File: reservoirproblem.hh

package info (click to toggle)
opm-models 2022.10%2Bds-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,216 kB
  • sloc: cpp: 37,910; ansic: 1,897; sh: 277; xml: 182; makefile: 10
file content (795 lines) | stat: -rw-r--r-- 28,699 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/
/*!
 * \file
 *
 * \copydoc Opm::ReservoirProblem
 */
#ifndef EWOMS_RESERVOIR_PROBLEM_HH
#define EWOMS_RESERVOIR_PROBLEM_HH

#include <opm/models/blackoil/blackoilproperties.hh>

#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>

#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>

#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>

#include <vector>
#include <string>

namespace Opm {
template <class TypeTag>
class ReservoirProblem;

} // namespace Opm

namespace Opm::Properties {


namespace TTag {

struct ReservoirBaseProblem {};

} // namespace TTag

// Maximum depth of the reservoir
template<class TypeTag, class MyTypeTag>
struct MaxDepth { using type = UndefinedProperty; };
// The temperature inside the reservoir
template<class TypeTag, class MyTypeTag>
struct Temperature { using type = UndefinedProperty; };
// The width of producer/injector wells as a fraction of the width of the spatial domain
template<class TypeTag, class MyTypeTag>
struct WellWidth { using type = UndefinedProperty; };

// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::ReservoirBaseProblem> { using type = Dune::YaspGrid<2>; };

// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::ReservoirBaseProblem> { using type = Opm::ReservoirProblem<TypeTag>; };

// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::ReservoirBaseProblem>
{
private:
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;

    using Traits = Opm::
        ThreePhaseMaterialTraits<Scalar,
                                 /*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
                                 /*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
                                 /*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;

public:
    using type = Opm::LinearMaterial<Traits>;
};

// Write the Newton convergence behavior to disk?
template<class TypeTag>
struct NewtonWriteConvergence<TypeTag, TTag::ReservoirBaseProblem> { static constexpr bool value = false; };

// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::ReservoirBaseProblem> { static constexpr bool value = true; };

// Enable constraint DOFs?
template<class TypeTag>
struct EnableConstraints<TypeTag, TTag::ReservoirBaseProblem> { static constexpr bool value = true; };

// set the defaults for some problem specific properties
template<class TypeTag>
struct MaxDepth<TypeTag, TTag::ReservoirBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 2500;
};
template<class TypeTag>
struct Temperature<TypeTag, TTag::ReservoirBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 293.15;
};

//! The default for the end time of the simulation [s].
//!
//! By default this problem spans 1000 days (100 "settle down" days and 900 days of
//! production)
template<class TypeTag>
struct EndTime<TypeTag, TTag::ReservoirBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 1000.0*24*60*60;
};

// The default for the initial time step size of the simulation [s]
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::ReservoirBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 100e3;
};

// The width of producer/injector wells as a fraction of the width of the spatial domain
template<class TypeTag>
struct WellWidth<TypeTag, TTag::ReservoirBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 0.01;
};

/*!
 * \brief Explicitly set the fluid system to the black-oil fluid system
 *
 * If the black oil model is used, this is superfluous because that model already sets
 * the FluidSystem property. Setting it explictly for the problem is a good idea anyway,
 * though because other models are more generic and thus do not assume a particular fluid
 * system.
 */
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::ReservoirBaseProblem>
{
private:
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;

public:
    using type = Opm::BlackOilFluidSystem<Scalar>;
};

// The default DGF file to load
template<class TypeTag>
struct GridFile<TypeTag, TTag::ReservoirBaseProblem> { static constexpr auto value = "data/reservoir.dgf"; };

// increase the tolerance for this problem to get larger time steps
template<class TypeTag>
struct NewtonTolerance<TypeTag, TTag::ReservoirBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 1e-6;
};

