properties::EqVector>;
    using RateVector = GetPropType<TypeTag, Properties::RateVector>;
    using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
    using Simulator = GetPropType<TypeTag, Properties::Simulator>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using Model = GetPropType<TypeTag, Properties::Model>;

    // copy some indices for convenience
    using Indices = GetPropType<TypeTag, Properties::Indices>;
    enum {
        // equation indices
        conti0EqIdx = Indices::conti0EqIdx,

        // number of phases/components
        numPhases = FluidSystem::numPhases,

        // component indices
        NAPLIdx = FluidSystem::NAPLIdx,
        H2OIdx = FluidSystem::H2OIdx,
        airIdx = FluidSystem::airIdx,

        // phase indices
        waterPhaseIdx = FluidSystem::waterPhaseIdx,
        gasPhaseIdx = FluidSystem::gasPhaseIdx,
        naplPhaseIdx = FluidSystem::naplPhaseIdx,

        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };

    using CoordScalar = typename GridView::ctype;
    using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
    using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;

public:
    /*!
     * \copydoc Doxygen::defaultProblemConstructor
     */
    InfiltrationProblem(Simulator& simulator)
        : ParentType(simulator)
        , eps_(1e-6)
    { }

    /*!
     * \copydoc FvBaseProblem::finishInit
     */
    void finishInit()
    {
        ParentType::finishInit();

        temperature_ = 273.15 + 10.0; // -> 10 degrees Celsius
        FluidSystem::init(/*tempMin=*/temperature_ - 1,
                          /*tempMax=*/temperature_ + 1,
                          /*nTemp=*/3,
                          /*pressMin=*/0.8 * 1e5,
                          /*pressMax=*/3 * 1e5,
                          /*nPress=*/200);

        // intrinsic permeabilities
        fineK_ = this->toDimMatrix_(1e-11);
        coarseK_ = this->toDimMatrix_(1e-11);

        // porosities
        porosity_ = 0.40;

        // residual saturations
        materialParams_.setSwr(0.12);
        materialParams_.setSwrx(0.12);
        materialParams_.setSnr(0.07);
        materialParams_.setSgr(0.03);

        // parameters for the three-phase van Genuchten law
        materialParams_.setVgAlpha(0.0005);
        materialParams_.setVgN(4.);
        materialParams_.setkrRegardsSnr(false);

        materialParams_.finalize();
        materialParams_.checkDefined();
    }

    /*!
     * \name Problem parameters
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::shouldWriteRestartFile
     *
     * This problem writes a restart file after every time step.
     */
    bool shouldWriteRestartFile() const
    { return true; }

    /*!
     * \copydoc FvBaseProblem::name
     */
    std::string name() const
    {
        std::ostringstream oss;
        oss << "infiltration_" << Model::name();
        return oss.str();
    }

    /*!
     * \copydoc FvBaseProblem::endTimeStep
     */
    void endTimeStep()
    {
#ifndef NDEBUG
        this->model().checkConservativeness();

        // Calculate storage terms
        EqVector storage;
        this->model().globalStorage(storage);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout << "Storage: " << storage << std::endl << std::flush;
        }
#endif // NDEBUG
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::temperature
     */
    template <class Context>
    Scalar temperature(const Context& /*context*/,
                       unsigned /*spaceIdx*/,
                       unsigned /*timeIdx*/) const
    { return temperature_; }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
     */
    template <class Context>
    const DimMatrix&
    intrinsicPermeability(const Context& context,
                          unsigned spaceIdx,
                          unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return fineK_;
        return coarseK_;
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::porosity
     */
    template <class Context>
    Scalar porosity(const Context& /*context*/,
                    unsigned /*spaceIdx*/,
                    unsigned /*timeIdx*/) const
    { return porosity_; }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::materialLawParams
     */
    template <class Context>
    const MaterialLawParams&
    materialLawParams(const Context& /*context*/,
                      unsigned /*spaceIdx*/,
                      unsigned /*timeIdx*/) const
    { return materialParams_; }

    //! \}

    /*!
     * \name Boundary conditions
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::boundary
     */
    template <class Context>
    void boundary(BoundaryRateVector& values,
                  const Context& context,
                  unsigned spaceIdx,
                  unsigned timeIdx) const
    {
        const auto& pos = context.pos(spaceIdx, timeIdx);

        if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
            Opm::CompositionalFluidState<Scalar, FluidSystem> fs;

            initialFluidState_(fs, context, spaceIdx, timeIdx);

            values.setFreeFlow(context, spaceIdx, timeIdx, fs);
        }
        else if (onInlet_(pos)) {
            RateVector molarRate(0.0);
            molarRate[conti0EqIdx + NAPLIdx] = -0.001;

            values.setMolarRate(molarRate);
            Opm::Valgrind::CheckDefined(values);
        }
        else
            values.setNoFlow();
    }

