1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::ReservoirProblem
*/
#ifndef EWOMS_RESERVOIR_PROBLEM_HH
#define EWOMS_RESERVOIR_PROBLEM_HH
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <vector>
#include <string>
namespace Opm {
template <class TypeTag>
class ReservoirProblem;
} // namespace Opm
namespace Opm::Properties {
namespace TTag {
struct ReservoirBaseProblem {};
} // namespace TTag
// Maximum depth of the reservoir
template<class TypeTag, class MyTypeTag>
struct MaxDepth { using type = UndefinedProperty; };
// The temperature inside the reservoir
template<class TypeTag, class MyTypeTag>
struct Temperature { using type = UndefinedProperty; };
// The width of producer/injector wells as a fraction of the width of the spatial domain
template<class TypeTag, class MyTypeTag>
struct WellWidth { using type = UndefinedProperty; };
// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::ReservoirBaseProblem> { using type = Dune::YaspGrid<2>; };
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::ReservoirBaseProblem> { using type = Opm::ReservoirProblem<TypeTag>; };
// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::ReservoirBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Traits = Opm::
ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
public:
using type = Opm::LinearMaterial<Traits>;
};
// Write the Newton convergence behavior to disk?
template<class TypeTag>
struct NewtonWriteConvergence<TypeTag, TTag::ReservoirBaseProblem> { static constexpr bool value = false; };
// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::ReservoirBaseProblem> { static constexpr bool value = true; };
// Enable constraint DOFs?
template<class TypeTag>
struct EnableConstraints<TypeTag, TTag::ReservoirBaseProblem> { static constexpr bool value = true; };
// set the defaults for some problem specific properties
template<class TypeTag>
struct MaxDepth<TypeTag, TTag::ReservoirBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 2500;
};
template<class TypeTag>
struct Temperature<TypeTag, TTag::ReservoirBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 293.15;
};
//! The default for the end time of the simulation [s].
//!
//! By default this problem spans 1000 days (100 "settle down" days and 900 days of
//! production)
template<class TypeTag>
struct EndTime<TypeTag, TTag::ReservoirBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1000.0*24*60*60;
};
// The default for the initial time step size of the simulation [s]
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::ReservoirBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 100e3;
};
// The width of producer/injector wells as a fraction of the width of the spatial domain
template<class TypeTag>
struct WellWidth<TypeTag, TTag::ReservoirBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 0.01;
};
/*!
* \brief Explicitly set the fluid system to the black-oil fluid system
*
* If the black oil model is used, this is superfluous because that model already sets
* the FluidSystem property. Setting it explictly for the problem is a good idea anyway,
* though because other models are more generic and thus do not assume a particular fluid
* system.
*/
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::ReservoirBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
using type = Opm::BlackOilFluidSystem<Scalar>;
};
// The default DGF file to load
template<class TypeTag>
struct GridFile<TypeTag, TTag::ReservoirBaseProblem> { static constexpr auto value = "data/reservoir.dgf"; };
// increase the tolerance for this problem to get larger time steps
template<class TypeTag>
struct NewtonTolerance<TypeTag, TTag::ReservoirBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-6;
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief Some simple test problem for the black-oil VCVF discretization
* inspired by an oil reservoir.
*
* The domain is two-dimensional and exhibits a size of 6000m times 60m. Initially, the
* reservoir is assumed by oil with a bubble point pressure of 20 MPa, which also the
* initial pressure in the domain. No-flow boundaries are used for all boundaries. The
* permeability of the lower 10 m is reduced compared to the upper 10 m of the domain
* witch capillary pressure always being neglected. Three wells are approximated using
* constraints: Two water-injector wells, one at the lower-left boundary one at the
* lower-right boundary and one producer well in the upper part of the center of the
* domain. The pressure for the producer is assumed to be 2/3 of the reservoir pressure,
* the injector wells use a pressure which is 50% above the reservoir pressure.