} // namespace Opm::Properties

namespace Opm {

/*!
 * \ingroup TestProblems
 *
 * \brief Some simple test problem for the black-oil VCVF discretization
 *        inspired by an oil reservoir.
 *
 * The domain is two-dimensional and exhibits a size of 6000m times 60m. Initially, the
 * reservoir is assumed by oil with a bubble point pressure of 20 MPa, which also the
 * initial pressure in the domain. No-flow boundaries are used for all boundaries. The
 * permeability of the lower 10 m is reduced compared to the upper 10 m of the domain
 * witch capillary pressure always being neglected. Three wells are approximated using
 * constraints: Two water-injector wells, one at the lower-left boundary one at the
 * lower-right boundary and one producer well in the upper part of the center of the
 * domain. The pressure for the producer is assumed to be 2/3 of the reservoir pressure,
 * the injector wells use a pressure which is 50% above the reservoir pressure.
 */
template <class TypeTag>
class ReservoirProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
    using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;

    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;

    // Grid and world dimension
    enum { dim = GridView::dimension };
    enum { dimWorld = GridView::dimensionworld };

    // copy some indices for convenience
    enum { numPhases = FluidSystem::numPhases };
    enum { numComponents = FluidSystem::numComponents };
    enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
    enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
    enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
    enum { gasCompIdx = FluidSystem::gasCompIdx };
    enum { oilCompIdx = FluidSystem::oilCompIdx };
    enum { waterCompIdx = FluidSystem::waterCompIdx };

    using Model = GetPropType<TypeTag, Properties::Model>;
    using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using EqVector = GetPropType<TypeTag, Properties::EqVector>;
    using RateVector = GetPropType<TypeTag, Properties::RateVector>;
    using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
    using Constraints = GetPropType<TypeTag, Properties::Constraints>;
    using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
    using Simulator = GetPropType<TypeTag, Properties::Simulator>;
    using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;

    using CoordScalar = typename GridView::ctype;
    using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
    using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
    using PhaseVector = Dune::FieldVector<Scalar, numPhases>;

    using InitialFluidState = Opm::CompositionalFluidState<Scalar,
                                                           FluidSystem,
                                                           /*enableEnthalpy=*/true>;

public:
    /*!
     * \copydoc Doxygen::defaultProblemConstructor
     */
    ReservoirProblem(Simulator& simulator)
        : ParentType(simulator)
    { }

    /*!
     * \copydoc FvBaseProblem::finishInit
     */
    void finishInit()
    {
        ParentType::finishInit();

        temperature_ = EWOMS_GET_PARAM(TypeTag, Scalar, Temperature);
        maxDepth_ = EWOMS_GET_PARAM(TypeTag, Scalar, MaxDepth);
        wellWidth_ = EWOMS_GET_PARAM(TypeTag, Scalar, WellWidth);

        std::vector<std::pair<Scalar, Scalar> > Bo = {
            { 101353, 1.062 },
            { 1.82504e+06, 1.15 },
            { 3.54873e+06, 1.207 },
            { 6.99611e+06, 1.295 },
            { 1.38909e+07, 1.435 },
            { 1.73382e+07, 1.5 },
            { 2.07856e+07, 1.565 },
            { 2.76804e+07, 1.695 },
            { 3.45751e+07, 1.827 }
        };
        std::vector<std::pair<Scalar, Scalar> > muo = {
            { 101353, 0.00104 },
            { 1.82504e+06, 0.000975 },
            { 3.54873e+06, 0.00091 },
            { 6.99611e+06, 0.00083 },
            { 1.38909e+07, 0.000695 },
            { 1.73382e+07, 0.000641 },
            { 2.07856e+07, 0.000594 },
            { 2.76804e+07, 0.00051 },
            { 3.45751e+07, 0.000449 }
        };
        std::vector<std::pair<Scalar, Scalar> > Rs = {
            { 101353, 0.178108 },
            { 1.82504e+06, 16.1187 },
            { 3.54873e+06, 32.0594 },
            { 6.99611e+06, 66.0779 },
            { 1.38909e+07, 113.276 },
            { 1.73382e+07, 138.033 },
            { 2.07856e+07, 165.64 },
            { 2.76804e+07, 226.197 },
            { 3.45751e+07, 288.178 }
        };
        std::vector<std::pair<Scalar, Scalar> > Bg = {
            { 101353, 0.93576 },
            { 1.82504e+06, 0.0678972 },
            { 3.54873e+06, 0.0352259 },
            { 6.99611e+06, 0.0179498 },
            { 1.38909e+07, 0.00906194 },
            { 1.73382e+07, 0.00726527 },
            { 2.07856e+07, 0.00606375 },
            { 2.76804e+07, 0.00455343 },
            { 3.45751e+07, 0.00364386 },
            { 6.21542e+07, 0.00216723 }
        };
        std::vector<std::pair<Scalar, Scalar> > mug = {
            { 101353, 8e-06 },
            { 1.82504e+06, 9.6e-06 },
            { 3.54873e+06, 1.12e-05 },
            { 6.99611e+06, 1.4e-05 },
            { 1.38909e+07, 1.89e-05 },
            { 1.73382e+07, 2.08e-05 },
            { 2.07856e+07, 2.28e-05 },
            { 2.76804e+07, 2.68e-05 },
            { 3.45751e+07, 3.09e-05 },
            { 6.21542e+07, 4.7e-05 }
        };

