1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::EclProblem
*/
#ifndef EWOMS_ECL_PROBLEM_HH
#define EWOMS_ECL_PROBLEM_HH
#if USE_ALUGRID
#define DISABLE_ALUGRID_SFC_ORDERING 1
#if !HAVE_DUNE_ALUGRID
#warning "ALUGrid was indicated to be used for the ECL black oil simulator, but this "
#warning "requires the presence of dune-alugrid >= 2.4. Falling back to Dune::CpGrid"
#undef USE_ALUGRID
#define USE_ALUGRID 0
#endif
#else
#define USE_ALUGRID 0
#endif
#if USE_ALUGRID
#include "eclalugridvanguard.hh"
#elif USE_POLYHEDRALGRID
#include "eclpolyhedralgridvanguard.hh"
#else
#include "eclcpgridvanguard.hh"
#endif
#include "eclactionhandler.hh"
#include "eclequilinitializer.hh"
#include "eclwriter.hh"
#include "ecloutputblackoilmodule.hh"
#include "ecltransmissibility.hh"
#include "eclthresholdpressure.hh"
#include "ecldummygradientcalculator.hh"
#include "eclfluxmodule.hh"
#include "eclbaseaquifermodel.hh"
#include "eclnewtonmethod.hh"
#include "ecltracermodel.hh"
#include "vtkecltracermodule.hh"
#include "eclgenericproblem.hh"
#include <opm/core/props/satfunc/RelpermDiagnostics.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/utils/ParallelSerialization.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/models/common/directionalmobility.hh>
#include <opm/models/utils/pffgridvector.hh>
#include <opm/models/blackoil/blackoilmodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/material/thermal/EclThermalLawManager.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/WetGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DeadOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/common/utility/TimeService.hpp>
#include <opm/utility/CopyablePtr.hpp>
#include <opm/material/common/ConditionalStorage.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <set>
#include <vector>
#include <string>
#include <algorithm>
#include <functional>
namespace Opm {
template <class TypeTag>
class EclProblem;
}
namespace Opm::Properties {
namespace TTag {
#if USE_ALUGRID
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclAluGridVanguard>;
};
#elif USE_POLYHEDRALGRID
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclPolyhedralGridVanguard>;
};
#else
struct EclBaseProblem {
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclCpGridVanguard>;
};
#endif
}
// The class which deals with ECL wells
template<class TypeTag, class MyTypeTag>
struct EclWellModel {
using type = UndefinedProperty;
};
// Write all solutions for visualization, not just the ones for the
// report steps...
template<class TypeTag, class MyTypeTag>
struct EnableWriteAllSolutions {
using type = UndefinedProperty;
};
// The number of time steps skipped between writing two consequtive restart files
template<class TypeTag, class MyTypeTag>
struct RestartWritingInterval {
using type = UndefinedProperty;
};
// Enable partial compensation of systematic mass losses via the source term of the next time
// step
template<class TypeTag, class MyTypeTag>
struct EclEnableDriftCompensation {
using type = UndefinedProperty;
};
// Enable the additional checks even if compiled in debug mode (i.e., with the NDEBUG
// macro undefined). Next to a slightly better performance, this also eliminates some
// print statements in debug mode.
template<class TypeTag, class MyTypeTag>
struct EnableDebuggingChecks {
using type = UndefinedProperty;
};
// if thermal flux boundaries are enabled an effort is made to preserve the initial
// thermal gradient specified via the TEMPVD keyword
template<class TypeTag, class MyTypeTag>
struct EnableThermalFluxBoundaries {
using type = UndefinedProperty;
};
// Specify whether API tracking should be enabled (replaces PVT regions).
// TODO: This is not yet implemented
template<class TypeTag, class MyTypeTag>
struct EnableApiTracking {
using type = UndefinedProperty;
};
// The class which deals with ECL aquifers
template<class TypeTag, class MyTypeTag>
struct EclAquiferModel {
using type = UndefinedProperty;
};
// In experimental mode, decides if the aquifer model should be enabled or not
template<class TypeTag, class MyTypeTag>
struct EclEnableAquifers {
using type = UndefinedProperty;
};
// time stepping parameters
template<class TypeTag, class MyTypeTag>
struct EclMaxTimeStepSizeAfterWellEvent {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EclRestartShrinkFactor {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EclEnableTuning {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct OutputMode {
using type = UndefinedProperty;
};
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::EclBaseProblem> {
using type = EclProblem<TypeTag>;
};
// Select the element centered finite volume method as spatial discretization
template<class TypeTag>
struct SpatialDiscretizationSplice<TypeTag, TTag::EclBaseProblem> {
using type = TTag::EcfvDiscretization;
};
//! for ebos, use automatic differentiation to linearize the system of PDEs
template<class TypeTag>
struct LocalLinearizerSplice<TypeTag, TTag::EclBaseProblem> {
using type = TTag::AutoDiffLocalLinearizer;
};
// Set the material law for fluid fluxes
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Traits = ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
public:
using EclMaterialLawManager = ::Opm::EclMaterialLawManager<Traits>;
using type = typename EclMaterialLawManager::MaterialLaw;
};
// Set the material law for energy storage in rock
template<class TypeTag>
struct SolidEnergyLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
using type = typename EclThermalLawManager::SolidEnergyLaw;
};
// Set the material law for thermal conduction
template<class TypeTag>
struct ThermalConductionLaw<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
public:
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
using type = typename EclThermalLawManager::ThermalConductionLaw;
};
// ebos can use a slightly faster stencil class because it does not need the normals and
// the integration points of intersections
template<class TypeTag>
struct Stencil<TypeTag, TTag::EclBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
public:
using type = EcfvStencil<Scalar,
GridView,
/*needIntegrationPos=*/false,
/*needNormal=*/false>;
};
// by default use the dummy aquifer "model"
template<class TypeTag>
struct EclAquiferModel<TypeTag, TTag::EclBaseProblem> {
using type = EclBaseAquiferModel<TypeTag>;
};
// Enable aquifers by default in experimental mode
template<class TypeTag>
struct EclEnableAquifers<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Enable diffusion
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// only write the solutions for the report steps to disk
template<class TypeTag>
struct EnableWriteAllSolutions<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable API tracking
template<class TypeTag>
struct EnableApiTracking<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// The default for the end time of the simulation [s]
//
// By default, stop it after the universe will probably have stopped
// to exist. (the ECL problem will finish the simulation explicitly
// after it simulated the last episode specified in the deck.)
template<class TypeTag>
struct EndTime<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e100;
};
// The default for the initial time step size of the simulation [s].
//
// The chosen value means that the size of the first time step is the
// one of the initial episode (if the length of the initial episode is
// not millions of trillions of years, that is...)
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3600*24;
};
// the default for the allowed volumetric error for oil per second
template<class TypeTag>
struct NewtonTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-2;
};
// the tolerated amount of "incorrect" amount of oil per time step for the complete
// reservoir. this is scaled by the pore volume of the reservoir, i.e., larger reservoirs
// will tolerate larger residuals.
template<class TypeTag>
struct EclNewtonSumTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e-4;
};
// set the exponent for the volume scaling of the sum tolerance: larger reservoirs can
// tolerate a higher amount of mass lost per time step than smaller ones! since this is
// not linear, we use the cube root of the overall pore volume by default, i.e., the
// value specified by the NewtonSumTolerance parameter is the "incorrect" mass per
// timestep for an reservoir that exhibits 1 m^3 of pore volume. A reservoir with a total
// pore volume of 10^3 m^3 will tolerate 10 times as much.
template<class TypeTag>
struct EclNewtonSumToleranceExponent<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0/3.0;
};
// set number of Newton iterations where the volumetric residual is considered for
// convergence
template<class TypeTag>
struct EclNewtonStrictIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 8;
};
// set fraction of the pore volume where the volumetric residual may be violated during
// strict Newton iterations
template<class TypeTag>
struct EclNewtonRelaxedVolumeFraction<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 0.03;
};
// the maximum volumetric error of a cell in the relaxed region
template<class TypeTag>
struct EclNewtonRelaxedTolerance<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e9;
};
// Ignore the maximum error mass for early termination of the newton method.
template<class TypeTag>
struct NewtonMaxError<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 10e9;
};
// set the maximum number of Newton iterations to 14 because the likelyhood that a time
// step succeeds at more than 14 Newton iteration is rather small
template<class TypeTag>
struct NewtonMaxIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 14;
};
// also, reduce the target for the "optimum" number of Newton iterations to 6. Note that
// this is only relevant if the time step is reduced from the report step size for some
// reason. (because ebos first tries to do a report step using a single time step.)
template<class TypeTag>
struct NewtonTargetIterations<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 6;
};
// Disable the VTK output by default for this problem ...
template<class TypeTag>
struct EnableVtkOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// ... but enable the ECL output by default
template<class TypeTag>
struct EnableEclOutput<TypeTag,TTag::EclBaseProblem> {
static constexpr bool value = true;
};
#ifdef HAVE_DAMARIS
//! Enable the Damaris output by default
template<class TypeTag>
struct EnableDamarisOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// If Damaris is available, write specific variable output in parallel
template<class TypeTag>
struct EnableDamarisOutputCollective<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
#endif
// If available, write the ECL output in a non-blocking manner
template<class TypeTag>
struct EnableAsyncEclOutput<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Write ESMRY file for fast loading of summary data
template<class TypeTag>
struct EnableEsmry<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// By default, use single precision for the ECL formated results
template<class TypeTag>
struct EclOutputDoublePrecision<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// The default location for the ECL output files
template<class TypeTag>
struct OutputDir<TypeTag, TTag::EclBaseProblem> {
static constexpr auto value = ".";
};
// the cache for intensive quantities can be used for ECL problems and also yields a
// decent speedup...
template<class TypeTag>
struct EnableIntensiveQuantityCache<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// the cache for the storage term can also be used and also yields a decent speedup
template<class TypeTag>
struct EnableStorageCache<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
template<class TypeTag>
struct FluxModule<TypeTag, TTag::EclBaseProblem> {
using type = EclTransFluxModule<TypeTag>;
};
// Use the dummy gradient calculator in order not to do unnecessary work.
template<class TypeTag>
struct GradientCalculator<TypeTag, TTag::EclBaseProblem> {
using type = EclDummyGradientCalculator<TypeTag>;
};
// Use a custom Newton-Raphson method class for ebos in order to attain more
// sophisticated update and error computation mechanisms
template<class TypeTag>
struct NewtonMethod<TypeTag, TTag::EclBaseProblem> {
using type = EclNewtonMethod<TypeTag>;
};
// The frequency of writing restart (*.ers) files. This is the number of time steps
// between writing restart files
template<class TypeTag>
struct RestartWritingInterval<TypeTag, TTag::EclBaseProblem> {
static constexpr int value = 0xffffff; // disable
};
// Drift compensation is an experimental feature, i.e., systematic errors in the
// conservation quantities are only compensated for
// as default if experimental mode is enabled.
template<class TypeTag>
struct EclEnableDriftCompensation<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// By default, we enable the debugging checks if we're compiled in debug mode
template<class TypeTag>
struct EnableDebuggingChecks<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// store temperature (but do not conserve energy, as long as EnableEnergy is false)
template<class TypeTag>
struct EnableTemperature<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = true;
};
// disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit
template<class TypeTag>
struct EnablePolymer<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableSolvent<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableFoam<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableExtbo<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableMICP<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// disable thermal flux boundaries by default
template<class TypeTag>
struct EnableThermalFluxBoundaries<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// By default, simulators derived from the EclBaseProblem are production simulators,
// i.e., experimental features must be explicitly enabled at compile time
template<class TypeTag>
struct EnableExperiments<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
// set defaults for the time stepping parameters
template<class TypeTag>
struct EclMaxTimeStepSizeAfterWellEvent<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3600*24*365.25;
};
template<class TypeTag>
struct EclRestartShrinkFactor<TypeTag, TTag::EclBaseProblem> {
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3;
};
template<class TypeTag>
struct EclEnableTuning<TypeTag, TTag::EclBaseProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct OutputMode<TypeTag, TTag::EclBaseProblem> {
static constexpr auto value = "all";
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This problem simulates an input file given in the data format used by the
* commercial ECLiPSE simulator.