*/
template <class TypeTag>
class ReservoirProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
// Grid and world dimension
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// copy some indices for convenience
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
using Model = GetPropType<TypeTag, Properties::Model>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using PhaseVector = Dune::FieldVector<Scalar, numPhases>;
using InitialFluidState = Opm::CompositionalFluidState<Scalar,
FluidSystem,
/*enableEnthalpy=*/true>;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
ReservoirProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
temperature_ = EWOMS_GET_PARAM(TypeTag, Scalar, Temperature);
maxDepth_ = EWOMS_GET_PARAM(TypeTag, Scalar, MaxDepth);
wellWidth_ = EWOMS_GET_PARAM(TypeTag, Scalar, WellWidth);
std::vector<std::pair<Scalar, Scalar> > Bo = {
{ 101353, 1.062 },
{ 1.82504e+06, 1.15 },
{ 3.54873e+06, 1.207 },
{ 6.99611e+06, 1.295 },
{ 1.38909e+07, 1.435 },
{ 1.73382e+07, 1.5 },
{ 2.07856e+07, 1.565 },
{ 2.76804e+07, 1.695 },
{ 3.45751e+07, 1.827 }
};
std::vector<std::pair<Scalar, Scalar> > muo = {
{ 101353, 0.00104 },
{ 1.82504e+06, 0.000975 },
{ 3.54873e+06, 0.00091 },
{ 6.99611e+06, 0.00083 },
{ 1.38909e+07, 0.000695 },
{ 1.73382e+07, 0.000641 },
{ 2.07856e+07, 0.000594 },
{ 2.76804e+07, 0.00051 },
{ 3.45751e+07, 0.000449 }
};
std::vector<std::pair<Scalar, Scalar> > Rs = {
{ 101353, 0.178108 },
{ 1.82504e+06, 16.1187 },
{ 3.54873e+06, 32.0594 },
{ 6.99611e+06, 66.0779 },
{ 1.38909e+07, 113.276 },
{ 1.73382e+07, 138.033 },
{ 2.07856e+07, 165.64 },
{ 2.76804e+07, 226.197 },
{ 3.45751e+07, 288.178 }
};
std::vector<std::pair<Scalar, Scalar> > Bg = {
{ 101353, 0.93576 },
{ 1.82504e+06, 0.0678972 },
{ 3.54873e+06, 0.0352259 },
{ 6.99611e+06, 0.0179498 },
{ 1.38909e+07, 0.00906194 },
{ 1.73382e+07, 0.00726527 },
{ 2.07856e+07, 0.00606375 },
{ 2.76804e+07, 0.00455343 },
{ 3.45751e+07, 0.00364386 },
{ 6.21542e+07, 0.00216723 }
};
std::vector<std::pair<Scalar, Scalar> > mug = {
{ 101353, 8e-06 },
{ 1.82504e+06, 9.6e-06 },
{ 3.54873e+06, 1.12e-05 },
{ 6.99611e+06, 1.4e-05 },
{ 1.38909e+07, 1.89e-05 },
{ 1.73382e+07, 2.08e-05 },
{ 2.07856e+07, 2.28e-05 },
{ 2.76804e+07, 2.68e-05 },
{ 3.45751e+07, 3.09e-05 },
{ 6.21542e+07, 4.7e-05 }
};
Scalar rhoRefO = 786.0; // [kg]
Scalar rhoRefG = 0.97; // [kg]
Scalar rhoRefW = 1037.0; // [kg]
FluidSystem::initBegin(/*numPvtRegions=*/1);
FluidSystem::setEnableDissolvedGas(true);
FluidSystem::setEnableVaporizedOil(false);
FluidSystem::setReferenceDensities(rhoRefO, rhoRefW, rhoRefG, /*regionIdx=*/0);
Opm::GasPvtMultiplexer<Scalar> *gasPvt = new Opm::GasPvtMultiplexer<Scalar>;
gasPvt->setApproach(GasPvtApproach::DryGasPvt);
auto& dryGasPvt = gasPvt->template getRealPvt<GasPvtApproach::DryGasPvt>();
dryGasPvt.setNumRegions(/*numPvtRegion=*/1);
dryGasPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
dryGasPvt.setGasFormationVolumeFactor(/*regionIdx=*/0, Bg);
dryGasPvt.setGasViscosity(/*regionIdx=*/0, mug);
Opm::OilPvtMultiplexer<Scalar> *oilPvt = new Opm::OilPvtMultiplexer<Scalar>;
oilPvt->setApproach(OilPvtApproach::LiveOilPvt);
