File: waterairproblem.hh

package info (click to toggle)
opm-models 2022.10%2Bds-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,216 kB
  • sloc: cpp: 37,910; ansic: 1,897; sh: 277; xml: 182; makefile: 10
file content (623 lines) | stat: -rw-r--r-- 21,923 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/
/*!
 * \file
 *
 * \copydoc Opm::WaterAirProblem
 */
#ifndef EWOMS_WATER_AIR_PROBLEM_HH
#define EWOMS_WATER_AIR_PROBLEM_HH

#include <opm/models/pvs/pvsproperties.hh>
#include <opm/simulators/linalg/parallelistlbackend.hh>

#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>

#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>

#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/version.hh>

#include <sstream>
#include <string>

namespace Opm {
template <class TypeTag>
class WaterAirProblem;
}

namespace Opm::Properties {

namespace TTag {
struct WaterAirBaseProblem {};
}

// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::WaterAirBaseProblem> { using type = Dune::YaspGrid<2>; };

// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::WaterAirBaseProblem> { using type = Opm::WaterAirProblem<TypeTag>; };

// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::WaterAirBaseProblem>
{
private:
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
                                               /*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
                                               /*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx>;

    // define the material law which is parameterized by effective
    // saturations
    using EffMaterialLaw = Opm::RegularizedBrooksCorey<Traits>;

public:
    // define the material law parameterized by absolute saturations
    // which uses the two-phase API
    using type = Opm::EffToAbsLaw<EffMaterialLaw>;
};

// Set the thermal conduction law
template<class TypeTag>
struct ThermalConductionLaw<TypeTag, TTag::WaterAirBaseProblem>
{
private:
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;

public:
    // define the material law parameterized by absolute saturations
    using type = Opm::SomertonThermalConductionLaw<FluidSystem, Scalar>;
};

// set the energy storage law for the solid phase
template<class TypeTag>
struct SolidEnergyLaw<TypeTag, TTag::WaterAirBaseProblem>
{ using type = Opm::ConstantSolidHeatCapLaw<GetPropType<TypeTag, Properties::Scalar>>; };

// Set the fluid system. in this case, we use the one which describes
// air and water
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::WaterAirBaseProblem>
{ using type = Opm::H2OAirFluidSystem<GetPropType<TypeTag, Properties::Scalar>>; };

// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::WaterAirBaseProblem> { static constexpr bool value = true; };

// Use forward differences instead of central differences
template<class TypeTag>
struct NumericDifferenceMethod<TypeTag, TTag::WaterAirBaseProblem> { static constexpr int value = +1; };

// Write newton convergence
template<class TypeTag>
struct NewtonWriteConvergence<TypeTag, TTag::WaterAirBaseProblem> { static constexpr bool value = false; };

// The default for the end time of the simulation (1 year)
template<class TypeTag>
struct EndTime<TypeTag, TTag::WaterAirBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 1.0 * 365 * 24 * 60 * 60;
};

// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::WaterAirBaseProblem>
{
    using type = GetPropType<TypeTag, Scalar>;
    static constexpr type value = 250;
};

// The default DGF file to load
template<class TypeTag>
struct GridFile<TypeTag, TTag::WaterAirBaseProblem> { static constexpr auto value = "./data/waterair.dgf"; };

// Use the restarted GMRES linear solver with the ILU-2 preconditioner from dune-istl
template<class TypeTag>
struct LinearSolverSplice<TypeTag, TTag::WaterAirBaseProblem>
{ using type = TTag::ParallelIstlLinearSolver; };

template<class TypeTag>
struct LinearSolverWrapper<TypeTag, TTag::WaterAirBaseProblem>
{ using type = Opm::Linear::SolverWrapperRestartedGMRes<TypeTag>; };

#if DUNE_VERSION_NEWER(DUNE_ISTL, 2,7)
template<class TypeTag>
struct PreconditionerWrapper<TypeTag, TTag::WaterAirBaseProblem>
{ using type = Opm::Linear::PreconditionerWrapperILU<TypeTag>; };
#else
template<class TypeTag>
struct PreconditionerWrapper<TypeTag, TTag::WaterAirBaseProblem>
{ using type = Opm::Linear::PreconditionerWrapperILUn<TypeTag>; };
#endif
template<class TypeTag>
struct PreconditionerOrder<TypeTag, TTag::WaterAirBaseProblem> { static constexpr int value = 2; };