*/
template <class TypeTag>
class EclProblem : public GetPropType<TypeTag, Properties::BaseProblem>
, public EclGenericProblem<GetPropType<TypeTag, Properties::GridView>,
GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Scalar>>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Implementation = GetPropType<TypeTag, Properties::Problem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using Vanguard = GetPropType<TypeTag, Properties::Vanguard>;
// Grid and world dimension
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// copy some indices for convenience
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { enableExperiments = getPropValue<TypeTag, Properties::EnableExperiments>() };
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
enum { enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>() };
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
enum { enablePolymerMolarWeight = getPropValue<TypeTag, Properties::EnablePolymerMW>() };
enum { enableFoam = getPropValue<TypeTag, Properties::EnableFoam>() };
enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
enum { enableThermalFluxBoundaries = getPropValue<TypeTag, Properties::EnableThermalFluxBoundaries>() };
enum { enableApiTracking = getPropValue<TypeTag, Properties::EnableApiTracking>() };
enum { enableMICP = getPropValue<TypeTag, Properties::EnableMICP>() };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Element = typename GridView::template Codim<0>::Entity;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using EclMaterialLawManager = typename GetProp<TypeTag, Properties::MaterialLaw>::EclMaterialLawManager;
using EclThermalLawManager = typename GetProp<TypeTag, Properties::SolidEnergyLaw>::EclThermalLawManager;
using MaterialLawParams = typename EclMaterialLawManager::MaterialLawParams;
using SolidEnergyLawParams = typename EclThermalLawManager::SolidEnergyLawParams;
using ThermalConductionLawParams = typename EclThermalLawManager::ThermalConductionLawParams;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using DofMapper = GetPropType<TypeTag, Properties::DofMapper>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using EclWellModel = GetPropType<TypeTag, Properties::EclWellModel>;
using EclAquiferModel = GetPropType<TypeTag, Properties::EclAquiferModel>;
using SolventModule = BlackOilSolventModule<TypeTag>;
using PolymerModule = BlackOilPolymerModule<TypeTag>;
using FoamModule = BlackOilFoamModule<TypeTag>;
using BrineModule = BlackOilBrineModule<TypeTag>;
using ExtboModule = BlackOilExtboModule<TypeTag>;
using MICPModule = BlackOilMICPModule<TypeTag>;
using InitialFluidState = typename EclEquilInitializer<TypeTag>::ScalarFluidState;
using Toolbox = MathToolbox<Evaluation>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using EclWriterType = EclWriter<TypeTag>;
using TracerModel = EclTracerModel<TypeTag>;
using DirectionalMobilityPtr = Opm::Utility::CopyablePtr<DirectionalMobility<TypeTag, Evaluation>>;
public:
using EclGenericProblem<GridView,FluidSystem,Scalar>::briefDescription;
using EclGenericProblem<GridView,FluidSystem,Scalar>::helpPreamble;
using EclGenericProblem<GridView,FluidSystem,Scalar>::shouldWriteOutput;
using EclGenericProblem<GridView,FluidSystem,Scalar>::shouldWriteRestartFile;
using EclGenericProblem<GridView,FluidSystem,Scalar>::maxTimeIntegrationFailures;
using EclGenericProblem<GridView,FluidSystem,Scalar>::minTimeStepSize;
using EclGenericProblem<GridView,FluidSystem,Scalar>::rockCompressibility;
using EclGenericProblem<GridView,FluidSystem,Scalar>::rockReferencePressure;
using EclGenericProblem<GridView,FluidSystem,Scalar>::porosity;
/*!
* \copydoc FvBaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
EclWriterType::registerParameters();
VtkEclTracerModule<TypeTag>::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableWriteAllSolutions,
"Write all solutions to disk instead of only the ones for the "
"report steps");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableEclOutput,
"Write binary output which is compatible with the commercial "
"Eclipse simulator");
#ifdef HAVE_DAMARIS
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableDamarisOutput,
"Write a specific variable using Damaris in a separate core");
#endif
EWOMS_REGISTER_PARAM(TypeTag, bool, EclOutputDoublePrecision,
"Tell the output writer to use double precision. Useful for 'perfect' restarts");
EWOMS_REGISTER_PARAM(TypeTag, unsigned, RestartWritingInterval,
"The frequencies of which time steps are serialized to disk");
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableDriftCompensation,
"Enable partial compensation of systematic mass losses via the source term of the next time step");
if constexpr (enableExperiments)
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableAquifers,
"Enable analytic and numeric aquifer models");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclMaxTimeStepSizeAfterWellEvent,
"Maximum time step size after an well event");
EWOMS_REGISTER_PARAM(TypeTag, Scalar, EclRestartShrinkFactor,
"Factor by which the time step is reduced after convergence failure");
EWOMS_REGISTER_PARAM(TypeTag, bool, EclEnableTuning,
"Honor some aspects of the TUNING keyword from the ECL deck.");
EWOMS_REGISTER_PARAM(TypeTag, std::string, OutputMode,
"Specify which messages are going to be printed. Valid values are: none, log, all (default)");
}
/*!
* \copydoc FvBaseProblem::handlePositionalParameter
*/
static int handlePositionalParameter(std::set<std::string>& seenParams,
std::string& errorMsg,
int,
const char** argv,
int paramIdx,
int)
{
using ParamsMeta = GetProp<TypeTag, Properties::ParameterMetaData>;
Dune::ParameterTree& tree = ParamsMeta::tree();
std::string param = argv[paramIdx];
size_t i = param.find('=');
if (i != std::string::npos) {
std::string oldParamName = param.substr(0, i);
std::string oldParamValue = param.substr(i+1);
std::string newParamName = "--" + oldParamName;
for (size_t j = 0; j < newParamName.size(); ++j)
if (newParamName[j] == '_')
newParamName[j] = '-';
errorMsg =
"The old syntax to specify parameters on the command line is no longer supported: "
"Try replacing '"+oldParamName+"="+oldParamValue+"' with "+
"'"+newParamName+"="+oldParamValue+"'!";
return 0;
}
if (seenParams.count("EclDeckFileName") > 0) {
errorMsg =
"Parameter 'EclDeckFileName' specified multiple times"
" as a command line parameter";
return 0;
}
tree["EclDeckFileName"] = argv[paramIdx];
seenParams.insert("EclDeckFileName");
return 1;
}
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
EclProblem(Simulator& simulator)
: ParentType(simulator)
, EclGenericProblem<GridView,FluidSystem,Scalar>(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().gridView())
, transmissibilities_(simulator.vanguard().eclState(),
simulator.vanguard().gridView(),
simulator.vanguard().cartesianIndexMapper(),
simulator.vanguard().grid(),
simulator.vanguard().cellCentroids(),
enableEnergy,
enableDiffusion)
, thresholdPressures_(simulator)
, wellModel_(simulator)
, aquiferModel_(simulator)
, pffDofData_(simulator.gridView(), this->elementMapper())
, tracerModel_(simulator)
, actionHandler_(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().actionState(),
simulator.vanguard().summaryState(),
wellModel_,
simulator.vanguard().grid().comm())
{
this->model().addOutputModule(new VtkEclTracerModule<TypeTag>(simulator));
// Tell the black-oil extensions to initialize their internal data structures
const auto& vanguard = simulator.vanguard();
SolventModule::initFromState(vanguard.eclState(), vanguard.schedule());
PolymerModule::initFromState(vanguard.eclState());
FoamModule::initFromState(vanguard.eclState());
BrineModule::initFromState(vanguard.eclState());
ExtboModule::initFromState(vanguard.eclState());
MICPModule::initFromState(vanguard.eclState());
// create the ECL writer
eclWriter_.reset(new EclWriterType(simulator));
enableDriftCompensation_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableDriftCompensation);
enableEclOutput_ = EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput);
if constexpr (enableExperiments)
enableAquifers_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableAquifers);
else
enableAquifers_ = true;
this->enableTuning_ = EWOMS_GET_PARAM(TypeTag, bool, EclEnableTuning);
this->initialTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, InitialTimeStepSize);
this->minTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, MinTimeStepSize);
this->maxTimeStepSize_ = EWOMS_GET_PARAM(TypeTag, Scalar, MaxTimeStepSize);
this->maxTimeStepAfterWellEvent_ = EWOMS_GET_PARAM(TypeTag, Scalar, EclMaxTimeStepSizeAfterWellEvent);
this->restartShrinkFactor_ = EWOMS_GET_PARAM(TypeTag, Scalar, EclRestartShrinkFactor);
this->maxFails_ = EWOMS_GET_PARAM(TypeTag, unsigned, MaxTimeStepDivisions);
RelpermDiagnostics relpermDiagnostics;
relpermDiagnostics.diagnosis(vanguard.eclState(), vanguard.cartesianIndexMapper());
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
auto& simulator = this->simulator();
const auto& eclState = simulator.vanguard().eclState();
const auto& schedule = simulator.vanguard().schedule();
// Set the start time of the simulation
simulator.setStartTime(schedule.getStartTime());
simulator.setEndTime(schedule.simTime(schedule.size() - 1));
// We want the episode index to be the same as the report step index to make
// things simpler, so we have to set the episode index to -1 because it is
// incremented by endEpisode(). The size of the initial time step and
// length of the initial episode is set to zero for the same reason.
