1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::LensProblem
*/
#ifndef EWOMS_LENS_PROBLEM_HH
#define EWOMS_LENS_PROBLEM_HH
#include <opm/models/io/structuredgridvanguard.hh>
#include <opm/models/immiscible/immiscibleproperties.hh>
#include <opm/models/discretization/common/fvbaseadlocallinearizer.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include <opm/models/common/transfluxmodule.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Dnapl.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
#include <iostream>
namespace Opm {
template <class TypeTag>
class LensProblem;
}
namespace Opm::Properties {
// Create new type tags
namespace TTag {
struct LensBaseProblem { using InheritsFrom = std::tuple<StructuredGridVanguard>; };
} // end namespace TTag
// declare the properties specific for the lens problem
template<class TypeTag, class MyTypeTag>
struct LensLowerLeftX { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensLowerLeftY { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensLowerLeftZ { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensUpperRightX { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensUpperRightY { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensUpperRightZ { using type = UndefinedProperty; };
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::LensBaseProblem> { using type = Opm::LensProblem<TypeTag>; };
// Use Dune-grid's YaspGrid
template<class TypeTag>
struct Grid<TypeTag, TTag::LensBaseProblem> { using type = Dune::YaspGrid<2>; };
// Set the wetting phase
template<class TypeTag>
struct WettingPhase<TypeTag, TTag::LensBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
using type = Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> >;
};
// Set the non-wetting phase
template<class TypeTag>
struct NonwettingPhase<TypeTag, TTag::LensBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
using type = Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> >;
};
// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::LensBaseProblem>
{
private:
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>;
// define the material law which is parameterized by effective
// saturations
using EffectiveLaw = Opm::RegularizedVanGenuchten<Traits>;
public:
// define the material law parameterized by absolute saturations
using type = Opm::EffToAbsLaw<EffectiveLaw>;
};
// Write the solutions of individual newton iterations?
template<class TypeTag>
struct NewtonWriteConvergence<TypeTag, TTag::LensBaseProblem> { static constexpr bool value = false; };
// Use forward differences instead of central differences
template<class TypeTag>
struct NumericDifferenceMethod<TypeTag, TTag::LensBaseProblem> { static constexpr int value = +1; };
// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::LensBaseProblem> { static constexpr bool value = true; };
// define the properties specific for the lens problem
template<class TypeTag>
struct LensLowerLeftX<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct LensLowerLeftY<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 2.0;
};
template<class TypeTag>
struct LensLowerLeftZ<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 0.0;
};
template<class TypeTag>
struct LensUpperRightX<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 4.0;
};
template<class TypeTag>
struct LensUpperRightY<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3.0;
};
template<class TypeTag>
struct LensUpperRightZ<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct DomainSizeX<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 6.0;
};
template<class TypeTag>
struct DomainSizeY<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 4.0;
};
template<class TypeTag>
struct DomainSizeZ<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct CellsX<TypeTag, TTag::LensBaseProblem> { static constexpr int value = 48; };
template<class TypeTag>
struct CellsY<TypeTag, TTag::LensBaseProblem> { static constexpr int value = 32; };
template<class TypeTag>
struct CellsZ<TypeTag, TTag::LensBaseProblem> { static constexpr int value = 16; };
// The default for the end time of the simulation
template<class TypeTag>
struct EndTime<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 30e3;
};
// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 250;
};
// By default, include the intrinsic permeability tensor to the VTK output files
template<class TypeTag>
struct VtkWriteIntrinsicPermeabilities<TypeTag, TTag::LensBaseProblem> { static constexpr bool value = true; };
// enable the storage cache by default for this problem
template<class TypeTag>
struct EnableStorageCache<TypeTag, TTag::LensBaseProblem> { static constexpr bool value = true; };
// enable the cache for intensive quantities by default for this problem
template<class TypeTag>
struct EnableIntensiveQuantityCache<TypeTag, TTag::LensBaseProblem> { static constexpr bool value = true; };
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief Soil contamination problem where DNAPL infiltrates a fully
* water saturated medium.
