File: obstacleproblem.hh

package info (click to toggle)
opm-models 2022.10%2Bds-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,216 kB
  • sloc: cpp: 37,910; ansic: 1,897; sh: 277; xml: 182; makefile: 10
file content (592 lines) | stat: -rw-r--r-- 19,495 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/
/*!
 * \file
 *
 * \copydoc Opm::ObstacleProblem
 */
#ifndef EWOMS_OBSTACLE_PROBLEM_HH
#define EWOMS_OBSTACLE_PROBLEM_HH

#include <opm/models/ncp/ncpproperties.hh>

#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>

#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>

#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>

#include <sstream>
#include <string>
#include <iostream>

namespace Opm {
template <class TypeTag>
class ObstacleProblem;
}

namespace Opm::Properties {

namespace TTag {
struct ObstacleBaseProblem {};
}

// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::ObstacleBaseProblem> { using type = Dune::YaspGrid<2>; };

// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::ObstacleBaseProblem> { using type = Opm::ObstacleProblem<TypeTag>; };

// Set fluid configuration
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::ObstacleBaseProblem>
{ using type = Opm::H2ON2FluidSystem<GetPropType<TypeTag, Properties::Scalar>>; };

// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::ObstacleBaseProblem>
{
private:
    // define the material law
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using MaterialTraits = Opm::TwoPhaseMaterialTraits<Scalar,
                                                       /*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
                                                       /*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx>;

    using EffMaterialLaw = Opm::LinearMaterial<MaterialTraits>;

public:
    using type = Opm::EffToAbsLaw<EffMaterialLaw>;
};

// Set the thermal conduction law
template<class TypeTag>
struct ThermalConductionLaw<TypeTag, TTag::ObstacleBaseProblem>
{
private:
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;

public:
    // define the material law parameterized by absolute saturations
    using type = Opm::SomertonThermalConductionLaw<FluidSystem, Scalar>;
};

// set the energy storage law for the solid phase
template<class TypeTag>
struct SolidEnergyLaw<TypeTag, TTag::ObstacleBaseProblem>
{ using type = Opm::ConstantSolidHeatCapLaw<GetPropType<TypeTag, Properties::Scalar>>; };

// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::ObstacleBaseProblem> { static constexpr bool value = true; };

// The default for the end time of the simulation
template<class TypeTag>
struct EndTime<TypeTag, TTag::ObstacleBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 1e4;
};

// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::ObstacleBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 250;
};

// The default DGF file to load
template<class TypeTag>
struct GridFile<TypeTag, TTag::ObstacleBaseProblem> { static constexpr auto value = "./data/obstacle_24x16.dgf"; };

} // namespace Opm::Properties

namespace Opm {
/*!
 * \ingroup TestProblems
 *
 * \brief Problem where liquid water is first stopped by a
 *        low-permeability lens and then seeps though it.
 *
 * Liquid water is injected by using of a free-flow condition on the
 * lower right of the domain. This water level then raises until
 * hydrostatic pressure is reached. On the left of the domain, a
 * rectangular obstacle with \f$10^3\f$ lower permeability than the
 * rest of the domain first stops the for a while until it seeps
 * through it.
 *
 * The domain is sized 60m times 40m and consists of two media, a
 * moderately permeable soil (\f$ K_0=10e-12 m^2\f$) and an obstacle
 * at \f$[10; 20]m \times [0; 35]m \f$ with a lower permeablility of
 * \f$ K_1=K_0/1000\f$.
 *
 * Initially the whole domain is filled by nitrogen, the temperature
 * is \f$20^\circ C\f$ for the whole domain. The gas pressure is
 * initially 1 bar, at the inlet of the liquid water on the right side
 * it is 2 bar.
 *
 * The boundary is no-flow except on the lower 10 meters of the left
 * and the right boundary where a free flow condition is assumed.
 */
template <class TypeTag>
class ObstacleProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
    using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;