simulator.setEpisodeIndex(-1);
simulator.setEpisodeLength(0.0);
// the "NOGRAV" keyword from Frontsim or setting the EnableGravity to false
// disables gravity, else the standard value of the gravity constant at sea level
// on earth is used
this->gravity_ = 0.0;
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity))
this->gravity_[dim - 1] = 9.80665;
if (!eclState.getInitConfig().hasGravity())
this->gravity_[dim - 1] = 0.0;
if (this->enableTuning_) {
// if support for the TUNING keyword is enabled, we get the initial time
// steping parameters from it instead of from command line parameters
const auto& tuning = schedule[0].tuning();
this->initialTimeStepSize_ = tuning.TSINIT;
this->maxTimeStepAfterWellEvent_ = tuning.TMAXWC;
this->maxTimeStepSize_ = tuning.TSMAXZ;
this->restartShrinkFactor_ = 1./tuning.TSFCNV;
this->minTimeStepSize_ = tuning.TSMINZ;
}
this->initFluidSystem_();
// deal with DRSDT
this->initDRSDT_(this->model().numGridDof(), this->episodeIndex());
this->readRockParameters_(simulator.vanguard().cellCenterDepths());
readMaterialParameters_();
readThermalParameters_();
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> gridToEquilGrid;
#ifdef HAVE_DUNE_ALUGRID
using Grid = GetPropType<TypeTag, Properties::Grid>;
typename std::is_same<Grid, Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming>>::type isAlugrid;
if constexpr (isAlugrid) {
gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i);
};
}
#endif // HAVE_DUNE_ALUGRID
transmissibilities_.finishInit(gridToEquilGrid);
const auto& initconfig = eclState.getInitConfig();
tracerModel_.init(initconfig.restartRequested());
if (initconfig.restartRequested())
readEclRestartSolution_();
else
readInitialCondition_();
tracerModel_.prepareTracerBatches();
updatePffDofData_();
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>()) {
const auto& vanguard = this->simulator().vanguard();
const auto& gridView = vanguard.gridView();
int numElements = gridView.size(/*codim=*/0);
this->maxPolymerAdsorption_.resize(numElements, 0.0);
}
readBoundaryConditions_();
// compute and set eq weights based on initial b values
computeAndSetEqWeights_();
if (enableDriftCompensation_) {
drift_.resize(this->model().numGridDof());
drift_ = 0.0;
}
if constexpr (enableExperiments)
{
int success = 1;
const auto& cc = simulator.vanguard().grid().comm();
try
{
// Only rank 0 has the deck and hence can do the checks!
if (cc.rank() == 0)
this->checkDeckCompatibility_(simulator.vanguard().deck(),
enableApiTracking,
enableSolvent,
enablePolymer,
enableExtbo,
enableEnergy,
Indices::numPhases,
Indices::gasEnabled,
Indices::oilEnabled,
Indices::waterEnabled,
enableMICP);
}
catch(const std::exception& e)
{
success = 0;
success = cc.min(success);
throw;
}
success = cc.min(success);
if (!success)
{
throw std::runtime_error("Checking deck compatibility failed");
}
}
// write the static output files (EGRID, INIT, SMSPEC, etc.)
if (enableEclOutput_) {
if (simulator.vanguard().grid().comm().size() > 1) {
if (simulator.vanguard().grid().comm().rank() == 0)
eclWriter_->setTransmissibilities(&simulator.vanguard().globalTransmissibility());
} else
eclWriter_->setTransmissibilities(&simulator.problem().eclTransmissibilities());
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid;
#ifdef HAVE_DUNE_ALUGRID
if (isAlugrid) {
equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i);
};
}
#endif // HAVE_DUNE_ALUGRID
eclWriter_->writeInit(equilGridToGrid);
}
simulator.vanguard().releaseGlobalTransmissibilities();
// after finishing the initialization and writing the initial solution, we move
// to the first "real" episode/report step
// for restart the episode index and start is already set
if (!initconfig.restartRequested()) {
simulator.startNextEpisode(schedule.seconds(0));
simulator.setEpisodeIndex(0);
}
}
void prefetch(const Element& elem) const
{ pffDofData_.prefetch(elem); }
/*!
* \brief This method restores the complete state of the problem and its sub-objects
* from disk.
*
* The serialization format used by this method is ad-hoc. It is the inverse of the
* serialize() method.
*
* \tparam Restarter The deserializer type
*
* \param res The deserializer object
*/
template <class Restarter>
void deserialize(Restarter& res)
{
// reload the current episode/report step from the deck
beginEpisode();
// deserialize the wells
wellModel_.deserialize(res);
if (enableAquifers_)
// deserialize the aquifer
aquiferModel_.deserialize(res);
}
/*!
* \brief This method writes the complete state of the problem and its subobjects to
* disk.
*
* The file format used here is ad-hoc.
*/
template <class Restarter>
void serialize(Restarter& res)
{
wellModel_.serialize(res);
if (enableAquifers_)
aquiferModel_.serialize(res);
}
int episodeIndex() const
{
return std::max(this->simulator().episodeIndex(), 0);
}
/*!
* \brief Called by the simulator before an episode begins.
*/
void beginEpisode()
{
// Proceed to the next report step
auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
auto& eclState = simulator.vanguard().eclState();
const auto& schedule = simulator.vanguard().schedule();
const auto& events = schedule[episodeIdx].events();
if (episodeIdx >= 0 && events.hasEvent(ScheduleEvents::GEO_MODIFIER)) {
// bring the contents of the keywords to the current state of the SCHEDULE
// section.
//
// TODO (?): make grid topology changes possible (depending on what exactly
// has changed, the grid may need be re-created which has some serious
// implications on e.g., the solution of the simulation.)
const auto& miniDeck = schedule[episodeIdx].geo_keywords();
const auto& cc = simulator.vanguard().grid().comm();
eclState.apply_schedule_keywords( miniDeck );
eclBroadcast(cc, eclState.getTransMult() );
// Re-ordering in case of ALUGrid
std::function<unsigned int(unsigned int)> equilGridToGrid;
#ifdef HAVE_DUNE_ALUGRID
using Grid = GetPropType<TypeTag, Properties::Grid>;
typename std::is_same<Grid, Dune::ALUGrid<3, 3, Dune::cube,
Dune::nonconforming>>::type isAlugrid;
if constexpr (isAlugrid) {
equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i);
};
}
#endif // HAVE_DUNE_ALUGRID
// re-compute all quantities which may possibly be affected.
transmissibilities_.update(true, equilGridToGrid);
this->referencePorosity_[1] = this->referencePorosity_[0];
updateReferencePorosity_();
updatePffDofData_();
this->model().linearizer().updateDiscretizationParameters();
}
bool tuningEvent = this->beginEpisode_(enableExperiments, this->episodeIndex());
// set up the wells for the next episode.
wellModel_.beginEpisode();
// set up the aquifers for the next episode.
if (enableAquifers_)
// set up the aquifers for the next episode.
aquiferModel_.beginEpisode();
// set the size of the initial time step of the episode
Scalar dt = limitNextTimeStepSize_(simulator.episodeLength());
if (episodeIdx == 0 || tuningEvent)
// allow the size of the initial time step to be set via an external parameter
// if TUNING is enabled, also limit the time step size after a tuning event to TSINIT
dt = std::min(dt, this->initialTimeStepSize_);
simulator.setTimeStepSize(dt);
// Evaluate UDQ assign statements to make sure the settings are
// available as UDA controls for the current report step.
const auto& udq = schedule[episodeIdx].udq();
const auto& well_matcher = schedule.wellMatcher(episodeIdx);
auto& summary_state = simulator.vanguard().summaryState();
auto& udq_state = simulator.vanguard().udqState();
udq.eval_assign(episodeIdx, well_matcher, summary_state, udq_state);
}
/*!
* \brief Called by the simulator before each time integration.
*/
void beginTimeStep()
{
int episodeIdx = this->episodeIndex();
this->beginTimeStep_(enableExperiments,
episodeIdx,
this->simulator().timeStepIndex(),
this->simulator().startTime(),
this->simulator().time(),
this->simulator().timeStepSize(),
this->simulator().endTime());
// update maximum water saturation and minimum pressure
// used when ROCKCOMP is activated
const bool invalidateFromMaxWaterSat = updateMaxWaterSaturation_();
const bool invalidateFromMinPressure = updateMinPressure_();
// update hysteresis and max oil saturation used in vappars
const bool invalidateFromHyst = updateHysteresis_();
const bool invalidateFromMaxOilSat = updateMaxOilSaturation_();
// the derivatives may have change
bool invalidateIntensiveQuantities = invalidateFromMaxWaterSat || invalidateFromMinPressure || invalidateFromHyst || invalidateFromMaxOilSat;
if (invalidateIntensiveQuantities)
this->model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>())
updateMaxPolymerAdsorption_();
wellModel_.beginTimeStep();
if (enableAquifers_)
aquiferModel_.beginTimeStep();
tracerModel_.beginTimeStep();
}
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{
wellModel_.beginIteration();
if (enableAquifers_)
aquiferModel_.beginIteration();
}
/*!
* \brief Called by the simulator after each Newton-Raphson iteration.
*/
void endIteration()
{
wellModel_.endIteration();
if (enableAquifers_)
aquiferModel_.endIteration();
}
/*!
* \brief Called by the simulator after each time integration.
*/
void endTimeStep()
{
#ifndef NDEBUG
if constexpr (getPropValue<TypeTag, Properties::EnableDebuggingChecks>()) {
// in debug mode, we don't care about performance, so we check if the model does
// the right thing (i.e., the mass change inside the whole reservoir must be
// equivalent to the fluxes over the grid's boundaries plus the source rates
// specified by the problem)
int rank = this->simulator().gridView().comm().rank();
if (rank == 0)
std::cout << "checking conservativeness of solution\n";
this->model().checkConservativeness(/*tolerance=*/-1, /*verbose=*/true);
if (rank == 0)
std::cout << "solution is sufficiently conservative\n";
}
#endif // NDEBUG
auto& simulator = this->simulator();
wellModel_.endTimeStep();
if (enableAquifers_)
aquiferModel_.endTimeStep();
tracerModel_.endTimeStep();
// deal with DRSDT and DRVDT
updateCompositionChangeLimits_();
if (enableDriftCompensation_) {
const auto& residual = this->model().linearizer().residual();
for (unsigned globalDofIdx = 0; globalDofIdx < residual.size(); globalDofIdx ++) {
drift_[globalDofIdx] = residual[globalDofIdx];
drift_[globalDofIdx] *= simulator.timeStepSize();
if constexpr (getPropValue<TypeTag, Properties::UseVolumetricResidual>())
drift_[globalDofIdx] *= this->model().dofTotalVolume(globalDofIdx);
}
}
bool isSubStep = !EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions) && !this->simulator().episodeWillBeOver();
eclWriter_->evalSummaryState(isSubStep);
int episodeIdx = this->episodeIndex();
// Re-ordering in case of Alugrid
std::function<unsigned int(unsigned int)> gridToEquilGrid;
#ifdef HAVE_DUNE_ALUGRID
using Grid = GetPropType<TypeTag, Properties::Grid>;
typename std::is_same<Grid, Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming>>::type isAlugrid;
if constexpr (isAlugrid) {
gridToEquilGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridIdxToEquilGridIdx(i);
};
}
#endif // HAVE_DUNE_ALUGRID
std::function<void(bool)> transUp =
[this,gridToEquilGrid](bool global) {
this->transmissibilities_.update(global,gridToEquilGrid);
};
actionHandler_.applyActions(episodeIdx,
simulator.time() + simulator.timeStepSize(),
transUp);
// deal with "clogging" for the MICP model
if constexpr (enableMICP){
auto& model = this->model();
const auto& residual = this->model().linearizer().residual();
for (unsigned globalDofIdx = 0; globalDofIdx < residual.size(); globalDofIdx ++) {
auto& phi = this->referencePorosity_[/*timeIdx=*/1][globalDofIdx];
MICPModule::checkCloggingMICP(model, phi, globalDofIdx);
}
}
}
/*!