auto& liveOilPvt = oilPvt->template getRealPvt<OilPvtApproach::LiveOilPvt>();
liveOilPvt.setNumRegions(/*numPvtRegion=*/1);
liveOilPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
liveOilPvt.setSaturatedOilGasDissolutionFactor(/*regionIdx=*/0, Rs);
liveOilPvt.setSaturatedOilFormationVolumeFactor(/*regionIdx=*/0, Bo);
liveOilPvt.setSaturatedOilViscosity(/*regionIdx=*/0, muo);
Opm::WaterPvtMultiplexer<Scalar> *waterPvt = new Opm::WaterPvtMultiplexer<Scalar>;
waterPvt->setApproach(WaterPvtApproach::ConstantCompressibilityWaterPvt);
auto& ccWaterPvt = waterPvt->template getRealPvt<WaterPvtApproach::ConstantCompressibilityWaterPvt>();
ccWaterPvt.setNumRegions(/*numPvtRegions=*/1);
ccWaterPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
ccWaterPvt.setViscosity(/*regionIdx=*/0, 9.6e-4);
ccWaterPvt.setCompressibility(/*regionIdx=*/0, 1.450377e-10);
gasPvt->initEnd();
oilPvt->initEnd();
waterPvt->initEnd();
using GasPvtSharedPtr = std::shared_ptr<Opm::GasPvtMultiplexer<Scalar> >;
FluidSystem::setGasPvt(GasPvtSharedPtr(gasPvt));
using OilPvtSharedPtr = std::shared_ptr<Opm::OilPvtMultiplexer<Scalar> >;
FluidSystem::setOilPvt(OilPvtSharedPtr(oilPvt));
using WaterPvtSharedPtr = std::shared_ptr<Opm::WaterPvtMultiplexer<Scalar> >;
FluidSystem::setWaterPvt(WaterPvtSharedPtr(waterPvt));
FluidSystem::initEnd();
pReservoir_ = 330e5;
layerBottom_ = 22.0;
// intrinsic permeabilities
fineK_ = this->toDimMatrix_(1e-12);
coarseK_ = this->toDimMatrix_(1e-11);
// porosities
finePorosity_ = 0.2;
coarsePorosity_ = 0.3;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fineMaterialParams_.setPcMinSat(phaseIdx, 0.0);
fineMaterialParams_.setPcMaxSat(phaseIdx, 0.0);
coarseMaterialParams_.setPcMinSat(phaseIdx, 0.0);
coarseMaterialParams_.setPcMaxSat(phaseIdx, 0.0);
}
// wrap up the initialization of the material law's parameters
fineMaterialParams_.finalize();
coarseMaterialParams_.finalize();
materialParams_.resize(this->model().numGridDof());
ElementContext elemCtx(this->simulator());
auto eIt = this->simulator().gridView().template begin<0>();
const auto& eEndIt = this->simulator().gridView().template end<0>();
for (; eIt != eEndIt; ++eIt) {
elemCtx.updateStencil(*eIt);
size_t nDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < nDof; ++ dofIdx) {
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
const GlobalPosition& pos = elemCtx.pos(dofIdx, /*timeIdx=*/0);
if (isFineMaterial_(pos))
materialParams_[globalDofIdx] = &fineMaterialParams_;
else
materialParams_[globalDofIdx] = &coarseMaterialParams_;
}
}
initFluidState_();
// start the first ("settle down") episode for 100 days
this->simulator().startNextEpisode(100.0*24*60*60);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, Scalar, Temperature,
"The temperature [K] in the reservoir");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, MaxDepth,
"The maximum depth [m] of the reservoir");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, WellWidth,
"The width of producer/injector wells as a fraction of the width"
" of the spatial domain");
}
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return std::string("reservoir_") + Model::name() + "_" + Model::discretizationName(); }
/*!