    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using EqVector = GetPropType<TypeTag, Properties::EqVector>;
    using RateVector = GetPropType<TypeTag, Properties::RateVector>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
    using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
    using ThermalConductionLawParams = GetPropType<TypeTag, Properties::ThermalConductionLawParams>;
    using SolidEnergyLawParams = GetPropType<TypeTag, Properties::SolidEnergyLawParams>;

    enum {
        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld,
        numPhases = getPropValue<TypeTag, Properties::NumPhases>(),
        gasPhaseIdx = FluidSystem::gasPhaseIdx,
        liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
        H2OIdx = FluidSystem::H2OIdx,
        N2Idx = FluidSystem::N2Idx
    };

    using GlobalPosition = Dune::FieldVector<typename GridView::ctype, dimWorld>;
    using PhaseVector = Dune::FieldVector<Scalar, numPhases>;
    using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
    using Simulator = GetPropType<TypeTag, Properties::Simulator>;
    using Model = GetPropType<TypeTag, Properties::Model>;

public:
    /*!
     * \copydoc Doxygen::defaultProblemConstructor
     */
    ObstacleProblem(Simulator& simulator)
        : ParentType(simulator)
    { }

    /*!
     * \copydoc FvBaseProblem::finishInit
     */
    void finishInit()
    {
        ParentType::finishInit();

        eps_ = 1e-6;
        temperature_ = 273.15 + 25; // -> 25°C

        // initialize the tables of the fluid system
        Scalar Tmin = temperature_ - 1.0;
        Scalar Tmax = temperature_ + 1.0;
        unsigned nT = 3;

        Scalar pmin = 1.0e5 * 0.75;
        Scalar pmax = 2.0e5 * 1.25;
        unsigned np = 1000;

        FluidSystem::init(Tmin, Tmax, nT, pmin, pmax, np);

        // intrinsic permeabilities
        coarseK_ = this->toDimMatrix_(1e-12);
        fineK_ = this->toDimMatrix_(1e-15);

        // the porosity
        finePorosity_ = 0.3;
        coarsePorosity_ = 0.3;

        // residual saturations
        fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.0);
        fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
        coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.0);
        coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);

        // parameters for the linear law, i.e. minimum and maximum
        // pressures
        fineMaterialParams_.setPcMinSat(liquidPhaseIdx, 0.0);
        fineMaterialParams_.setPcMaxSat(liquidPhaseIdx, 0.0);
        coarseMaterialParams_.setPcMinSat(liquidPhaseIdx, 0.0);
        coarseMaterialParams_.setPcMaxSat(liquidPhaseIdx, 0.0);

        /*
        // entry pressures for Brooks-Corey
        fineMaterialParams_.setEntryPressure(5e3);
        coarseMaterialParams_.setEntryPressure(1e3);

        // Brooks-Corey shape parameters
        fineMaterialParams_.setLambda(2);
        coarseMaterialParams_.setLambda(2);
        */

        fineMaterialParams_.finalize();
        coarseMaterialParams_.finalize();

        // parameters for the somerton law of thermal conduction
        computeThermalCondParams_(fineThermalCondParams_, finePorosity_);
        computeThermalCondParams_(coarseThermalCondParams_, coarsePorosity_);

        // assume constant volumetric heat capacity and granite
        solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
                                                   * 2700.0); // density of granite [kg/m^3]
        solidEnergyLawParams_.finalize();

        initFluidStates_();
    }

    /*!
     * \copydoc FvBaseProblem::endTimeStep
     */
    void endTimeStep()
    {
#ifndef NDEBUG
        this->model().checkConservativeness();

        // Calculate storage terms of the individual phases
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            PrimaryVariables phaseStorage;
            this->model().globalPhaseStorage(phaseStorage, phaseIdx);

            if (this->gridView().comm().rank() == 0) {
                std::cout << "Storage in " << FluidSystem::phaseName(phaseIdx)
                          << "Phase: [" << phaseStorage << "]"
                          << "\n"  << std::flush;
            }
        }