    //! \}

    /*!
     * \name Volumetric terms
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::initial
     */
    template <class Context>
    void initial(PrimaryVariables& values,
                 const Context& context,
                 unsigned spaceIdx,
                 unsigned timeIdx) const
    {
        Opm::CompositionalFluidState<Scalar, FluidSystem> fs;

        initialFluidState_(fs, context, spaceIdx, timeIdx);

        const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
        values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
        Opm::Valgrind::CheckDefined(values);
    }

    /*!
     * \copydoc FvBaseProblem::source
     *
     * For this problem, the source term of all components is 0
     * everywhere.
     */
    template <class Context>
    void source(RateVector& rate,
                const Context& /*context*/,
                unsigned /*spaceIdx*/,
                unsigned /*timeIdx*/) const
    { rate = Scalar(0.0); }

    //! \}

private:
    bool onLeftBoundary_(const GlobalPosition& pos) const
    { return pos[0] < eps_; }

    bool onRightBoundary_(const GlobalPosition& pos) const
    { return pos[0] > this->boundingBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition& pos) const
    { return pos[1] < eps_; }

    bool onUpperBoundary_(const GlobalPosition& pos) const
    { return pos[1] > this->boundingBoxMax()[1] - eps_; }

    bool onInlet_(const GlobalPosition& pos) const
    { return onUpperBoundary_(pos) && 50 < pos[0] && pos[0] < 75; }

    template <class FluidState, class Context>
    void initialFluidState_(FluidState& fs, const Context& context,
                            unsigned spaceIdx, unsigned timeIdx) const
    {
        const GlobalPosition pos = context.pos(spaceIdx, timeIdx);
        Scalar y = pos[1];
        Scalar x = pos[0];

        Scalar densityW = 1000.0;
        Scalar pc = 9.81 * densityW * (y - (5 - 5e-4 * x));
        if (pc < 0.0)
            pc = 0.0;

        // set pressures
        const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
        Scalar Sw = matParams.Swr();
        Scalar Swr = matParams.Swr();
        Scalar Sgr = matParams.Sgr();
        if (Sw < Swr)
            Sw = Swr;
        if (Sw > 1 - Sgr)
            Sw = 1 - Sgr;
        Scalar Sg = 1 - Sw;

        Opm::Valgrind::CheckDefined(Sw);
        Opm::Valgrind::CheckDefined(Sg);

        fs.setSaturation(waterPhaseIdx, Sw);
        fs.setSaturation(gasPhaseIdx, Sg);
        fs.setSaturation(naplPhaseIdx, 0);

        // set temperature of all phases
        fs.setTemperature(temperature_);

        // compute pressures
        Scalar pcAll[numPhases];
        Scalar pg = 1e5;
        if (onLeftBoundary_(pos))
            pg += 10e3;
        MaterialLaw::capillaryPressures(pcAll, matParams, fs);
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
            fs.setPressure(phaseIdx, pg + (pcAll[phaseIdx] - pcAll[gasPhaseIdx]));

        // set composition of gas phase
        fs.setMoleFraction(gasPhaseIdx, H2OIdx, 1e-6);
        fs.setMoleFraction(gasPhaseIdx, airIdx,
                           1 - fs.moleFraction(gasPhaseIdx, H2OIdx));
        fs.setMoleFraction(gasPhaseIdx, NAPLIdx, 0);

        using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
        typename FluidSystem::template ParameterCache<Scalar> paramCache;
        CFRP::solve(fs, paramCache, gasPhaseIdx,
                    /*setViscosity=*/true,
                    /*setEnthalpy=*/false);

        fs.setMoleFraction(waterPhaseIdx, H2OIdx,
                           1 - fs.moleFraction(waterPhaseIdx, H2OIdx));
    }

    bool isFineMaterial_(const GlobalPosition& pos) const
    {  return 70. <= pos[0] && pos[0] <= 85. && 7.0 <= pos[1] && pos[1] <= 7.50; }

    DimMatrix fineK_;
    DimMatrix coarseK_;

    Scalar porosity_;

    MaterialLawParams materialParams_;

    Scalar temperature_;
    Scalar eps_;
};
} // namespace Opm

#endif