*
* The domain is sized 6m times 4m and features a rectangular lens
* with low permeablility which spans from (1 m , 2 m) to (4 m, 3 m)
* and is surrounded by a medium with higher permability. Note that
* this problem is discretized using only two dimensions, so from the
* point of view of the model, the depth of the domain is implicitly
* assumed to be 1 m everywhere.
*
* On the top and the bottom of the domain no-flow boundary conditions
* are used, while free-flow conditions apply on the left and right
* boundaries; DNAPL is injected at the top boundary from 3m to 4m at
* a rate of 0.04 kg/(s m^2).
*
* At the boundary on the left, a free-flow condition using the
* hydrostatic pressure scaled by a factor of 1.125 is imposed, while
* on the right, it is just the hydrostatic pressure. The DNAPL
* saturation on both sides is zero.
*/
template <class TypeTag>
class LensProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using WettingPhase = GetPropType<TypeTag, Properties::WettingPhase>;
using NonwettingPhase = GetPropType<TypeTag, Properties::NonwettingPhase>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Model = GetPropType<TypeTag, Properties::Model>;
enum {
// number of phases
numPhases = FluidSystem::numPhases,
// phase indices
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
// equation indices
contiNEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
LensProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
FluidSystem::init();
temperature_ = 273.15 + 20; // -> 20°C
lensLowerLeft_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftX);
lensLowerLeft_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftY);
lensUpperRight_[0] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightX);
lensUpperRight_[1] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightY);
if (dimWorld == 3) {
lensLowerLeft_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensLowerLeftZ);
lensUpperRight_[2] = EWOMS_GET_PARAM(TypeTag, Scalar, LensUpperRightZ);
}
// residual saturations
lensMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.18);
lensMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
outerMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.05);
outerMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
// parameters for the Van Genuchten law: alpha and n
lensMaterialParams_.setVgAlpha(0.00045);
lensMaterialParams_.setVgN(7.3);
outerMaterialParams_.setVgAlpha(0.0037);
outerMaterialParams_.setVgN(4.7);
lensMaterialParams_.finalize();
outerMaterialParams_.finalize();
lensK_ = this->toDimMatrix_(9.05e-12);
outerK_ = this->toDimMatrix_(4.6e-10);
if (dimWorld == 3) {
this->gravity_ = 0;
this->gravity_[1] = -9.81;
}
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftX,
"The x-coordinate of the lens' lower-left corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftY,
"The y-coordinate of the lens' lower-left corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightX,
"The x-coordinate of the lens' upper-right corner "
"[m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightY,
"The y-coordinate of the lens' upper-right corner "
"[m].");
if (dimWorld == 3) {
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensLowerLeftZ,
"The z-coordinate of the lens' lower-left "
"corner [m].");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, LensUpperRightZ,
"The z-coordinate of the lens' upper-right "
"corner [m].");
}
}
/*!
* \copydoc FvBaseProblem::briefDescription
*/
static std::string briefDescription()
{
std::string thermal = "isothermal";
bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
if (enableEnergy)
thermal = "non-isothermal";
std::string deriv = "finite difference";
using LLS = GetPropType<TypeTag, Properties::LocalLinearizerSplice>;
bool useAutoDiff = std::is_same<LLS, Properties::TTag::AutoDiffLocalLinearizer>::value;
if (useAutoDiff)
deriv = "automatic differentiation";
std::string disc = "vertex centered finite volume";
using D = GetPropType<TypeTag, Properties::Discretization>;
bool useEcfv = std::is_same<D, Opm::EcfvDiscretization<TypeTag>>::value;
if (useEcfv)
disc = "element centered finite volume";
return std::string("")+
"Ground remediation problem where a dense oil infiltrates "+
"an aquifer with an embedded low-permability lens. " +
"This is the binary for the "+thermal+" variant using "+deriv+
"and the "+disc+" discretization";
}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
if (isInLens_(globalPos))
return lensK_;
return outerK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
if (isInLens_(globalPos))
return lensMaterialParams_;
return outerMaterialParams_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return temperature_; }
//! \}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
using LLS = GetPropType<TypeTag, Properties::LocalLinearizerSplice>;
bool useAutoDiff = std::is_same<LLS, Properties::TTag::AutoDiffLocalLinearizer>::value;
using FM = GetPropType<TypeTag, Properties::FluxModule>;
bool useTrans = std::is_same<FM, Opm::TransFluxModule<TypeTag>>::value;
std::ostringstream oss;
oss << "lens_" << Model::name()
<< "_" << Model::discretizationName()
<< "_" << (useAutoDiff?"ad":"fd");
if (useTrans)
oss << "_trans";
return oss.str();
}
/*!