        Scalar rhoRefO = 786.0; // [kg]
        Scalar rhoRefG = 0.97; // [kg]
        Scalar rhoRefW = 1037.0; // [kg]
        FluidSystem::initBegin(/*numPvtRegions=*/1);
        FluidSystem::setEnableDissolvedGas(true);
        FluidSystem::setEnableVaporizedOil(false);
        FluidSystem::setReferenceDensities(rhoRefO, rhoRefW, rhoRefG, /*regionIdx=*/0);

        Opm::GasPvtMultiplexer<Scalar> *gasPvt = new Opm::GasPvtMultiplexer<Scalar>;
        gasPvt->setApproach(GasPvtApproach::DryGasPvt);
        auto& dryGasPvt = gasPvt->template getRealPvt<GasPvtApproach::DryGasPvt>();
        dryGasPvt.setNumRegions(/*numPvtRegion=*/1);
        dryGasPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
        dryGasPvt.setGasFormationVolumeFactor(/*regionIdx=*/0, Bg);
        dryGasPvt.setGasViscosity(/*regionIdx=*/0, mug);

        Opm::OilPvtMultiplexer<Scalar> *oilPvt = new Opm::OilPvtMultiplexer<Scalar>;
        oilPvt->setApproach(OilPvtApproach::LiveOilPvt);
        auto& liveOilPvt = oilPvt->template getRealPvt<OilPvtApproach::LiveOilPvt>();
        liveOilPvt.setNumRegions(/*numPvtRegion=*/1);
        liveOilPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
        liveOilPvt.setSaturatedOilGasDissolutionFactor(/*regionIdx=*/0, Rs);
        liveOilPvt.setSaturatedOilFormationVolumeFactor(/*regionIdx=*/0, Bo);
        liveOilPvt.setSaturatedOilViscosity(/*regionIdx=*/0, muo);

        Opm::WaterPvtMultiplexer<Scalar> *waterPvt = new Opm::WaterPvtMultiplexer<Scalar>;
        waterPvt->setApproach(WaterPvtApproach::ConstantCompressibilityWaterPvt);
        auto& ccWaterPvt = waterPvt->template getRealPvt<WaterPvtApproach::ConstantCompressibilityWaterPvt>();
        ccWaterPvt.setNumRegions(/*numPvtRegions=*/1);
        ccWaterPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
        ccWaterPvt.setViscosity(/*regionIdx=*/0, 9.6e-4);
        ccWaterPvt.setCompressibility(/*regionIdx=*/0, 1.450377e-10);

        gasPvt->initEnd();
        oilPvt->initEnd();
        waterPvt->initEnd();

        using GasPvtSharedPtr = std::shared_ptr<Opm::GasPvtMultiplexer<Scalar> >;
        FluidSystem::setGasPvt(GasPvtSharedPtr(gasPvt));

        using OilPvtSharedPtr = std::shared_ptr<Opm::OilPvtMultiplexer<Scalar> >;
        FluidSystem::setOilPvt(OilPvtSharedPtr(oilPvt));

        using WaterPvtSharedPtr = std::shared_ptr<Opm::WaterPvtMultiplexer<Scalar> >;
        FluidSystem::setWaterPvt(WaterPvtSharedPtr(waterPvt));

        FluidSystem::initEnd();

        pReservoir_ = 330e5;
        layerBottom_ = 22.0;