        // Calculate total storage terms
        EqVector storage;
        this->model().globalStorage(storage);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout << "Storage total: [" << storage << "]"
                      << "\n"  << std::flush;
        }
#endif // NDEBUG
    }

    /*!
     * \name Problem parameters
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::name
     */
    std::string name() const
    {
        std::ostringstream oss;
        oss << "obstacle"
            << "_" << Model::name();
        return oss.str();
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::temperature
     *
     * This problem simply assumes a constant temperature.
     */
    template <class Context>
    Scalar temperature(const Context& /*context*/,
                       unsigned /*spaceIdx*/,
                       unsigned /*timeIdx*/) const
    { return temperature_; }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
     */
    template <class Context>
    const DimMatrix&
    intrinsicPermeability(const Context& context,
                          unsigned spaceIdx,
                          unsigned timeIdx) const
    {
        if (isFineMaterial_(context.pos(spaceIdx, timeIdx)))
            return fineK_;
        return coarseK_;
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::porosity
     */
    template <class Context>
    Scalar porosity(const Context& context,
                    unsigned spaceIdx,
                    unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return finePorosity_;
        else
            return coarsePorosity_;
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::materialLawParams
     */
    template <class Context>
    const MaterialLawParams&
    materialLawParams(const Context& context,
                      unsigned spaceIdx,
                      unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return fineMaterialParams_;
        else
            return coarseMaterialParams_;
    }

    /*!
     * \brief Return the parameters for the energy storage law of the rock
     *
     * In this case, we assume the rock-matrix to be granite.
     */
    template <class Context>
    const SolidEnergyLawParams&
    solidEnergyLawParams(const Context& /*context*/,
                         unsigned /*spaceIdx*/,
                         unsigned /*timeIdx*/) const
    { return solidEnergyLawParams_; }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
     */
    template <class Context>
    const ThermalConductionLawParams &
    thermalConductionParams(const Context& context,
                         unsigned spaceIdx,
                         unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return fineThermalCondParams_;
        return coarseThermalCondParams_;
    }

    //! \}

    /*!
     * \name Boundary conditions
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::boundary
     */
    template <class Context>
    void boundary(BoundaryRateVector& values,
                  const Context& context,
                  unsigned spaceIdx,
                  unsigned timeIdx) const
    {
        const auto& pos = context.pos(spaceIdx, timeIdx);

        if (onInlet_(pos))
            values.setFreeFlow(context, spaceIdx, timeIdx, inletFluidState_);
        else if (onOutlet_(pos))
            values.setFreeFlow(context, spaceIdx, timeIdx, outletFluidState_);
        else
            values.setNoFlow();
    }

    //! \}

    /*!
     * \name Volumetric terms
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::initial
     */
    template <class Context>
    void initial(PrimaryVariables& values,
                 const Context& context,
                 unsigned spaceIdx,
                 unsigned timeIdx) const
    {
        const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
        values.assignMassConservative(outletFluidState_, matParams);
    }

    /*!
     * \copydoc FvBaseProblem::source
     *
     * For this problem, the source term of all components is 0
     * everywhere.
     */
    template <class Context>
    void source(RateVector& rate,
                const Context& /*context*/,
                unsigned /*spaceIdx*/,
                unsigned /*timeIdx*/) const
    { rate = 0.0; }