* \brief Called by the simulator after the end of an episode.
*/
void endEpisode()
{
auto& simulator = this->simulator();
auto& schedule = simulator.vanguard().schedule();
wellModel_.endEpisode();
if (enableAquifers_)
aquiferModel_.endEpisode();
int episodeIdx = this->episodeIndex();
// check if we're finished ...
if (episodeIdx + 1 >= static_cast<int>(schedule.size() - 1)) {
simulator.setFinished(true);
return;
}
// .. if we're not yet done, start the next episode (report step)
simulator.startNextEpisode(schedule.stepLength(episodeIdx + 1));
}
/*!
* \brief Write the requested quantities of the current solution into the output
* files.
*/
void writeOutput(bool verbose = true)
{
// use the generic code to prepare the output fields and to
// write the desired VTK files.
ParentType::writeOutput(verbose);
bool isSubStep = !EWOMS_GET_PARAM(TypeTag, bool, EnableWriteAllSolutions) && !this->simulator().episodeWillBeOver();
if (enableEclOutput_)
eclWriter_->writeOutput(isSubStep);
}
void finalizeOutput() {
// this will write all pending output to disk
// to avoid corruption of output files
eclWriter_.reset();
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return transmissibilities_.permeability(globalSpaceIdx);
}
/*!
* \brief This method returns the intrinsic permeability tensor
* given a global element index.
*
* Its main (only?) usage is the ECL transmissibility calculation code...
*/
const DimMatrix& intrinsicPermeability(unsigned globalElemIdx) const
{ return transmissibilities_.permeability(globalElemIdx); }
/*!
* \copydoc EclTransmissiblity::transmissibility
*/
template <class Context>
Scalar transmissibility(const Context& context,
[[maybe_unused]] unsigned fromDofLocalIdx,
unsigned toDofLocalIdx) const
{
assert(fromDofLocalIdx == 0);
return pffDofData_.get(context.element(), toDofLocalIdx).transmissibility;
}
/*!
* \brief Direct access to the transmissibility between two elements.
*/
Scalar transmissibility(unsigned globalCenterElemIdx, unsigned globalElemIdx) const
{
return transmissibilities_.transmissibility(globalCenterElemIdx, globalElemIdx);
}
/*!
* \copydoc EclTransmissiblity::diffusivity
*/
template <class Context>
Scalar diffusivity(const Context& context,
[[maybe_unused]] unsigned fromDofLocalIdx,
unsigned toDofLocalIdx) const
{
assert(fromDofLocalIdx == 0);
return *pffDofData_.get(context.element(), toDofLocalIdx).diffusivity;
}
/*!
* \copydoc EclTransmissiblity::transmissibilityBoundary
*/
template <class Context>
Scalar transmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.transmissibilityBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \brief Direct access to a boundary transmissibility.
*/
Scalar transmissibilityBoundary(const unsigned globalSpaceIdx,
const unsigned boundaryFaceIdx) const
{
return transmissibilities_.transmissibilityBoundary(globalSpaceIdx, boundaryFaceIdx);
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityIn(const Context& context,
unsigned faceIdx,
unsigned timeIdx) const
{
const auto& face = context.stencil(timeIdx).interiorFace(faceIdx);
unsigned toDofLocalIdx = face.exteriorIndex();
return *pffDofData_.get(context.element(), toDofLocalIdx).thermalHalfTransIn;
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityOut(const Context& context,
unsigned faceIdx,
unsigned timeIdx) const
{
const auto& face = context.stencil(timeIdx).interiorFace(faceIdx);
unsigned toDofLocalIdx = face.exteriorIndex();
return *pffDofData_.get(context.element(), toDofLocalIdx).thermalHalfTransOut;
}
/*!
* \copydoc EclTransmissiblity::thermalHalfTransmissibility
*/
template <class Context>
Scalar thermalHalfTransmissibilityBoundary(const Context& elemCtx,
unsigned boundaryFaceIdx) const
{
unsigned elemIdx = elemCtx.globalSpaceIndex(/*dofIdx=*/0, /*timeIdx=*/0);
return transmissibilities_.thermalHalfTransBoundary(elemIdx, boundaryFaceIdx);
}
/*!
* \brief Return a reference to the object that handles the "raw" transmissibilities.
*/
const typename Vanguard::TransmissibilityType& eclTransmissibilities() const
{ return transmissibilities_; }
/*!
* \copydoc BlackOilBaseProblem::thresholdPressure
*/
Scalar thresholdPressure(unsigned elem1Idx, unsigned elem2Idx) const
{ return thresholdPressures_.thresholdPressure(elem1Idx, elem2Idx); }
const EclThresholdPressure<TypeTag>& thresholdPressure() const
{ return thresholdPressures_; }
EclThresholdPressure<TypeTag>& thresholdPressure()
{ return thresholdPressures_; }
const EclTracerModel<TypeTag>& tracerModel() const
{ return tracerModel_; }
EclTracerModel<TypeTag>& tracerModel()
{ return tracerModel_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*
* For the EclProblem, this method is identical to referencePorosity(). The intensive
* quantities object may apply various multipliers (e.g. ones which model rock
* compressibility and water induced rock compaction) to it which depend on the
* current physical conditions.
*/
template <class Context>
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->porosity(globalSpaceIdx, timeIdx);
}
/*!
* \brief Returns the depth of an degree of freedom [m]
*
* For ECL problems this is defined as the average of the depth of an element and is
* thus slightly different from the depth of an element's centroid.
*/
template <class Context>
Scalar dofCenterDepth(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->dofCenterDepth(globalSpaceIdx);
}
/*!
* \brief Direct indexed acces to the depth of an degree of freedom [m]
*
* For ECL problems this is defined as the average of the depth of an element and is
* thus slightly different from the depth of an element's centroid.
*/
Scalar dofCenterDepth(unsigned globalSpaceIdx) const
{
return this->simulator().vanguard().cellCenterDepth(globalSpaceIdx);
}
/*!
* \copydoc BlackoilProblem::rockCompressibility
*/
template <class Context>
Scalar rockCompressibility(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->rockCompressibility(globalSpaceIdx);
}
/*!
* \copydoc BlackoilProblem::rockReferencePressure
*/
template <class Context>
Scalar rockReferencePressure(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->rockReferencePressure(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return this->materialLawParams(globalSpaceIdx);
}
const MaterialLawParams& materialLawParams(unsigned globalDofIdx) const
{
return materialLawManager_->materialLawParams(globalDofIdx);
}
/*!
* \brief Return the parameters for the energy storage law of the rock
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->solidEnergyLawParams(globalSpaceIdx);
}
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template <class Context>
const ThermalConductionLawParams &
thermalConductionLawParams(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalSpaceIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return thermalLawManager_->thermalConductionLawParams(globalSpaceIdx);
}
/*!
* \brief Returns the ECL material law manager
*
* Note that this method is *not* part of the generic eWoms problem API because it
* would force all problens use the ECL material laws.
*/
std::shared_ptr<const EclMaterialLawManager> materialLawManager() const
{ return materialLawManager_; }
template <class FluidState>
void updateRelperms(
std::array<Evaluation,numPhases> &mobility,
DirectionalMobilityPtr &dirMob,
FluidState &fluidState,
unsigned globalSpaceIdx) const
{
// calculate relative permeabilities. note that we store the result into the
// mobility_ class attribute. the division by the phase viscosity happens later.
const auto& materialParams = materialLawParams(globalSpaceIdx);
MaterialLaw::relativePermeabilities(mobility, materialParams, fluidState);
Valgrind::CheckDefined(mobility);
if (materialLawManager_->hasDirectionalRelperms()) {
auto satnumIdx = materialLawManager_->satnumRegionIdx(globalSpaceIdx);
using Dir = FaceDir::DirEnum;
constexpr int ndim = 3;
dirMob = std::make_unique<DirectionalMobility<TypeTag, Evaluation>>();
Dir facedirs[ndim] = {Dir::XPlus, Dir::YPlus, Dir::ZPlus};
for (int i = 0; i<ndim; i++) {
auto krnumSatIdx = materialLawManager_->getKrnumSatIdx(globalSpaceIdx, facedirs[i]);
auto& mob_array = dirMob->getArray(i);
if (krnumSatIdx != satnumIdx) {
// This hack is also used by StandardWell_impl.hpp:getMobilityEval() to temporarily use a different
// satnum index for a cell
const auto& paramsCell = materialLawManager_->connectionMaterialLawParams(krnumSatIdx, globalSpaceIdx);
MaterialLaw::relativePermeabilities(mob_array, paramsCell, fluidState);
// reset the cell's satnum index back to the original
materialLawManager_->connectionMaterialLawParams(satnumIdx, globalSpaceIdx);
}
else {
// Copy the default (non-directional dependent) mobility
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
mob_array[phaseIdx] = mobility[phaseIdx];
}
}
}
}
}
/*!
* \copydoc materialLawManager()
*/
std::shared_ptr<EclMaterialLawManager> materialLawManager()
{ return materialLawManager_; }
using EclGenericProblem<GridView,FluidSystem,Scalar>::pvtRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned pvtRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return pvtRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::satnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned satnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->satnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::miscnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned miscnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->miscnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::plmixnumRegionIndex;
/*!
* \brief Returns the index of the relevant region for thermodynmic properties
*/
template <class Context>
unsigned plmixnumRegionIndex(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->plmixnumRegionIndex(context.globalSpaceIndex(spaceIdx, timeIdx)); }
using EclGenericProblem<GridView,FluidSystem,Scalar>::maxPolymerAdsorption;
/*!
