File: printvfp.cpp

package info (click to toggle)
opm-simulators 2022.10%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 9,352 kB
  • sloc: cpp: 76,729; lisp: 1,173; sh: 886; python: 158; makefile: 19
file content (137 lines) | stat: -rw-r--r-- 4,710 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*
  Copyright 2020 Equinor.

  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <config.h>

#include <opm/input/eclipse/Parser/Parser.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Deck/Deck.hpp>
#include <opm/input/eclipse/Python/Python.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/VFPInjProperties.hpp>
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/common/utility/TimeService.hpp>

#include <opm/simulators/wells/VFPHelpers.hpp>
#include <opm/core/props/phaseUsageFromDeck.hpp>

#include <iostream>
#include <iomanip>

using namespace Opm;

struct Setup
{
    std::unique_ptr<const EclipseState> ecl_state;
    std::shared_ptr<Python> python;
    std::unique_ptr<const Schedule> schedule;
    std::unique_ptr<SummaryState> summary_state;
    std::unique_ptr<VFPProperties> vfp_properties;

    Setup(const std::string& file)
    {
        Parser parser;
        auto deck = parser.parseFile(file);
        ecl_state.reset(new EclipseState(deck) );

        const TableManager table( deck );
        const Runspec runspec(deck);
        python = std::make_shared<Python>();
        schedule.reset( new Schedule(deck, *ecl_state, python));
        summary_state.reset( new SummaryState(TimeService::from_time_t(schedule->getStartTime())));

        const int step = 0;
        const auto& sched_state = schedule->operator[](step);
        WellState well_state(phaseUsage(runspec.phases()));
        vfp_properties = std::make_unique<VFPProperties>(sched_state.vfpinj(), sched_state.vfpprod(), well_state);
    };
};




double computeBhp(const VFPProdTable& table,
                  const double flo,
                  const double thp,
                  const double wfr,
                  const double gfr,
                  const double alq)
{

    // First, find the values to interpolate between.
    // Assuming positive flo here!
    assert(flo > 0.0);
    auto flo_i = detail::findInterpData(flo, table.getFloAxis());
    auto thp_i = detail::findInterpData(thp, table.getTHPAxis()); // assume constant
    auto wfr_i = detail::findInterpData(wfr, table.getWFRAxis());
    auto gfr_i = detail::findInterpData(gfr, table.getGFRAxis());
    auto alq_i = detail::findInterpData(alq, table.getALQAxis()); //assume constant

    return detail::interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i).value;
}




int main(int argc, char** argv)
{
    if (argc < 2) {
        return EXIT_FAILURE;
    }
    Setup setup(argv[1]);

//     const int table_id = 1;
    const int table_id = 4;
    const double wct = 0.0;
//    const double gor = 35.2743;
    const double gor = 0.0;
    const double alq = 0.0;
    const int n = 51;
    const double m3pd = unit::cubic(unit::meter)/unit::day;
    const double rate_min = 20.0 * m3pd;
    const double rate_max = 2000.0 * m3pd;
    // const double thp = 32.1744 * unit::barsa;
    // const double thp = 10.0 * unit::barsa;
    const double thp_min = 10.0 * unit::barsa;
    const double thp_max = 35.0 * unit::barsa;
    std::vector<double> rates(n);
    std::vector<double> thps(n);
    for (int ii = 0; ii < n; ++ii) {
        const double q = double(ii) / double(n-1);
        rates[ii] = (1.0 - q) * rate_min + q * rate_max;
        thps[ii] = (1.0 - q) * thp_min + q * thp_max;
    }

    const VFPProdTable& table = setup.vfp_properties->getProd()->getTable(table_id);
    std::cout.precision(12);
    for (double rate : rates) {
        for (double thp : thps) {
            const double bhp = computeBhp(table, rate, thp, wct, gor, alq);
            std::cout //<< std::setw(18) << unit::convert::to(rate, m3pd)
                      //<< std::setw(18) << unit::convert::to(thp, unit::barsa)
                      << std::setw(18) << unit::convert::to(bhp, unit::barsa) << '\n';
        }
    }

    return EXIT_SUCCESS;
}