* \copydoc FvBaseProblem::endEpisode
*/
void endEpisode()
{
// in the second episode, the actual work is done (the first is "settle down"
// episode). we need to use a pretty short initial time step here as the change
// in conditions is quite abrupt.
this->simulator().startNextEpisode(1e100);
this->simulator().setTimeStepSize(5.0);
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*
* For this problem, a layer with high permability is located
* above one with low permeability.
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return finePorosity_;
return coarsePorosity_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return *materialParams_[globalIdx];
}
const MaterialLawParams& materialLawParams(unsigned globalIdx) const
{ return *materialParams_[globalIdx]; }
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*
* The black-oil model assumes constant temperature to define its
* parameters. Although temperature is thus not really used by the
* model, it gets written to the VTK output. Who nows, maybe we
* will need it one day?
*/
template <class Context>
Scalar temperature(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return temperature_; }
// \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* The reservoir problem uses constraints to approximate
* extraction and production wells, so all boundaries are no-flow.
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{
// no flow on top and bottom
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*
* The reservoir problem uses a constant boundary condition for
* the whole domain.
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{
values.assignNaive(initialFluidState_);
#ifndef NDEBUG
for (unsigned pvIdx = 0; pvIdx < values.size(); ++ pvIdx)
assert(std::isfinite(values[pvIdx]));
#endif
}
/*!
* \copydoc FvBaseProblem::constraints
*
* The reservoir problem places two water-injection wells on the lower-left and
* lower-right of the domain and a production well in the middle. The injection wells
* are fully water saturated with a higher pressure, the producer is fully oil
* saturated with a lower pressure than the remaining reservoir.
*/
template <class Context>
void constraints(Constraints& constraintValues,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
if (this->simulator().episodeIndex() == 1)
return; // no constraints during the "settle down" episode
const auto& pos = context.pos(spaceIdx, timeIdx);
if (isInjector_(pos)) {
constraintValues.setActive(true);
constraintValues.assignNaive(injectorFluidState_);
}
else if (isProducer_(pos)) {
constraintValues.setActive(true);
constraintValues.assignNaive(producerFluidState_);
}
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0 everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
void initFluidState_()
{
auto& fs = initialFluidState_;
//////
// set temperatures
//////
fs.setTemperature(temperature_);
//////
// set saturations
//////
fs.setSaturation(FluidSystem::oilPhaseIdx, 1.0);
fs.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
fs.setSaturation(FluidSystem::gasPhaseIdx, 0.0);
//////
// set pressures
//////
Scalar pw = pReservoir_;
PhaseVector pC;
const auto& matParams = fineMaterialParams_;
MaterialLaw::capillaryPressures(pC, matParams, fs);
fs.setPressure(oilPhaseIdx, pw + (pC[oilPhaseIdx] - pC[waterPhaseIdx]));
fs.setPressure(waterPhaseIdx, pw + (pC[waterPhaseIdx] - pC[waterPhaseIdx]));
fs.setPressure(gasPhaseIdx, pw + (pC[gasPhaseIdx] - pC[waterPhaseIdx]));
// reset all mole fractions to 0
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
fs.setMoleFraction(phaseIdx, compIdx, 0.0);
//////
// set composition of the gas and water phases
//////
fs.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