* \brief Returns the max polymer adsorption value
*/
template <class Context>
Scalar maxPolymerAdsorption(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{ return this->maxPolymerAdsorption(context.globalSpaceIndex(spaceIdx, timeIdx)); }
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return this->simulator().vanguard().caseName(); }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
// use the initial temperature of the DOF if temperature is not a primary
// variable
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
return initialFluidStates_[globalDofIdx].temperature(/*phaseIdx=*/0);
}
/*!
* \copydoc FvBaseProblem::boundary
*
* ECLiPSE uses no-flow conditions for all boundaries. \todo really?
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
if (!context.intersection(spaceIdx).boundary())
return;
if constexpr (!enableEnergy || !enableThermalFluxBoundaries)
values.setNoFlow();
else {
// in the energy case we need to specify a non-trivial boundary condition
// because the geothermal gradient needs to be maintained. for this, we
// simply assume the initial temperature at the boundary and specify the
// thermal flow accordingly. in this context, "thermal flow" means energy
// flow due to a temerature gradient while assuming no-flow for mass
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
values.setThermalFlow(context, spaceIdx, timeIdx, initialFluidStates_[globalDofIdx]);
}
if (nonTrivialBoundaryConditions()) {
unsigned indexInInside = context.intersection(spaceIdx).indexInInside();
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
unsigned pvtRegionIdx = pvtRegionIndex(context, spaceIdx, timeIdx);
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(indexInInside);
if (freebc_(dir)[globalDofIdx])
values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidStates_[globalDofIdx]);
else
values.setMassRate(massratebc_(dir)[globalDofIdx], pvtRegionIdx);
}
}
/*!
* \brief Returns an element's historic maximum oil phase saturation that was
* observed during the simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This is a bit of a hack from the conceptional point of view, but it is required to
* match the results of the 'flow' and ECLIPSE 100 simulators.
*/
Scalar maxOilSaturation(unsigned globalDofIdx) const
{
if (!this->vapparsActive(this->episodeIndex()))
return 0.0;
return this->maxOilSaturation_[globalDofIdx];
}
/*!
* \brief Sets an element's maximum oil phase saturation observed during the
* simulation.
*
* In this context, "historic" means the the time before the current timestep began.
*
* This a hack on top of the maxOilSaturation() hack but it is currently required to
* do restart externally. i.e. from the flow code.
*/
void setMaxOilSaturation(unsigned globalDofIdx, Scalar value)
{
if (!this->vapparsActive(this->episodeIndex()))
return;
this->maxOilSaturation_[globalDofIdx] = value;
}
/*!
* \brief Returns the maximum value of the gas dissolution factor at the current time
* for a given degree of freedom.
*/
Scalar maxGasDissolutionFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
int episodeIdx = this->episodeIndex();
if (!this->drsdtActive_(episodeIdx) || this->maxDRs_[pvtRegionIdx] < 0.0)
return std::numeric_limits<Scalar>::max()/2.0;
Scalar scaling = 1.0;
if (this->drsdtConvective_(episodeIdx)) {
scaling = this->convectiveDrs_[globalDofIdx];
}
// this is a bit hacky because it assumes that a time discretization with only
// two time indices is used.
if (timeIdx == 0)
return this->lastRs_[globalDofIdx] + this->maxDRs_[pvtRegionIdx] * scaling;
else
return this->lastRs_[globalDofIdx];
}
/*!
* \brief Returns the maximum value of the oil vaporization factor at the current
* time for a given degree of freedom.
*/
Scalar maxOilVaporizationFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
int episodeIdx = this->episodeIndex();
if (!this->drvdtActive_(episodeIdx) || this->maxDRv_[pvtRegionIdx] < 0.0)
return std::numeric_limits<Scalar>::max()/2.0;
// this is a bit hacky because it assumes that a time discretization with only
// two time indices is used.
if (timeIdx == 0)
return this->lastRv_[globalDofIdx] + this->maxDRv_[pvtRegionIdx];
else
return this->lastRv_[globalDofIdx];
}
/*!
* \brief Return if the storage term of the first iteration is identical to the storage
* term for the solution of the previous time step.
*
* For quite technical reasons, the storage term cannot be recycled if either DRSDT
* or DRVDT are active in ebos. Nor if the porosity is changes between timesteps
* using a pore volume multiplier (i.e., poreVolumeMultiplier() != 1.0)
*/
bool recycleFirstIterationStorage() const
{
int episodeIdx = this->episodeIndex();
return !this->drsdtActive_(episodeIdx) &&
!this->drvdtActive_(episodeIdx) &&
this->rockCompPoroMultWc_.empty() &&
this->rockCompPoroMult_.empty();
}
/*!
* \copydoc FvBaseProblem::initial
*
* The reservoir problem uses a constant boundary condition for
* the whole domain.
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
values.setPvtRegionIndex(pvtRegionIndex(context, spaceIdx, timeIdx));
values.assignNaive(initialFluidStates_[globalDofIdx]);
if constexpr (enableSolvent)
values[Indices::solventSaturationIdx] = this->solventSaturation_[globalDofIdx];
if constexpr (enablePolymer)
values[Indices::polymerConcentrationIdx] = this->polymerConcentration_[globalDofIdx];
if constexpr (enablePolymerMolarWeight)
values[Indices::polymerMoleWeightIdx]= this->polymerMoleWeight_[globalDofIdx];
if constexpr (enableBrine) {
if (enableSaltPrecipitation && values.primaryVarsMeaningBrine() == PrimaryVariables::Sp) {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltSaturation();
}
else {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltConcentration();
}
}
if constexpr (enableMICP){
values[Indices::microbialConcentrationIdx]= this->microbialConcentration_[globalDofIdx];
values[Indices::oxygenConcentrationIdx]= this->oxygenConcentration_[globalDofIdx];
values[Indices::ureaConcentrationIdx]= this->ureaConcentration_[globalDofIdx];
values[Indices::calciteConcentrationIdx]= this->calciteConcentration_[globalDofIdx];
values[Indices::biofilmConcentrationIdx]= this->biofilmConcentration_[globalDofIdx];
}
values.checkDefined();
}
/*!
* \copydoc FvBaseProblem::initialSolutionApplied()
*/
void initialSolutionApplied()
{
// initialize the wells. Note that this needs to be done after initializing the
// intrinsic permeabilities and the after applying the initial solution because
// the well model uses these...
wellModel_.init();
// let the object for threshold pressures initialize itself. this is done only at
// this point, because determining the threshold pressures may require to access
// the initial solution.
thresholdPressures_.finishInit();
updateCompositionChangeLimits_();
if (enableAquifers_)
aquiferModel_.initialSolutionApplied();
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0 everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
source(rate, globalDofIdx, timeIdx);
}
void source(RateVector& rate,
unsigned globalDofIdx,
unsigned timeIdx) const
{
rate = 0.0;
wellModel_.computeTotalRatesForDof(rate, globalDofIdx);
// convert the source term from the total mass rate of the
// cell to the one per unit of volume as used by the model.
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
rate[eqIdx] /= this->model().dofTotalVolume(globalDofIdx);
Valgrind::CheckDefined(rate[eqIdx]);
assert(isfinite(rate[eqIdx]));
}
if (enableAquifers_)
aquiferModel_.addToSource(rate, globalDofIdx, timeIdx);
// if requested, compensate systematic mass loss for cells which were "well
// behaved" in the last time step
// Note that we don't allow for drift compensation if there are no active wells.
const bool compensateDrift = wellModel_.wellsActive();
if (enableDriftCompensation_ && compensateDrift) {
const auto& simulator = this->simulator();
const auto& model = this->model();
// we use a lower tolerance for the compensation too
// assure the added drift from the last step does not
// cause convergence issues on the current step
Scalar maxCompensation = model.newtonMethod().tolerance()/10;
Scalar poro = this->porosity(globalDofIdx, timeIdx);
Scalar dt = simulator.timeStepSize();
EqVector dofDriftRate = drift_[globalDofIdx];
dofDriftRate /= dt*model.dofTotalVolume(globalDofIdx);
// restrict drift compensation to the CNV tolerance
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
Scalar cnv = std::abs(dofDriftRate[eqIdx])*dt*model.eqWeight(globalDofIdx, eqIdx)/poro;
if (cnv > maxCompensation) {
dofDriftRate[eqIdx] *= maxCompensation/cnv;
}
}
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
rate[eqIdx] -= dofDriftRate[eqIdx];
}
}
/*!
* \brief Returns a reference to the ECL well manager used by the problem.
*
* This can be used for inspecting wells outside of the problem.
*/
const EclWellModel& wellModel() const
{ return wellModel_; }
EclWellModel& wellModel()
{ return wellModel_; }
const EclAquiferModel& aquiferModel() const
{ return aquiferModel_; }
EclAquiferModel& mutableAquiferModel()
{ return aquiferModel_; }
// temporary solution to facilitate output of initial state from flow
const InitialFluidState& initialFluidState(unsigned globalDofIdx) const
{ return initialFluidStates_[globalDofIdx]; }
const EclipseIO& eclIO() const
{ return eclWriter_->eclIO(); }
void setSubStepReport(const SimulatorReportSingle& report)
{ return eclWriter_->setSubStepReport(report); }
void setSimulationReport(const SimulatorReport& report)
{ return eclWriter_->setSimulationReport(report); }
bool nonTrivialBoundaryConditions() const
{ return nonTrivialBoundaryConditions_; }
/*!
* \brief Propose the size of the next time step to the simulator.
*
* This method is only called if the Newton solver does converge, the simulator
* automatically cuts the time step in half without consultating this method again.
*/
Scalar nextTimeStepSize() const
{
// allow external code to do the timestepping
if (this->nextTimeStepSize_ > 0.0)
return this->nextTimeStepSize_;
const auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
// for the initial episode, we use a fixed time step size
if (episodeIdx < 0)
return this->initialTimeStepSize_;
// ask the newton method for a suggestion. This suggestion will be based on how
// well the previous time step converged. After that, apply the runtime time
// stepping constraints.
const auto& newtonMethod = this->model().newtonMethod();
return limitNextTimeStepSize_(newtonMethod.suggestTimeStepSize(simulator.timeStepSize()));
}
/*!