        // intrinsic permeabilities
        fineK_ = this->toDimMatrix_(1e-12);
        coarseK_ = this->toDimMatrix_(1e-11);

        // porosities
        finePorosity_ = 0.2;
        coarsePorosity_ = 0.3;

        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            fineMaterialParams_.setPcMinSat(phaseIdx, 0.0);
            fineMaterialParams_.setPcMaxSat(phaseIdx, 0.0);

            coarseMaterialParams_.setPcMinSat(phaseIdx, 0.0);
            coarseMaterialParams_.setPcMaxSat(phaseIdx, 0.0);
        }

        // wrap up the initialization of the material law's parameters
        fineMaterialParams_.finalize();
        coarseMaterialParams_.finalize();

        materialParams_.resize(this->model().numGridDof());
        ElementContext elemCtx(this->simulator());
        auto eIt = this->simulator().gridView().template begin<0>();
        const auto& eEndIt = this->simulator().gridView().template end<0>();
        for (; eIt != eEndIt; ++eIt) {
            elemCtx.updateStencil(*eIt);
            size_t nDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
            for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
                unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
                const GlobalPosition& pos = elemCtx.pos(dofIdx, /*timeIdx=*/0);

                if (isFineMaterial_(pos))
                    materialParams_[globalDofIdx] = &fineMaterialParams_;
                else
                    materialParams_[globalDofIdx] = &coarseMaterialParams_;
            }
        }

        initFluidState_();

        // start the first ("settle down") episode for 100 days
        this->simulator().startNextEpisode(100.0*24*60*60);
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::registerParameters
     */
    static void registerParameters()
    {
        ParentType::registerParameters();

        EWOMS_REGISTER_PARAM(TypeTag, Scalar, Temperature,
                             "The temperature [K] in the reservoir");
        EWOMS_REGISTER_PARAM(TypeTag, Scalar, MaxDepth,
                             "The maximum depth [m] of the reservoir");
        EWOMS_REGISTER_PARAM(TypeTag, Scalar, WellWidth,
                             "The width of producer/injector wells as a fraction of the width"
                             " of the spatial domain");
    }

    /*!
     * \copydoc FvBaseProblem::name
     */
    std::string name() const
    { return std::string("reservoir_") + Model::name() + "_" + Model::discretizationName(); }

    /*!
     * \copydoc FvBaseProblem::endEpisode
     */
    void endEpisode()
    {
        // in the second episode, the actual work is done (the first is "settle down"
        // episode). we need to use a pretty short initial time step here as the change
        // in conditions is quite abrupt.
        this->simulator().startNextEpisode(1e100);
        this->simulator().setTimeStepSize(5.0);
    }

    /*!
     * \copydoc FvBaseProblem::endTimeStep
     */
    void endTimeStep()
    {
#ifndef NDEBUG
        // checkConservativeness() does not include the effect of constraints, so we
        // disable it for this problem...
        //this->model().checkConservativeness();

        // Calculate storage terms
        EqVector storage;
        this->model().globalStorage(storage);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout << "Storage: " << storage << std::endl << std::flush;
        }
#endif // NDEBUG
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
     *
     * For this problem, a layer with high permability is located
     * above one with low permeability.
     */
    template <class Context>
    const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
                                           unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return fineK_;
        return coarseK_;
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::porosity
     */
    template <class Context>
    Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return finePorosity_;
        return coarsePorosity_;
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::materialLawParams
     */
    template <class Context>
    const MaterialLawParams& materialLawParams(const Context& context,
                                               unsigned spaceIdx, unsigned timeIdx) const
    {
        unsigned globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
        return *materialParams_[globalIdx];
    }

    const MaterialLawParams& materialLawParams(unsigned globalIdx) const
    { return *materialParams_[globalIdx]; }

    /*!
     * \name Problem parameters
     */
    //! \{


    /*!
     * \copydoc FvBaseMultiPhaseProblem::temperature
     *
     * The black-oil model assumes constant temperature to define its
     * parameters. Although temperature is thus not really used by the
     * model, it gets written to the VTK output. Who nows, maybe we
     * will need it one day?
     */
    template <class Context>
    Scalar temperature(const Context& /*context*/,
                       unsigned /*spaceIdx*/,
                       unsigned /*timeIdx*/) const
    { return temperature_; }