} // namespace Opm::Properties

namespace Opm {
/*!
 * \ingroup TestProblems
 * \brief Non-isothermal gas injection problem where a air
 *        is injected into a fully water saturated medium.
 *
 * During buoyancy driven upward migration, the gas passes a
 * rectangular high temperature area. This decreases the temperature
 * of the high-temperature area and accelerates gas infiltration due
 * to the lower viscosity of the gas. (Be aware that the pressure of
 * the gas is approximately constant within the lens, so the density
 * of the gas is reduced. This more than off-sets the viscosity
 * increase of the gas at constant density.)
 *
 * The domain is sized 40 m times 40 m. The rectangular area with
 * increased temperature (380 K) starts at (20 m, 5 m) and ends at (30
 * m, 35 m).
 *
 * For the mass conservation equation, no-flow boundary conditions are
 * used on the top and on the bottom of the domain, while free-flow
 * conditions apply on the left and the right boundary. Gas is
 * injected at bottom from 15 m to 25 m at a rate of 0.001 kg/(s m^2)
 * by means if a forced inflow boundary condition.
 *
 * At the free-flow boundaries, the initial condition for the bulk
 * part of the domain is assumed, i. e.  hydrostatic pressure, a gas
 * saturation of zero and a geothermal temperature gradient of 0.03
 * K/m.
 */
template <class TypeTag >
class WaterAirProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
    using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;

    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using GridView = GetPropType<TypeTag, Properties::GridView>;

    // copy some indices for convenience
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using Indices = GetPropType<TypeTag, Properties::Indices>;
    enum {
        numPhases = FluidSystem::numPhases,

        // energy related indices
        temperatureIdx = Indices::temperatureIdx,
        energyEqIdx = Indices::energyEqIdx,

        // component indices
        H2OIdx = FluidSystem::H2OIdx,
        AirIdx = FluidSystem::AirIdx,

        // phase indices
        liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
        gasPhaseIdx = FluidSystem::gasPhaseIdx,

        // equation indices
        conti0EqIdx = Indices::conti0EqIdx,

        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };

    static const bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();

    using EqVector = GetPropType<TypeTag, Properties::EqVector>;
    using RateVector = GetPropType<TypeTag, Properties::RateVector>;
    using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using Constraints = GetPropType<TypeTag, Properties::Constraints>;
    using Simulator = GetPropType<TypeTag, Properties::Simulator>;
    using Model = GetPropType<TypeTag, Properties::Model>;
    using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
    using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
    using ThermalConductionLawParams = GetPropType<TypeTag, Properties::ThermalConductionLawParams>;
    using SolidEnergyLawParams = GetPropType<TypeTag, Properties::SolidEnergyLawParams>;

    using CoordScalar = typename GridView::ctype;
    using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;

    using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;

public:
    /*!
     * \copydoc Doxygen::defaultProblemConstructor
     */
    WaterAirProblem(Simulator& simulator)
        : ParentType(simulator)
    { }

    /*!
     * \copydoc FvBaseProblem::finishInit
     */
    void finishInit()
    {
        ParentType::finishInit();

        maxDepth_ = 1000.0; // [m]
        eps_ = 1e-6;

        FluidSystem::init(/*Tmin=*/275, /*Tmax=*/600, /*nT=*/100,
                          /*pmin=*/9.5e6, /*pmax=*/10.5e6, /*np=*/200);

        layerBottom_ = 22.0;

        // intrinsic permeabilities
        fineK_ = this->toDimMatrix_(1e-13);
        coarseK_ = this->toDimMatrix_(1e-12);

        // porosities
        finePorosity_ = 0.3;
        coarsePorosity_ = 0.3;

        // residual saturations
        fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
        fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
        coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
        coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);

        // parameters for the Brooks-Corey law
        fineMaterialParams_.setEntryPressure(1e4);
        coarseMaterialParams_.setEntryPressure(1e4);
        fineMaterialParams_.setLambda(2.0);
        coarseMaterialParams_.setLambda(2.0);

        fineMaterialParams_.finalize();
        coarseMaterialParams_.finalize();