* \brief Calculate the porosity multiplier due to water induced rock compaction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval rockCompPoroMultiplier(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
if (this->rockCompPoroMult_.empty() && this->rockCompPoroMultWc_.empty())
return 1.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty())
tableIdx = this->rockTableIdx_[elementIdx];
const auto& fs = intQuants.fluidState();
LhsEval effectiveOilPressure = decay<LhsEval>(fs.pressure(oilPhaseIdx));
if (!this->minOilPressure_.empty())
// The pore space change is irreversible
effectiveOilPressure =
min(decay<LhsEval>(fs.pressure(oilPhaseIdx)),
this->minOilPressure_[elementIdx]);
if (!this->overburdenPressure_.empty())
effectiveOilPressure -= this->overburdenPressure_[elementIdx];
if (!this->rockCompPoroMult_.empty()) {
return this->rockCompPoroMult_[tableIdx].eval(effectiveOilPressure, /*extrapolation=*/true);
}
// water compaction
assert(!this->rockCompPoroMultWc_.empty());
LhsEval SwMax = max(decay<LhsEval>(fs.saturation(waterPhaseIdx)), this->maxWaterSaturation_[elementIdx]);
LhsEval SwDeltaMax = SwMax - initialFluidStates_[elementIdx].saturation(waterPhaseIdx);
return this->rockCompPoroMultWc_[tableIdx].eval(effectiveOilPressure, SwDeltaMax, /*extrapolation=*/true);
}
/*!
* \brief Calculate the transmissibility multiplier due to water induced rock compaction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval rockCompTransMultiplier(const IntensiveQuantities& intQuants, unsigned elementIdx) const
{
if (this->rockCompTransMult_.empty() && this->rockCompTransMultWc_.empty())
return 1.0;
unsigned tableIdx = 0;
if (!this->rockTableIdx_.empty())
tableIdx = this->rockTableIdx_[elementIdx];
const auto& fs = intQuants.fluidState();
LhsEval effectiveOilPressure = decay<LhsEval>(fs.pressure(oilPhaseIdx));
if (!this->minOilPressure_.empty())
// The pore space change is irreversible
effectiveOilPressure =
min(decay<LhsEval>(fs.pressure(oilPhaseIdx)),
this->minOilPressure_[elementIdx]);
if (!this->overburdenPressure_.empty())
effectiveOilPressure -= this->overburdenPressure_[elementIdx];
if (!this->rockCompTransMult_.empty())
return this->rockCompTransMult_[tableIdx].eval(effectiveOilPressure, /*extrapolation=*/true);
// water compaction
assert(!this->rockCompTransMultWc_.empty());
LhsEval SwMax = max(decay<LhsEval>(fs.saturation(waterPhaseIdx)), this->maxWaterSaturation_[elementIdx]);
LhsEval SwDeltaMax = SwMax - initialFluidStates_[elementIdx].saturation(waterPhaseIdx);
return this->rockCompTransMultWc_[tableIdx].eval(effectiveOilPressure, SwDeltaMax, /*extrapolation=*/true);
}
std::pair<bool, RateVector> boundaryCondition(const unsigned int globalSpaceIdx, const int directionId)
{
if (!nonTrivialBoundaryConditions_) {
return { false, RateVector(0.0) };
}
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(directionId);
return { freebc_(dir)[globalSpaceIdx], massratebc_(dir)[globalSpaceIdx] };
}
private:
template<class UpdateFunc>
void updateProperty_(const std::string& failureMsg,
UpdateFunc func)
{
ElementContext elemCtx(this->simulator());
const auto& vanguard = this->simulator().vanguard();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(vanguard.gridView())) {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
unsigned compressedDofIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& iq = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
func(compressedDofIdx, iq);
}
OPM_END_PARALLEL_TRY_CATCH(failureMsg, vanguard.grid().comm());
}
// update the parameters needed for DRSDT and DRVDT
void updateCompositionChangeLimits_()
{
// update the "last Rs" values for all elements, including the ones in the ghost
// and overlap regions
int episodeIdx = this->episodeIndex();
std::array<bool,3> active{this->drsdtConvective_(episodeIdx),
this->drsdtActive_(episodeIdx),
this->drvdtActive_(episodeIdx)};
if (!active[0] && !active[1] && !active[2])
return;
this->updateProperty_("EclProblem::updateCompositionChangeLimits_()) failed:",
[this,episodeIdx,active](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
auto& simulator = this->simulator();
auto& vanguard = simulator.vanguard();
if (active[0]) {
// This implements the convective DRSDT as described in
// Sandve et al. "Convective dissolution in field scale CO2 storage simulations using the OPM Flow simulator"
// Submitted to TCCS 11, 2021
const Scalar g = this->gravity_[dim - 1];
const DimMatrix& perm = intrinsicPermeability(compressedDofIdx);
const Scalar permz = perm[dim - 1][dim - 1]; // The Z permeability
const Scalar distZ = vanguard.cellThickness(compressedDofIdx);
const auto& fs = iq.fluidState();
const Scalar t = getValue(fs.temperature(FluidSystem::oilPhaseIdx));
const Scalar p = getValue(fs.pressure(FluidSystem::oilPhaseIdx));
const Scalar so = getValue(fs.saturation(FluidSystem::oilPhaseIdx));
const Scalar rssat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(),t,p);
const Scalar saturatedInvB = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(),t,p);
const Scalar rsZero = 0.0;
const Scalar pureDensity = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(),t,p,rsZero) * FluidSystem::oilPvt().oilReferenceDensity(fs.pvtRegionIndex());
const Scalar saturatedDensity = saturatedInvB * (FluidSystem::oilPvt().oilReferenceDensity(fs.pvtRegionIndex()) + rssat * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, fs.pvtRegionIndex()));
const Scalar deltaDensity = saturatedDensity - pureDensity;
const Scalar rs = getValue(fs.Rs());
const Scalar visc = FluidSystem::oilPvt().viscosity(fs.pvtRegionIndex(),t,p,rs);
const Scalar poro = getValue(iq.porosity());
// Note that for so = 0 this gives no limits (inf) for the dissolution rate
// Also we restrict the effect of convective mixing to positive density differences
// i.e. we only allow for fingers moving downward
this->convectiveDrs_[compressedDofIdx] = permz * rssat * max(0.0, deltaDensity) * g / ( so * visc * distZ * poro);
}
if (active[1]) {
const auto& fs = iq.fluidState();
using FluidState = typename std::decay<decltype(fs)>::type;
int pvtRegionIdx = this->pvtRegionIndex(compressedDofIdx);
const auto& oilVaporizationControl = vanguard.schedule()[episodeIdx].oilvap();
if (oilVaporizationControl.getOption(pvtRegionIdx) || fs.saturation(gasPhaseIdx) > freeGasMinSaturation_)
this->lastRs_[compressedDofIdx] =
BlackOil::template getRs_<FluidSystem,
FluidState,
Scalar>(fs, iq.pvtRegionIndex());
else
this->lastRs_[compressedDofIdx] = std::numeric_limits<Scalar>::infinity();
}
if (active[2]) {
const auto& fs = iq.fluidState();
using FluidState = typename std::decay<decltype(fs)>::type;
this->lastRv_[compressedDofIdx] =
BlackOil::template getRv_<FluidSystem,
FluidState,
Scalar>(fs, iq.pvtRegionIndex());
}
});
}
bool updateMaxOilSaturation_()
{
int episodeIdx = this->episodeIndex();
// we use VAPPARS
if (this->vapparsActive(episodeIdx)) {
this->updateProperty_("EclProblem::updateMaxOilSaturation_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const auto& fs = iq.fluidState();
const Scalar So = decay<Scalar>(fs.saturation(oilPhaseIdx));
auto& mos = this->maxOilSaturation_;
mos[compressedDofIdx] = std::max(mos[compressedDofIdx], So);
});
return true;
}
return false;
}
bool updateMaxWaterSaturation_()
{
// water compaction is activated in ROCKCOMP
if (this->maxWaterSaturation_.empty())
return false;
this->maxWaterSaturation_[/*timeIdx=*/1] = this->maxWaterSaturation_[/*timeIdx=*/0];
this->updateProperty_("EclProblem::updateMaxWaterSaturation_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const auto& fs = iq.fluidState();
const Scalar Sw = decay<Scalar>(fs.saturation(waterPhaseIdx));
auto& mow = this->maxWaterSaturation_;
mow[compressedDofIdx] = std::max(mow[compressedDofIdx], Sw);
});
return true;
}
bool updateMinPressure_()
{
// IRREVERS option is used in ROCKCOMP
if (this->minOilPressure_.empty())
return false;
this->updateProperty_("EclProblem::updateMinPressure_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const auto& fs = iq.fluidState();
const Scalar mo = getValue(fs.pressure(oilPhaseIdx));
auto& mos = this->minOilPressure_;
mos[compressedDofIdx] = std::min(mos[compressedDofIdx], mo);
});
return true;
}
void readMaterialParameters_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
// the PVT and saturation region numbers
this->updatePvtnum_();
this->updateSatnum_();
// the MISC region numbers (solvent model)
this->updateMiscnum_();
// the PLMIX region numbers (polymer model)
this->updatePlmixnum_();
// directional relative permeabilities
this->updateKrnum_();
////////////////////////////////
// porosity
updateReferencePorosity_();
this->referencePorosity_[1] = this->referencePorosity_[0];
////////////////////////////////
////////////////////////////////
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
materialLawManager_ = std::make_shared<EclMaterialLawManager>();
materialLawManager_->initFromState(eclState);
materialLawManager_->initParamsForElements(eclState, this->model().numGridDof());
////////////////////////////////
}
void readThermalParameters_()
{
if constexpr (enableEnergy)
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
// fluid-matrix interactions (saturation functions; relperm/capillary pressure)
thermalLawManager_ = std::make_shared<EclThermalLawManager>();
thermalLawManager_->initParamsForElements(eclState, this->model().numGridDof());
}
}
void updateReferencePorosity_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
size_t numDof = this->model().numGridDof();
this->referencePorosity_[/*timeIdx=*/0].resize(numDof);
const auto& fp = eclState.fieldProps();
const std::vector<double> porvData = fp.porv(false);
const std::vector<int> actnumData = fp.actnum();
for (size_t dofIdx = 0; dofIdx < numDof; ++ dofIdx) {
Scalar poreVolume = porvData[dofIdx];
// we define the porosity as the accumulated pore volume divided by the
// geometric volume of the element. Note that -- in pathetic cases -- it can
// be larger than 1.0!
