File: darcyfluxmodule.hh

package info (click to toggle)
opm-simulators 2024.10%2Bds-6
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 19,416 kB
  • sloc: cpp: 165,337; sh: 1,285; lisp: 1,108; python: 355; makefile: 24; awk: 10
file content (560 lines) | stat: -rw-r--r-- 21,845 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/
/*!
 * \file
 *
 * \brief This file contains the necessary classes to calculate the
 *        volumetric fluxes out of a pressure potential gradient using the
 *        Darcy relation.
 */
#ifndef EWOMS_DARCY_FLUX_MODULE_HH
#define EWOMS_DARCY_FLUX_MODULE_HH

#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>

#include <opm/common/Exceptions.hpp>

#include <opm/material/common/Valgrind.hpp>

#include <opm/models/common/multiphasebaseparameters.hh>
#include <opm/models/common/multiphasebaseproperties.hh>
#include <opm/models/common/quantitycallbacks.hh>

namespace Opm {

template <class TypeTag>
class DarcyIntensiveQuantities;

template <class TypeTag>
class DarcyExtensiveQuantities;

template <class TypeTag>
class DarcyBaseProblem;

/*!
 * \ingroup FluxModules
 * \brief Specifies a flux module which uses the Darcy relation.
 */
template <class TypeTag>
struct DarcyFluxModule
{
    using FluxIntensiveQuantities = DarcyIntensiveQuantities<TypeTag>;
    using FluxExtensiveQuantities = DarcyExtensiveQuantities<TypeTag>;
    using FluxBaseProblem = DarcyBaseProblem<TypeTag>;

    /*!
     * \brief Register all run-time parameters for the flux module.
     */
    static void registerParameters()
    { }
};

/*!
 * \ingroup FluxModules
 * \brief Provides the defaults for the parameters required by the
 *        Darcy velocity approach.
 */
template <class TypeTag>
class DarcyBaseProblem
{ };

/*!
 * \ingroup FluxModules
 * \brief Provides the intensive quantities for the Darcy flux module
 */
template <class TypeTag>
class DarcyIntensiveQuantities
{
    using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
protected:
    void update_(const ElementContext&,
                 unsigned,
                 unsigned)
    { }
};

/*!
 * \ingroup FluxModules
 * \brief Provides the Darcy flux module
 *
 * The commonly used Darcy relation looses its validity for Reynolds numbers \f$ Re <
 * 1\f$.  If one encounters flow velocities in porous media above this threshold, the
 * Forchheimer approach can be used.
 *
 * The Darcy equation is given by the following relation:
 *
 * \f[
  \vec{v}_\alpha =
  \left( \nabla p_\alpha - \rho_\alpha \vec{g}\right)
  \frac{\mu_\alpha}{k_{r,\alpha} K}
 \f]
 */
template <class TypeTag>
class DarcyExtensiveQuantities
{
    using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Implementation = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;

    enum { dimWorld = GridView::dimensionworld };
    enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };

    using Toolbox = MathToolbox<Evaluation>;
    using ParameterCache = typename FluidSystem::template ParameterCache<Evaluation>;
    using EvalDimVector = Dune::FieldVector<Evaluation, dimWorld>;
    using DimVector = Dune::FieldVector<Scalar, dimWorld>;
    using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;

public:
    /*!
     * \brief Returns the intrinsic permeability tensor for a given
     *        sub-control volume face.
     */
    const DimMatrix& intrinsicPermability() const
    { return K_; }

    /*!
     * \brief Return the pressure potential gradient of a fluid phase
     *        at the face's integration point [Pa/m]
     *
     * \param phaseIdx The index of the fluid phase
     */
    const EvalDimVector& potentialGrad(unsigned phaseIdx) const
    { return potentialGrad_[phaseIdx]; }

    /*!
     * \brief Return the filter velocity of a fluid phase at the
     *        face's integration point [m/s]
     *
     * \param phaseIdx The index of the fluid phase
     */
    const EvalDimVector& filterVelocity(unsigned phaseIdx) const
    { return filterVelocity_[phaseIdx]; }

    /*!
     * \brief Return the volume flux of a fluid phase at the face's integration point
     *        \f$[m^3/s / m^2]\f$
     *
     * This is the fluid volume of a phase per second and per square meter of face
     * area.
     *
     * \param phaseIdx The index of the fluid phase
     */
    const Evaluation& volumeFlux(unsigned phaseIdx) const
    { return volumeFlux_[phaseIdx]; }

protected:
    short upstreamIndex_(unsigned phaseIdx) const
    { return upstreamDofIdx_[phaseIdx]; }

    short downstreamIndex_(unsigned phaseIdx) const
    { return downstreamDofIdx_[phaseIdx]; }

    /*!
     * \brief Calculate the gradients which are required to determine the volumetric fluxes
     *
     * The the upwind directions is also determined by method.
     */
    void calculateGradients_(const ElementContext& elemCtx,
                             unsigned faceIdx,
                             unsigned timeIdx)
    {
        const auto& gradCalc = elemCtx.gradientCalculator();
        PressureCallback<TypeTag> pressureCallback(elemCtx);

        const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(faceIdx);
        const auto& faceNormal = scvf.normal();

        unsigned i = scvf.interiorIndex();
        unsigned j = scvf.exteriorIndex();
        interiorDofIdx_ = static_cast<short>(i);
        exteriorDofIdx_ = static_cast<short>(j);
        unsigned focusDofIdx = elemCtx.focusDofIndex();