    // \}

    /*!
     * \name Boundary conditions
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::boundary
     *
     * The reservoir problem uses constraints to approximate
     * extraction and production wells, so all boundaries are no-flow.
     */
    template <class Context>
    void boundary(BoundaryRateVector& values,
                  const Context& /*context*/,
                  unsigned /*spaceIdx*/,
                  unsigned /*timeIdx*/) const
    {
        // no flow on top and bottom
        values.setNoFlow();
    }

    //! \}

    /*!
     * \name Volumetric terms
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::initial
     *
     * The reservoir problem uses a constant boundary condition for
     * the whole domain.
     */
    template <class Context>
    void initial(PrimaryVariables& values,
                 const Context& /*context*/,
                 unsigned /*spaceIdx*/,
                 unsigned /*timeIdx*/) const
    {
        values.assignNaive(initialFluidState_);

#ifndef NDEBUG
        for (unsigned pvIdx = 0; pvIdx < values.size(); ++ pvIdx)
            assert(std::isfinite(values[pvIdx]));
#endif
    }

    /*!
     * \copydoc FvBaseProblem::constraints
     *
     * The reservoir problem places two water-injection wells on the lower-left and
     * lower-right of the domain and a production well in the middle. The injection wells
     * are fully water saturated with a higher pressure, the producer is fully oil
     * saturated with a lower pressure than the remaining reservoir.
     */
    template <class Context>
    void constraints(Constraints& constraintValues,
                     const Context& context,
                     unsigned spaceIdx,
                     unsigned timeIdx) const
    {
        if (this->simulator().episodeIndex() == 1)
            return; // no constraints during the "settle down" episode

        const auto& pos = context.pos(spaceIdx, timeIdx);
        if (isInjector_(pos)) {
            constraintValues.setActive(true);
            constraintValues.assignNaive(injectorFluidState_);
        }
        else if (isProducer_(pos)) {
            constraintValues.setActive(true);
            constraintValues.assignNaive(producerFluidState_);
        }
    }

    /*!
     * \copydoc FvBaseProblem::source
     *
     * For this problem, the source term of all components is 0 everywhere.
     */
    template <class Context>
    void source(RateVector& rate,
                const Context& /*context*/,
                unsigned /*spaceIdx*/,
                unsigned /*timeIdx*/) const
    { rate = Scalar(0.0); }

    //! \}

private:
    void initFluidState_()
    {
        auto& fs = initialFluidState_;

        //////
        // set temperatures
        //////
        fs.setTemperature(temperature_);

        //////
        // set saturations
        //////
        fs.setSaturation(FluidSystem::oilPhaseIdx, 1.0);
        fs.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
        fs.setSaturation(FluidSystem::gasPhaseIdx, 0.0);

        //////
        // set pressures
        //////
        Scalar pw = pReservoir_;

        PhaseVector pC;
        const auto& matParams = fineMaterialParams_;
        MaterialLaw::capillaryPressures(pC, matParams, fs);

        fs.setPressure(oilPhaseIdx, pw + (pC[oilPhaseIdx] - pC[waterPhaseIdx]));
        fs.setPressure(waterPhaseIdx, pw + (pC[waterPhaseIdx] - pC[waterPhaseIdx]));
        fs.setPressure(gasPhaseIdx, pw + (pC[gasPhaseIdx] - pC[waterPhaseIdx]));

        // reset all mole fractions to 0
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
            for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
                fs.setMoleFraction(phaseIdx, compIdx, 0.0);

        //////
        // set composition of the gas and water phases
        //////
        fs.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
        fs.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);

        //////
        // set composition of the oil phase
        //////
        Scalar RsSat =
            FluidSystem::saturatedDissolutionFactor(fs, oilPhaseIdx, /*pvtRegionIdx=*/0);
        Scalar XoGSat = FluidSystem::convertRsToXoG(RsSat, /*pvtRegionIdx=*/0);
        Scalar xoGSat = FluidSystem::convertXoGToxoG(XoGSat, /*pvtRegionIdx=*/0);
        Scalar xoG = 0.95*xoGSat;
        Scalar xoO = 1.0 - xoG;