Scalar dofVolume = simulator.model().dofTotalVolume(dofIdx);
assert(dofVolume > 0.0);
this->referencePorosity_[/*timeIdx=*/0][dofIdx] = poreVolume/dofVolume;
}
}
void readInitialCondition_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
if (eclState.getInitConfig().hasEquil())
readEquilInitialCondition_();
else
readExplicitInitialCondition_();
if constexpr (enableSolvent || enablePolymer || enablePolymerMolarWeight || enableMICP)
this->readBlackoilExtentionsInitialConditions_(this->model().numGridDof(),
enableSolvent,
enablePolymer,
enablePolymerMolarWeight,
enableMICP);
//initialize min/max values
size_t numElems = this->model().numGridDof();
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
const auto& fs = initialFluidStates_[elemIdx];
if (!this->maxWaterSaturation_.empty())
this->maxWaterSaturation_[elemIdx] = std::max(this->maxWaterSaturation_[elemIdx], fs.saturation(waterPhaseIdx));
if (!this->maxOilSaturation_.empty())
this->maxOilSaturation_[elemIdx] = std::max(this->maxOilSaturation_[elemIdx], fs.saturation(oilPhaseIdx));
if (!this->minOilPressure_.empty())
this->minOilPressure_[elemIdx] = std::min(this->minOilPressure_[elemIdx], fs.pressure(oilPhaseIdx));
}
}
void readEquilInitialCondition_()
{
const auto& simulator = this->simulator();
// initial condition corresponds to hydrostatic conditions.
using EquilInitializer = EclEquilInitializer<TypeTag>;
EquilInitializer equilInitializer(simulator, *materialLawManager_);
size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.assign(equilInitializer.initialFluidState(elemIdx));
}
}
void readEclRestartSolution_()
{
// Set the start time of the simulation
auto& simulator = this->simulator();
const auto& schedule = simulator.vanguard().schedule();
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
{
int restart_step = initconfig.getRestartStep();
simulator.setTime(schedule.seconds(restart_step));
simulator.startNextEpisode(simulator.startTime() + simulator.time(),
schedule.stepLength(restart_step));
simulator.setEpisodeIndex(restart_step);
}
eclWriter_->beginRestart();
Scalar dt = std::min(eclWriter_->restartTimeStepSize(), simulator.episodeLength());
simulator.setTimeStepSize(dt);
size_t numElems = this->model().numGridDof();
initialFluidStates_.resize(numElems);
if constexpr (enableSolvent)
this->solventSaturation_.resize(numElems, 0.0);
if constexpr (enablePolymer)
this->polymerConcentration_.resize(numElems, 0.0);
if constexpr (enablePolymerMolarWeight) {
const std::string msg {"Support of the RESTART for polymer molecular weight "
"is not implemented yet. The polymer weight value will be "
"zero when RESTART begins"};
OpmLog::warning("NO_POLYMW_RESTART", msg);
this->polymerMoleWeight_.resize(numElems, 0.0);
}
if constexpr (enableMICP){
this->microbialConcentration_.resize(numElems, 0.0);
this->oxygenConcentration_.resize(numElems, 0.0);
this->ureaConcentration_.resize(numElems, 0.0);
this->biofilmConcentration_.resize(numElems, 0.0);
this->calciteConcentration_.resize(numElems, 0.0);
}
for (size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = initialFluidStates_[elemIdx];
elemFluidState.setPvtRegionIndex(pvtRegionIndex(elemIdx));
eclWriter_->eclOutputModule().initHysteresisParams(simulator, elemIdx);
eclWriter_->eclOutputModule().assignToFluidState(elemFluidState, elemIdx);
// Note: Function processRestartSaturations_() mutates the
// 'ssol' argument--the value from the restart file--if solvent
// is enabled. Then, store the updated solvent saturation into
// 'solventSaturation_'. Otherwise, just pass a dummy value to
// the function and discard the unchanged result. Do not index
// into 'solventSaturation_' unless solvent is enabled.
{
auto ssol = enableSolvent
? eclWriter_->eclOutputModule().getSolventSaturation(elemIdx)
: Scalar(0);
processRestartSaturations_(elemFluidState, ssol);
if constexpr (enableSolvent)
this->solventSaturation_[elemIdx] = ssol;
}
if (! this->lastRs_.empty()) {
this->lastRs_[elemIdx] = elemFluidState.Rs();
}
if (! this->lastRv_.empty()) {
this->lastRv_[elemIdx] = elemFluidState.Rv();
}
if constexpr (enablePolymer)
this->polymerConcentration_[elemIdx] = eclWriter_->eclOutputModule().getPolymerConcentration(elemIdx);
if constexpr (enableMICP){
this->microbialConcentration_[elemIdx] = eclWriter_->eclOutputModule().getMicrobialConcentration(elemIdx);
this->oxygenConcentration_[elemIdx] = eclWriter_->eclOutputModule().getOxygenConcentration(elemIdx);
this->ureaConcentration_[elemIdx] = eclWriter_->eclOutputModule().getUreaConcentration(elemIdx);
this->biofilmConcentration_[elemIdx] = eclWriter_->eclOutputModule().getBiofilmConcentration(elemIdx);
this->calciteConcentration_[elemIdx] = eclWriter_->eclOutputModule().getCalciteConcentration(elemIdx);
}
// if we need to restart for polymer molecular weight simulation, we need to add related here
}
const int episodeIdx = this->episodeIndex();
const auto& oilVaporizationControl = simulator.vanguard().schedule()[episodeIdx].oilvap();
if (this->drsdtActive_(episodeIdx))
// DRSDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < this->maxDRs_.size(); ++pvtRegionIdx)
this->maxDRs_[pvtRegionIdx] = oilVaporizationControl.getMaxDRSDT(pvtRegionIdx)*simulator.timeStepSize();
if (this->drvdtActive_(episodeIdx))
// DRVDT is enabled
for (size_t pvtRegionIdx = 0; pvtRegionIdx < this->maxDRv_.size(); ++pvtRegionIdx)
this->maxDRv_[pvtRegionIdx] = oilVaporizationControl.getMaxDRVDT(pvtRegionIdx)*simulator.timeStepSize();
// assign the restart solution to the current solution. note that we still need
// to compute real initial solution after this because the initial fluid states
// need to be correct for stuff like boundary conditions.
auto& sol = this->model().solution(/*timeIdx=*/0);
const auto& gridView = this->gridView();
ElementContext elemCtx(simulator);
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
initial(sol[elemIdx], elemCtx, /*spaceIdx=*/0, /*timeIdx=*/0);
}
// make sure that the ghost and overlap entities exhibit the correct
// solution. alternatively, this could be done in the loop above by also
// considering non-interior elements. Since the initial() method might not work
// 100% correctly for such elements, let's play safe and explicitly synchronize
// using message passing.
this->model().syncOverlap();
eclWriter_->endRestart();
}
void processRestartSaturations_(InitialFluidState& elemFluidState, Scalar& solventSaturation)
{
// each phase needs to be above certain value to be claimed to be existing
// this is used to recover some RESTART running with the defaulted single-precision format
const Scalar smallSaturationTolerance = 1.e-6;
Scalar sumSaturation = 0.0;
for (size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
if (elemFluidState.saturation(phaseIdx) < smallSaturationTolerance)
elemFluidState.setSaturation(phaseIdx, 0.0);
sumSaturation += elemFluidState.saturation(phaseIdx);
}
}
if constexpr (enableSolvent) {
if (solventSaturation < smallSaturationTolerance)
solventSaturation = 0.0;
sumSaturation += solventSaturation;
}
assert(sumSaturation > 0.0);
for (size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
const Scalar saturation = elemFluidState.saturation(phaseIdx) / sumSaturation;
elemFluidState.setSaturation(phaseIdx, saturation);
}
}
if constexpr (enableSolvent) {
solventSaturation = solventSaturation / sumSaturation;
}
}
void readExplicitInitialCondition_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
const auto& fp = eclState.fieldProps();
bool has_swat = fp.has_double("SWAT");
bool has_sgas = fp.has_double("SGAS");
bool has_rs = fp.has_double("RS");
bool has_rv = fp.has_double("RV");
bool has_rvw = fp.has_double("RVW");
bool has_pressure = fp.has_double("PRESSURE");
bool has_salt = fp.has_double("SALT");
bool has_saltp = fp.has_double("SALTP");
// make sure all required quantities are enables
if (Indices::numPhases > 1) {
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !has_swat)
throw std::runtime_error("The ECL input file requires the presence of the SWAT keyword if "
"the water phase is active");
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !has_sgas && FluidSystem::phaseIsActive(oilPhaseIdx))
throw std::runtime_error("The ECL input file requires the presence of the SGAS keyword if "
"the gas phase is active");
}
if (!has_pressure)
throw std::runtime_error("The ECL input file requires the presence of the PRESSURE "
"keyword if the model is initialized explicitly");
if (FluidSystem::enableDissolvedGas() && !has_rs)
throw std::runtime_error("The ECL input file requires the RS keyword to be present if"
" dissolved gas is enabled");
if (FluidSystem::enableVaporizedOil() && !has_rv)
throw std::runtime_error("The ECL input file requires the RV keyword to be present if"
" vaporized oil is enabled");
if (FluidSystem::enableVaporizedWater() && !has_rvw)
throw std::runtime_error("The ECL input file requires the RVW keyword to be present if"
" vaporized water is enabled");
if (enableBrine && !has_salt)
throw std::runtime_error("The ECL input file requires the SALT keyword to be present if"
" brine is enabled and the model is initialized explicitly");
if (enableSaltPrecipitation && !has_saltp)
throw std::runtime_error("The ECL input file requires the SALTP keyword to be present if"
" salt precipitation is enabled and the model is initialized explicitly");
size_t numDof = this->model().numGridDof();
initialFluidStates_.resize(numDof);
std::vector<double> waterSaturationData;
std::vector<double> gasSaturationData;
std::vector<double> pressureData;
std::vector<double> rsData;
std::vector<double> rvData;
std::vector<double> rvwData;
std::vector<double> tempiData;
std::vector<double> saltData;
std::vector<double> saltpData;
if (FluidSystem::phaseIsActive(waterPhaseIdx) && Indices::numPhases > 1)
waterSaturationData = fp.get_double("SWAT");
else
waterSaturationData.resize(numDof);
if (FluidSystem::phaseIsActive(gasPhaseIdx) && FluidSystem::phaseIsActive(oilPhaseIdx))
gasSaturationData = fp.get_double("SGAS");
else
gasSaturationData.resize(numDof);
pressureData = fp.get_double("PRESSURE");
if (FluidSystem::enableDissolvedGas())
rsData = fp.get_double("RS");
if (FluidSystem::enableVaporizedOil())
rvData = fp.get_double("RV");
if (FluidSystem::enableVaporizedWater())
rvwData = fp.get_double("RVW");
// initial reservoir temperature
tempiData = fp.get_double("TEMPI");
// initial salt concentration data
if constexpr (enableBrine)
saltData = fp.get_double("SALT");
// initial precipitated salt saturation data
if constexpr (enableSaltPrecipitation)
saltpData = fp.get_double("SALTP");
// calculate the initial fluid states
for (size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
auto& dofFluidState = initialFluidStates_[dofIdx];
dofFluidState.setPvtRegionIndex(pvtRegionIndex(dofIdx));
//////
// set temperature
//////
Scalar temperatureLoc = tempiData[dofIdx];
if (!std::isfinite(temperatureLoc) || temperatureLoc <= 0)
temperatureLoc = FluidSystem::surfaceTemperature;
dofFluidState.setTemperature(temperatureLoc);
//////
// set salt concentration
//////
if constexpr (enableBrine)
dofFluidState.setSaltConcentration(saltData[dofIdx]);
//////
// set precipitated salt saturation
//////
if constexpr (enableSaltPrecipitation)
dofFluidState.setSaltSaturation(saltpData[dofIdx]);
//////
// set saturations
//////
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
waterSaturationData[dofIdx]);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)){
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
1.0
- waterSaturationData[dofIdx]);
}
else
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
gasSaturationData[dofIdx]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx))
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
1.0
- waterSaturationData[dofIdx]
- gasSaturationData[dofIdx]);
//////
// set phase pressures
//////
Scalar pressure = pressureData[dofIdx]; // oil pressure (or gas pressure for water-gas system or water pressure for single phase)
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
std::array<Scalar, numPhases> pc = {0};
const auto& matParams = materialLawParams(dofIdx);
MaterialLaw::capillaryPressures(pc, matParams, dofFluidState);
Valgrind::CheckDefined(pressure);
Valgrind::CheckDefined(pc);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
if (Indices::oilEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
else if (Indices::gasEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
else if (Indices::waterEnabled)
//single (water) phase
dofFluidState.setPressure(phaseIdx, pressure);
}
if (FluidSystem::enableDissolvedGas())
dofFluidState.setRs(rsData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
dofFluidState.setRs(0.0);
if (FluidSystem::enableVaporizedOil())
dofFluidState.setRv(rvData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
dofFluidState.setRv(0.0);
if (FluidSystem::enableVaporizedWater())
dofFluidState.setRvw(rvwData[dofIdx]);
//////
// set invB_
//////
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setInvB(phaseIdx, b);
const auto& rho = FluidSystem::density(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setDensity(phaseIdx, rho);
}
}
}
// update the hysteresis parameters of the material laws for the whole grid
bool updateHysteresis_()
{
if (!materialLawManager_->enableHysteresis())
return false;
// we need to update the hysteresis data for _all_ elements (i.e., not just the
// interior ones) to avoid desynchronization of the processes in the parallel case!