* \copydoc FvBaseProblem::beginTimeStep
*/
void beginTimeStep()
{ }
/*!
* \copydoc FvBaseProblem::beginIteration
*/
void beginIteration()
{ }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
// free flow boundary. we assume incompressible fluids
Scalar densityW = WettingPhase::density(temperature_, /*pressure=*/Scalar(1e5));
Scalar densityN = NonwettingPhase::density(temperature_, /*pressure=*/Scalar(1e5));
Scalar T = temperature(context, spaceIdx, timeIdx);
Scalar pw, Sw;
// set wetting phase pressure and saturation
if (onLeftBoundary_(pos)) {
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
Scalar depth = this->boundingBoxMax()[1] - pos[1];
Scalar alpha = (1 + 1.5 / height);
// hydrostatic pressure scaled by alpha
pw = 1e5 - alpha * densityW * this->gravity()[1] * depth;
Sw = 1.0;
}
else {
Scalar depth = this->boundingBoxMax()[1] - pos[1];
// hydrostatic pressure
pw = 1e5 - densityW * this->gravity()[1] * depth;
Sw = 1.0;
}
// specify a full fluid state using pw and Sw
const MaterialLawParams& matParams = this->materialLawParams(context, spaceIdx, timeIdx);
Opm::ImmiscibleFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(T);
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, matParams, fs);
fs.setPressure(wettingPhaseIdx, pw);
fs.setPressure(nonWettingPhaseIdx, pw + pC[nonWettingPhaseIdx] - pC[wettingPhaseIdx]);
fs.setDensity(wettingPhaseIdx, densityW);
fs.setDensity(nonWettingPhaseIdx, densityN);
fs.setViscosity(wettingPhaseIdx, WettingPhase::viscosity(temperature_, fs.pressure(wettingPhaseIdx)));
fs.setViscosity(nonWettingPhaseIdx, NonwettingPhase::viscosity(temperature_, fs.pressure(nonWettingPhaseIdx)));
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector massRate(0.0);
massRate = 0.0;
massRate[contiNEqIdx] = -0.04; // kg / (m^2 * s)
// impose a forced flow boundary
values.setMassRate(massRate);
}
else {
// no flow boundary
values.setNoFlow();
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
Scalar depth = this->boundingBoxMax()[1] - pos[1];
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
Scalar Sw = 1.0;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(temperature_);
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updatePhase(fs, wettingPhaseIdx);
Scalar densityW = FluidSystem::density(fs, paramCache, wettingPhaseIdx);
// hydrostatic pressure (assuming incompressibility)
Scalar pw = 1e5 - densityW * this->gravity()[1] * depth;
// calculate the capillary pressure
const MaterialLawParams& matParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, matParams, fs);
// make a full fluid state
fs.setPressure(wettingPhaseIdx, pw);
fs.setPressure(nonWettingPhaseIdx, pw + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]));
// assign the primary variables
values.assignNaive(fs);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
bool isInLens_(const GlobalPosition& pos) const
{
for (unsigned i = 0; i < dim; ++i) {
if (pos[i] < lensLowerLeft_[i] - eps_ || pos[i] > lensUpperRight_[i]
+ eps_)
return false;
}
return true;
}
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
}
GlobalPosition lensLowerLeft_;
GlobalPosition lensUpperRight_;
DimMatrix lensK_;
DimMatrix outerK_;
MaterialLawParams lensMaterialParams_;
MaterialLawParams outerMaterialParams_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Opm
#endif
|