        // finally set the oil-phase composition
        fs.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
        fs.setMoleFraction(oilPhaseIdx, oilCompIdx, xoO);

        using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
        typename FluidSystem::template ParameterCache<Scalar> paramCache;
        CFRP::solve(fs,
                    paramCache,
                    /*refPhaseIdx=*/oilPhaseIdx,
                    /*setViscosities=*/false,
                    /*setEnthalpies=*/false);

        // set up the fluid state used for the injectors
        auto& injFs = injectorFluidState_;
        injFs = initialFluidState_;

        Scalar pInj = pReservoir_ * 1.5;
        injFs.setPressure(waterPhaseIdx, pInj);
        injFs.setPressure(oilPhaseIdx, pInj);
        injFs.setPressure(gasPhaseIdx, pInj);
        injFs.setSaturation(waterPhaseIdx, 1.0);
        injFs.setSaturation(oilPhaseIdx, 0.0);
        injFs.setSaturation(gasPhaseIdx, 0.0);

        // set the composition of the phases to immiscible
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
            for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
                injFs.setMoleFraction(phaseIdx, compIdx, 0.0);

        injFs.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
        injFs.setMoleFraction(oilPhaseIdx, oilCompIdx, 1.0);
        injFs.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);

        CFRP::solve(injFs,
                    paramCache,
                    /*refPhaseIdx=*/waterPhaseIdx,
                    /*setViscosities=*/true,
                    /*setEnthalpies=*/false);

        // set up the fluid state used for the producer
        auto& prodFs = producerFluidState_;
        prodFs = initialFluidState_;

        Scalar pProd = pReservoir_ / 1.5;
        prodFs.setPressure(waterPhaseIdx, pProd);
        prodFs.setPressure(oilPhaseIdx, pProd);
        prodFs.setPressure(gasPhaseIdx, pProd);
        prodFs.setSaturation(waterPhaseIdx, 0.0);
        prodFs.setSaturation(oilPhaseIdx, 1.0);
        prodFs.setSaturation(gasPhaseIdx, 0.0);

        CFRP::solve(prodFs,
                    paramCache,
                    /*refPhaseIdx=*/oilPhaseIdx,
                    /*setViscosities=*/true,
                    /*setEnthalpies=*/false);
    }

    bool isProducer_(const GlobalPosition& pos) const
    {
        Scalar x = pos[0] - this->boundingBoxMin()[0];
        Scalar y = pos[dim - 1] - this->boundingBoxMin()[dim - 1];
        Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
        Scalar height = this->boundingBoxMax()[dim - 1] - this->boundingBoxMin()[dim - 1];

        // only the upper half of the center section of the spatial domain is assumed to
        // be the producer
        if (y <= height/2.0)
            return false;

        return width/2.0 - width*1e-5 < x && x < width/2.0 + width*(wellWidth_ + 1e-5);
    }

    bool isInjector_(const GlobalPosition& pos) const
    {
        Scalar x = pos[0] - this->boundingBoxMin()[0];
        Scalar y = pos[dim - 1] - this->boundingBoxMin()[dim - 1];
        Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
        Scalar height = this->boundingBoxMax()[dim - 1] - this->boundingBoxMin()[dim - 1];

        // only the lower half of the leftmost and rightmost part of the spatial domain
        // are assumed to be the water injectors
        if (y > height/2.0)
            return false;

        return x < width*wellWidth_ - width*1e-5 || x > width*(1.0 - wellWidth_) + width*1e-5;
    }

    bool isFineMaterial_(const GlobalPosition& pos) const
    { return pos[dim - 1] > layerBottom_; }

    DimMatrix fineK_;
    DimMatrix coarseK_;
    Scalar layerBottom_;
    Scalar pReservoir_;

    Scalar finePorosity_;
    Scalar coarsePorosity_;

    MaterialLawParams fineMaterialParams_;
    MaterialLawParams coarseMaterialParams_;
    std::vector<const MaterialLawParams*> materialParams_;

    InitialFluidState initialFluidState_;
    InitialFluidState injectorFluidState_;
    InitialFluidState producerFluidState_;

    Scalar temperature_;
    Scalar maxDepth_;
    Scalar wellWidth_;
};
} // namespace Opm

#endif