this->updateProperty_("EclProblem::updateHysteresis_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
materialLawManager_->updateHysteresis(iq.fluidState(), compressedDofIdx);
});
return true;
}
void updateMaxPolymerAdsorption_()
{
// we need to update the max polymer adsoption data for all elements
this->updateProperty_("EclProblem::updateMaxPolymerAdsorption_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const Scalar pa = scalarValue(iq.polymerAdsorption());
auto& mpa = this->maxPolymerAdsorption_;
mpa[compressedDofIdx] = std::max(mpa[compressedDofIdx], pa);
});
}
struct PffDofData_
{
ConditionalStorage<enableEnergy, Scalar> thermalHalfTransIn;
ConditionalStorage<enableEnergy, Scalar> thermalHalfTransOut;
ConditionalStorage<enableDiffusion, Scalar> diffusivity;
Scalar transmissibility;
};
// update the prefetch friendly data object
void updatePffDofData_()
{
const auto& distFn =
[this](PffDofData_& dofData,
const Stencil& stencil,
unsigned localDofIdx)
-> void
{
const auto& elementMapper = this->model().elementMapper();
unsigned globalElemIdx = elementMapper.index(stencil.entity(localDofIdx));
if (localDofIdx != 0) {
unsigned globalCenterElemIdx = elementMapper.index(stencil.entity(/*dofIdx=*/0));
dofData.transmissibility = transmissibilities_.transmissibility(globalCenterElemIdx, globalElemIdx);
if constexpr (enableEnergy) {
*dofData.thermalHalfTransIn = transmissibilities_.thermalHalfTrans(globalCenterElemIdx, globalElemIdx);
*dofData.thermalHalfTransOut = transmissibilities_.thermalHalfTrans(globalElemIdx, globalCenterElemIdx);
}
if constexpr (enableDiffusion)
*dofData.diffusivity = transmissibilities_.diffusivity(globalCenterElemIdx, globalElemIdx);
}
};
pffDofData_.update(distFn);
}
void readBoundaryConditions_()
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& bcconfig = vanguard.eclState().getSimulationConfig().bcconfig();
if (bcconfig.size() > 0) {
nonTrivialBoundaryConditions_ = true;
size_t numCartDof = vanguard.cartesianSize();
unsigned numElems = vanguard.gridView().size(/*codim=*/0);
std::vector<int> cartesianToCompressedElemIdx(numCartDof, -1);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx)
cartesianToCompressedElemIdx[vanguard.cartesianIndex(elemIdx)] = elemIdx;
massratebc_.resize(numElems, 0.0);
freebc_.resize(numElems, false);
auto loopAndApply = [&cartesianToCompressedElemIdx,
&vanguard](const auto& bcface,
auto apply)
{
for (int i = bcface.i1; i <= bcface.i2; ++i) {
for (int j = bcface.j1; j <= bcface.j2; ++j) {
for (int k = bcface.k1; k <= bcface.k2; ++k) {
std::array<int, 3> tmp = {i,j,k};
auto elemIdx = cartesianToCompressedElemIdx[vanguard.cartesianIndex(tmp)];
if (elemIdx >= 0)
apply(elemIdx);
}
}
}
};
for (const auto& bcface : bcconfig) {
const auto& type = bcface.bctype;
if (type == BCType::RATE) {
int compIdx = 0; // default initialize to avoid -Wmaybe-uninitialized warning
switch (bcface.component) {
case BCComponent::OIL:
compIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
break;
case BCComponent::GAS:
compIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
break;
case BCComponent::WATER:
compIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
break;
case BCComponent::SOLVENT:
if constexpr (!enableSolvent)
throw std::logic_error("solvent is disabled and you're trying to add solvent to BC");
compIdx = Indices::solventSaturationIdx;
break;
case BCComponent::POLYMER:
if constexpr (!enablePolymer)
throw std::logic_error("polymer is disabled and you're trying to add polymer to BC");
compIdx = Indices::polymerConcentrationIdx;
break;
case BCComponent::NONE:
throw std::logic_error("you need to specify the component when RATE type is set in BC");
break;
}
std::vector<RateVector>& data = massratebc_(bcface.dir);
const Evaluation rate = bcface.rate;
loopAndApply(bcface,
[&data,compIdx,rate](int elemIdx)
{ data[elemIdx][compIdx] = rate; });
} else if (type == BCType::FREE) {
std::vector<bool>& data = freebc_(bcface.dir);
loopAndApply(bcface,
[&data](int elemIdx) { data[elemIdx] = true; });
// TODO: either the real initial solution needs to be computed or read from the restart file
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
if (initconfig.restartRequested()) {
throw std::logic_error("restart is not compatible with using free boundary conditions");
}
} else {
throw std::logic_error("invalid type for BC. Use FREE or RATE");
}
}
}
}
// this method applies the runtime constraints specified via the deck and/or command
// line parameters for the size of the next time step.
Scalar limitNextTimeStepSize_(Scalar dtNext) const
{
if constexpr (enableExperiments) {
const auto& simulator = this->simulator();
int episodeIdx = simulator.episodeIndex();
// first thing in the morning, limit the time step size to the maximum size
dtNext = std::min(dtNext, this->maxTimeStepSize_);
Scalar remainingEpisodeTime =
simulator.episodeStartTime() + simulator.episodeLength()
- (simulator.startTime() + simulator.time());
assert(remainingEpisodeTime >= 0.0);
// if we would have a small amount of time left over in the current episode, make
// two equal time steps instead of a big and a small one
if (remainingEpisodeTime/2.0 < dtNext && dtNext < remainingEpisodeTime*(1.0 - 1e-5))
// note: limiting to the maximum time step size here is probably not strictly
// necessary, but it should not hurt and is more fool-proof
dtNext = std::min(this->maxTimeStepSize_, remainingEpisodeTime/2.0);
if (simulator.episodeStarts()) {
// if a well event occurred, respect the limit for the maximum time step after
// that, too
int reportStepIdx = std::max(episodeIdx, 0);
const auto& events = simulator.vanguard().schedule()[reportStepIdx].events();
bool wellEventOccured =
events.hasEvent(ScheduleEvents::NEW_WELL)
|| events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE)
|| events.hasEvent(ScheduleEvents::INJECTION_UPDATE)
|| events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE);
if (episodeIdx >= 0 && wellEventOccured && this->maxTimeStepAfterWellEvent_ > 0)
dtNext = std::min(dtNext, this->maxTimeStepAfterWellEvent_);
}
}
return dtNext;
}
void computeAndSetEqWeights_()
{
std::vector<Scalar> sumInvB(numPhases, 0.0);
const auto& gridView = this->gridView();
ElementContext elemCtx(this->simulator());
for(const auto& elem: elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& dofFluidState = initialFluidStates_[elemIdx];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
sumInvB[phaseIdx] += dofFluidState.invB(phaseIdx);
}
}
size_t numDof = this->model().numGridDof();
const auto& comm = this->simulator().vanguard().grid().comm();
comm.sum(sumInvB.data(),sumInvB.size());
Scalar numTotalDof = comm.sum(numDof);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
Scalar avgB = numTotalDof / sumInvB[phaseIdx];
unsigned solventCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
unsigned activeSolventCompIdx = Indices::canonicalToActiveComponentIndex(solventCompIdx);
this->model().setEqWeight(activeSolventCompIdx, avgB);
}
}
typename Vanguard::TransmissibilityType transmissibilities_;
std::shared_ptr<EclMaterialLawManager> materialLawManager_;
std::shared_ptr<EclThermalLawManager> thermalLawManager_;
EclThresholdPressure<TypeTag> thresholdPressures_;
std::vector<InitialFluidState> initialFluidStates_;
constexpr static Scalar freeGasMinSaturation_ = 1e-7;
bool enableDriftCompensation_;
GlobalEqVector drift_;
EclWellModel wellModel_;
bool enableAquifers_;
EclAquiferModel aquiferModel_;
bool enableEclOutput_;
std::unique_ptr<EclWriterType> eclWriter_;
PffGridVector<GridView, Stencil, PffDofData_, DofMapper> pffDofData_;
TracerModel tracerModel_;
EclActionHandler actionHandler_;
template<class T>
struct BCData
{
std::array<std::vector<T>,6> data;
void resize(size_t size, T defVal)
{
for (auto& d : data)
d.resize(size, defVal);
}
const std::vector<T>& operator()(FaceDir::DirEnum dir) const
{
if (dir == FaceDir::DirEnum::Unknown)
throw std::runtime_error("Tried to access BC data for the 'Unknown' direction");
int idx = 0;
int div = static_cast<int>(dir);
while ((div /= 2) >= 1)
++idx;
assert(idx >= 0 && idx <= 5);
return data[idx];
}
std::vector<T>& operator()(FaceDir::DirEnum dir)
{
return const_cast<std::vector<T>&>(std::as_const(*this)(dir));
}
};
BCData<bool> freebc_;
BCData<RateVector> massratebc_;
bool nonTrivialBoundaryConditions_ = false;
};
} // namespace Opm
#endif
|