    //! \}

private:
    /*!
     * \brief Returns whether a given global position is in the
     *        fine-permeability region or not.
     */
    bool isFineMaterial_(const GlobalPosition& pos) const
    { return 10 <= pos[0] && pos[0] <= 20 && 0 <= pos[1] && pos[1] <= 35; }

    bool onInlet_(const GlobalPosition& globalPos) const
    {
        Scalar x = globalPos[0];
        Scalar y = globalPos[1];
        return x >= 60 - eps_ && y <= 10;
    }

    bool onOutlet_(const GlobalPosition& globalPos) const
    {
        Scalar x = globalPos[0];
        Scalar y = globalPos[1];
        return x < eps_ && y <= 10;
    }

    void initFluidStates_()
    {
        initFluidState_(inletFluidState_, coarseMaterialParams_,
                        /*isInlet=*/true);
        initFluidState_(outletFluidState_, coarseMaterialParams_,
                        /*isInlet=*/false);
    }

    template <class FluidState>
    void initFluidState_(FluidState& fs, const MaterialLawParams& matParams, bool isInlet)
    {
        unsigned refPhaseIdx;
        unsigned otherPhaseIdx;

        // set the fluid temperatures
        fs.setTemperature(temperature_);

        if (isInlet) {
            // only liquid on inlet
            refPhaseIdx = liquidPhaseIdx;
            otherPhaseIdx = gasPhaseIdx;

            // set liquid saturation
            fs.setSaturation(liquidPhaseIdx, 1.0);

            // set pressure of the liquid phase
            fs.setPressure(liquidPhaseIdx, 2e5);

            // set the liquid composition to pure water
            fs.setMoleFraction(liquidPhaseIdx, N2Idx, 0.0);
            fs.setMoleFraction(liquidPhaseIdx, H2OIdx, 1.0);
        }
        else {
            // elsewhere, only gas
            refPhaseIdx = gasPhaseIdx;
            otherPhaseIdx = liquidPhaseIdx;

            // set gas saturation
            fs.setSaturation(gasPhaseIdx, 1.0);

            // set pressure of the gas phase
            fs.setPressure(gasPhaseIdx, 1e5);

            // set the gas composition to 99% nitrogen and 1% steam
            fs.setMoleFraction(gasPhaseIdx, N2Idx, 0.99);
            fs.setMoleFraction(gasPhaseIdx, H2OIdx, 0.01);
        }

        // set the other saturation
        fs.setSaturation(otherPhaseIdx, 1.0 - fs.saturation(refPhaseIdx));

        // calulate the capillary pressure
        PhaseVector pC;
        MaterialLaw::capillaryPressures(pC, matParams, fs);
        fs.setPressure(otherPhaseIdx, fs.pressure(refPhaseIdx)
                                      + (pC[otherPhaseIdx] - pC[refPhaseIdx]));

        // make the fluid state consistent with local thermodynamic
        // equilibrium
        using ComputeFromReferencePhase = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;

        typename FluidSystem::template ParameterCache<Scalar> paramCache;
        ComputeFromReferencePhase::solve(fs, paramCache, refPhaseIdx,
                                         /*setViscosity=*/true,
                                         /*setEnthalpy=*/false);
    }

    void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
    {
        Scalar lambdaWater = 0.6;
        Scalar lambdaGranite = 2.8;

        Scalar lambdaWet = std::pow(lambdaGranite, (1 - poro))
                           * std::pow(lambdaWater, poro);
        Scalar lambdaDry = std::pow(lambdaGranite, (1 - poro));

        params.setFullySaturatedLambda(gasPhaseIdx, lambdaDry);
        params.setFullySaturatedLambda(liquidPhaseIdx, lambdaWet);
        params.setVacuumLambda(lambdaDry);
    }

    DimMatrix coarseK_;
    DimMatrix fineK_;

    Scalar coarsePorosity_;
    Scalar finePorosity_;

    MaterialLawParams fineMaterialParams_;
    MaterialLawParams coarseMaterialParams_;

    ThermalConductionLawParams fineThermalCondParams_;
    ThermalConductionLawParams coarseThermalCondParams_;
    SolidEnergyLawParams solidEnergyLawParams_;

    Opm::CompositionalFluidState<Scalar, FluidSystem> inletFluidState_;
    Opm::CompositionalFluidState<Scalar, FluidSystem> outletFluidState_;

    Scalar temperature_;
    Scalar eps_;
};
} // namespace Opm

#endif