        // parameters for the somerton law of thermal conduction
        computeThermalCondParams_(fineThermalCondParams_, finePorosity_);
        computeThermalCondParams_(coarseThermalCondParams_, coarsePorosity_);

        // assume constant volumetric heat capacity and granite
        solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
                                                   * 2700.0); // density of granite [kg/m^3]
        solidEnergyLawParams_.finalize();
    }

    /*!
     * \name Problem parameters
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::name
     */
    std::string name() const
    {
        std::ostringstream oss;
        oss << "waterair_" << Model::name();
        if (getPropValue<TypeTag, Properties::EnableEnergy>())
            oss << "_ni";

        return oss.str();
    }

    /*!
     * \copydoc FvBaseProblem::endTimeStep
     */
    void endTimeStep()
    {
#ifndef NDEBUG
        // checkConservativeness() does not include the effect of constraints, so we
        // disable it for this problem...
        //this->model().checkConservativeness();

        // Calculate storage terms
        EqVector storage;
        this->model().globalStorage(storage);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout << "Storage: " << storage << std::endl << std::flush;
        }
#endif // NDEBUG
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
     *
     * In this problem, the upper part of the domain is sightly less
     * permeable than the lower one.
     */
    template <class Context>
    const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return fineK_;
        return coarseK_;
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::porosity
     */
    template <class Context>
    Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return finePorosity_;
        else
            return coarsePorosity_;
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::materialLawParams
     */
    template <class Context>
    const MaterialLawParams& materialLawParams(const Context& context,
                                               unsigned spaceIdx,
                                               unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return fineMaterialParams_;
        else
            return coarseMaterialParams_;
    }

    /*!
     * \brief Return the parameters for the energy storage law of the rock
     *
     * In this case, we assume the rock-matrix to be granite.
     */
    template <class Context>
    const SolidEnergyLawParams&
    solidEnergyLawParams(const Context& /*context*/,
                         unsigned /*spaceIdx*/,
                         unsigned /*timeIdx*/) const
    { return solidEnergyLawParams_; }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
     */
    template <class Context>
    const ThermalConductionLawParams&
    thermalConductionLawParams(const Context& context,
                            unsigned spaceIdx,
                            unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
        if (isFineMaterial_(pos))
            return fineThermalCondParams_;
        return coarseThermalCondParams_;
    }

    //! \}

    /*!
     * \name Boundary conditions
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::boundary
     *
     * For this problem, we inject air at the inlet on the center of
     * the lower domain boundary and use a no-flow condition on the
     * top boundary and a and a free-flow condition on the left and
     * right boundaries of the domain.
     */
    template <class Context>
    void boundary(BoundaryRateVector& values,
                  const Context& context,
                  unsigned spaceIdx, unsigned timeIdx) const
    {
        const auto& pos = context.cvCenter(spaceIdx, timeIdx);
        assert(onLeftBoundary_(pos) ||
               onLowerBoundary_(pos) ||
               onRightBoundary_(pos) ||
               onUpperBoundary_(pos));

        if (onInlet_(pos)) {
            RateVector massRate(0.0);
            massRate[conti0EqIdx + AirIdx] = -1e-3; // [kg/(m^2 s)]

            // impose an forced inflow boundary condition on the inlet
            values.setMassRate(massRate);

            if (enableEnergy) {
                Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
                initialFluidState_(fs, context, spaceIdx, timeIdx);

                Scalar hl = fs.enthalpy(liquidPhaseIdx);
                Scalar hg = fs.enthalpy(gasPhaseIdx);
                values.setEnthalpyRate(values[conti0EqIdx + AirIdx] * hg +
                                       values[conti0EqIdx + H2OIdx] * hl);
            }
        }
        else if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
            Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
            initialFluidState_(fs, context, spaceIdx, timeIdx);

            // impose an freeflow boundary condition
            values.setFreeFlow(context, spaceIdx, timeIdx, fs);
        }
        else
            // no flow on top and bottom
            values.setNoFlow();
    }

    //! \}

    /*!
     * \name Volumetric terms
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::initial
     *
     * For this problem, we set the medium to be fully saturated by
     * liquid water and assume hydrostatic pressure.
     */
    template <class Context>
    void initial(PrimaryVariables& values,
                 const Context& context,
                 unsigned spaceIdx,
                 unsigned timeIdx) const
    {
        Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
        initialFluidState_(fs, context, spaceIdx, timeIdx);

        const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
        values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
    }