fs.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
//////
// set composition of the oil phase
//////
Scalar RsSat =
FluidSystem::saturatedDissolutionFactor(fs, oilPhaseIdx, /*pvtRegionIdx=*/0);
Scalar XoGSat = FluidSystem::convertRsToXoG(RsSat, /*pvtRegionIdx=*/0);
Scalar xoGSat = FluidSystem::convertXoGToxoG(XoGSat, /*pvtRegionIdx=*/0);
Scalar xoG = 0.95*xoGSat;
Scalar xoO = 1.0 - xoG;
// finally set the oil-phase composition
fs.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
fs.setMoleFraction(oilPhaseIdx, oilCompIdx, xoO);
using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
typename FluidSystem::template ParameterCache<Scalar> paramCache;
CFRP::solve(fs,
paramCache,
/*refPhaseIdx=*/oilPhaseIdx,
/*setViscosities=*/false,
/*setEnthalpies=*/false);
// set up the fluid state used for the injectors
auto& injFs = injectorFluidState_;
injFs = initialFluidState_;
Scalar pInj = pReservoir_ * 1.5;
injFs.setPressure(waterPhaseIdx, pInj);
injFs.setPressure(oilPhaseIdx, pInj);
injFs.setPressure(gasPhaseIdx, pInj);
injFs.setSaturation(waterPhaseIdx, 1.0);
injFs.setSaturation(oilPhaseIdx, 0.0);
injFs.setSaturation(gasPhaseIdx, 0.0);
// set the composition of the phases to immiscible
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
injFs.setMoleFraction(phaseIdx, compIdx, 0.0);
injFs.setMoleFraction(gasPhaseIdx, gasCompIdx, 1.0);
injFs.setMoleFraction(oilPhaseIdx, oilCompIdx, 1.0);
injFs.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
CFRP::solve(injFs,
paramCache,
/*refPhaseIdx=*/waterPhaseIdx,
/*setViscosities=*/true,
/*setEnthalpies=*/false);
// set up the fluid state used for the producer
auto& prodFs = producerFluidState_;
prodFs = initialFluidState_;
Scalar pProd = pReservoir_ / 1.5;
prodFs.setPressure(waterPhaseIdx, pProd);
prodFs.setPressure(oilPhaseIdx, pProd);
prodFs.setPressure(gasPhaseIdx, pProd);
prodFs.setSaturation(waterPhaseIdx, 0.0);
prodFs.setSaturation(oilPhaseIdx, 1.0);
prodFs.setSaturation(gasPhaseIdx, 0.0);
CFRP::solve(prodFs,
paramCache,
/*refPhaseIdx=*/oilPhaseIdx,
/*setViscosities=*/true,
/*setEnthalpies=*/false);
}
bool isProducer_(const GlobalPosition& pos) const
{
Scalar x = pos[0] - this->boundingBoxMin()[0];
Scalar y = pos[dim - 1] - this->boundingBoxMin()[dim - 1];
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar height = this->boundingBoxMax()[dim - 1] - this->boundingBoxMin()[dim - 1];
// only the upper half of the center section of the spatial domain is assumed to
// be the producer
if (y <= height/2.0)
return false;
return width/2.0 - width*1e-5 < x && x < width/2.0 + width*(wellWidth_ + 1e-5);
}
bool isInjector_(const GlobalPosition& pos) const
{
Scalar x = pos[0] - this->boundingBoxMin()[0];
Scalar y = pos[dim - 1] - this->boundingBoxMin()[dim - 1];
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar height = this->boundingBoxMax()[dim - 1] - this->boundingBoxMin()[dim - 1];
// only the lower half of the leftmost and rightmost part of the spatial domain
// are assumed to be the water injectors
if (y > height/2.0)
return false;
return x < width*wellWidth_ - width*1e-5 || x > width*(1.0 - wellWidth_) + width*1e-5;
}
bool isFineMaterial_(const GlobalPosition& pos) const
{ return pos[dim - 1] > layerBottom_; }
DimMatrix fineK_;
DimMatrix coarseK_;
Scalar layerBottom_;
Scalar pReservoir_;
Scalar finePorosity_;
Scalar coarsePorosity_;
MaterialLawParams fineMaterialParams_;
MaterialLawParams coarseMaterialParams_;
std::vector<const MaterialLawParams*> materialParams_;
InitialFluidState initialFluidState_;
InitialFluidState injectorFluidState_;
InitialFluidState producerFluidState_;
Scalar temperature_;
Scalar maxDepth_;
Scalar wellWidth_;
};
} // namespace Opm
#endif
|