    /*!
     * \copydoc FvBaseProblem::source
     *
     * For this problem, the source term of all components is 0
     * everywhere.
     */
    template <class Context>
    void source(RateVector& rate,
                const Context& /*context*/,
                unsigned /*spaceIdx*/,
                unsigned /*timeIdx*/) const
    { rate = 0; }

    //! \}

private:
    bool onLeftBoundary_(const GlobalPosition& pos) const
    { return pos[0] < eps_; }

    bool onRightBoundary_(const GlobalPosition& pos) const
    { return pos[0] > this->boundingBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition& pos) const
    { return pos[1] < eps_; }

    bool onUpperBoundary_(const GlobalPosition& pos) const
    { return pos[1] > this->boundingBoxMax()[1] - eps_; }

    bool onInlet_(const GlobalPosition& pos) const
    { return onLowerBoundary_(pos) && (15.0 < pos[0]) && (pos[0] < 25.0); }

    bool inHighTemperatureRegion_(const GlobalPosition& pos) const
    { return (20 < pos[0]) && (pos[0] < 30) && (pos[1] < 30); }

    template <class Context, class FluidState>
    void initialFluidState_(FluidState& fs,
                            const Context& context,
                            unsigned spaceIdx,
                            unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);

        Scalar densityW = 1000.0;
        fs.setPressure(liquidPhaseIdx, 1e5 + (maxDepth_ - pos[1])*densityW*9.81);
        fs.setSaturation(liquidPhaseIdx, 1.0);
        fs.setMoleFraction(liquidPhaseIdx, H2OIdx, 1.0);
        fs.setMoleFraction(liquidPhaseIdx, AirIdx, 0.0);

        if (inHighTemperatureRegion_(pos))
            fs.setTemperature(380);
        else
            fs.setTemperature(283.0 + (maxDepth_ - pos[1])*0.03);

        // set the gas saturation and pressure
        fs.setSaturation(gasPhaseIdx, 0);
        Scalar pc[numPhases];
        const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
        MaterialLaw::capillaryPressures(pc, matParams, fs);
        fs.setPressure(gasPhaseIdx, fs.pressure(liquidPhaseIdx) + (pc[gasPhaseIdx] - pc[liquidPhaseIdx]));

        typename FluidSystem::template ParameterCache<Scalar> paramCache;
        using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
        CFRP::solve(fs, paramCache, liquidPhaseIdx, /*setViscosity=*/true,  /*setEnthalpy=*/true);
    }

    void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
    {
        Scalar lambdaGranite = 2.8; // [W / (K m)]

        // create a Fluid state which has all phases present
        Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
        fs.setTemperature(293.15);
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            fs.setPressure(phaseIdx, 1.0135e5);
        }

        typename FluidSystem::template ParameterCache<Scalar> paramCache;
        paramCache.updateAll(fs);
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
            fs.setDensity(phaseIdx, rho);
        }

        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            Scalar lambdaSaturated;
            if (FluidSystem::isLiquid(phaseIdx)) {
                Scalar lambdaFluid =
                    FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
                lambdaSaturated = std::pow(lambdaGranite, (1-poro)) + std::pow(lambdaFluid, poro);
            }
            else
                lambdaSaturated = std::pow(lambdaGranite, (1-poro));

            params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
            if (!FluidSystem::isLiquid(phaseIdx))
                params.setVacuumLambda(lambdaSaturated);
        }
    }

    bool isFineMaterial_(const GlobalPosition& pos) const
    { return pos[dim-1] > layerBottom_; }

    DimMatrix fineK_;
    DimMatrix coarseK_;
    Scalar layerBottom_;

    Scalar finePorosity_;
    Scalar coarsePorosity_;

    MaterialLawParams fineMaterialParams_;
    MaterialLawParams coarseMaterialParams_;

    ThermalConductionLawParams fineThermalCondParams_;
    ThermalConductionLawParams coarseThermalCondParams_;
    SolidEnergyLawParams solidEnergyLawParams_;

    Scalar maxDepth_;
    Scalar eps_;
};
} // namespace Opm

#endif