        // calculate the "raw" pressure gradient
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
                Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
                continue;
            }

            pressureCallback.setPhaseIndex(phaseIdx);
            gradCalc.calculateGradient(potentialGrad_[phaseIdx],
                                       elemCtx,
                                       faceIdx,
                                       pressureCallback);
            Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
        }

        // correct the pressure gradients by the gravitational acceleration
        if (Parameters::Get<Parameters::EnableGravity>()) {
            // estimate the gravitational acceleration at a given SCV face
            // using the arithmetic mean
            const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx);
            const auto& gEx = elemCtx.problem().gravity(elemCtx, j, timeIdx);

            const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
            const auto& intQuantsEx = elemCtx.intensiveQuantities(j, timeIdx);

            const auto& posIn = elemCtx.pos(i, timeIdx);
            const auto& posEx = elemCtx.pos(j, timeIdx);
            const auto& posFace = scvf.integrationPos();

            // the distance between the centers of the control volumes
            DimVector distVecIn(posIn);
            DimVector distVecEx(posEx);
            DimVector distVecTotal(posEx);

            distVecIn -= posFace;
            distVecEx -= posFace;
            distVecTotal -= posIn;
            Scalar absDistTotalSquared = distVecTotal.two_norm2();
            for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
                if (!elemCtx.model().phaseIsConsidered(phaseIdx))
                    continue;

                // calculate the hydrostatic pressure at the integration point of the face
                Evaluation pStatIn;

                if (std::is_same<Scalar, Evaluation>::value ||
                    interiorDofIdx_ == static_cast<int>(focusDofIdx))
                {
                    const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
                    pStatIn = - rhoIn*(gIn*distVecIn);
                }
                else {
                    Scalar rhoIn = Toolbox::value(intQuantsIn.fluidState().density(phaseIdx));
                    pStatIn = - rhoIn*(gIn*distVecIn);
                }

                // the quantities on the exterior side of the face do not influence the
                // result for the TPFA scheme, so they can be treated as scalar values.
                Evaluation pStatEx;

                if (std::is_same<Scalar, Evaluation>::value ||
                    exteriorDofIdx_ == static_cast<int>(focusDofIdx))
                {
                    const Evaluation& rhoEx = intQuantsEx.fluidState().density(phaseIdx);
                    pStatEx = - rhoEx*(gEx*distVecEx);
                }
                else {
                    Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
                    pStatEx = - rhoEx*(gEx*distVecEx);
                }

                // compute the hydrostatic gradient between the two control volumes (this
                // gradient exhibitis the same direction as the vector between the two
                // control volume centers and the length (pStaticExterior -
                // pStaticInterior)/distanceInteriorToExterior
                Dune::FieldVector<Evaluation, dimWorld> f(distVecTotal);
                f *= (pStatEx - pStatIn)/absDistTotalSquared;

                // calculate the final potential gradient
                for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
                    potentialGrad_[phaseIdx][dimIdx] += f[dimIdx];

                for (unsigned dimIdx = 0; dimIdx < potentialGrad_[phaseIdx].size(); ++dimIdx) {
                    if (!isfinite(potentialGrad_[phaseIdx][dimIdx])) {
                        throw NumericalProblem("Non-finite potential gradient for phase '"
                                               + std::string(FluidSystem::phaseName(phaseIdx))+"'");
                    }
                }
            }
        }

        Valgrind::SetUndefined(K_);
        elemCtx.problem().intersectionIntrinsicPermeability(K_, elemCtx, faceIdx, timeIdx);
        Valgrind::CheckDefined(K_);

        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
                Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
                continue;
            }

            // determine the upstream and downstream DOFs
            Evaluation tmp = 0.0;
            for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx)
                tmp += potentialGrad_[phaseIdx][dimIdx]*faceNormal[dimIdx];

            if (tmp > 0) {
                upstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
                downstreamDofIdx_[phaseIdx] = interiorDofIdx_;
            }
            else {
                upstreamDofIdx_[phaseIdx] = interiorDofIdx_;
                downstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
            }

            // we only carry the derivatives along if the upstream DOF is the one which
            // we currently focus on
            const auto& up = elemCtx.intensiveQuantities(upstreamDofIdx_[phaseIdx], timeIdx);
            if (upstreamDofIdx_[phaseIdx] == static_cast<int>(focusDofIdx))
                mobility_[phaseIdx] = up.mobility(phaseIdx);
            else
                mobility_[phaseIdx] = Toolbox::value(up.mobility(phaseIdx));
        }
    }

    /*!
     * \brief Calculate the gradients at the grid boundary which are required to
     *        determine the volumetric fluxes
     *
     * The the upwind directions is also determined by method.
     */
    template <class FluidState>
    void calculateBoundaryGradients_(const ElementContext& elemCtx,
                                     unsigned boundaryFaceIdx,
                                     unsigned timeIdx,
                                     const FluidState& fluidState)
    {
        const auto& gradCalc = elemCtx.gradientCalculator();
        BoundaryPressureCallback<TypeTag, FluidState> pressureCallback(elemCtx, fluidState);

        // calculate the pressure gradient
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
            if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
                Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
                continue;
            }

            pressureCallback.setPhaseIndex(phaseIdx);
            gradCalc.calculateBoundaryGradient(potentialGrad_[phaseIdx],
                                               elemCtx,
                                               boundaryFaceIdx,
                                               pressureCallback);
            Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
        }

        const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(boundaryFaceIdx);
        auto i = scvf.interiorIndex();
        interiorDofIdx_ = static_cast<short>(i);
        exteriorDofIdx_ = -1;
        int focusDofIdx = elemCtx.focusDofIndex();

        // calculate the intrinsic permeability
        const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
        K_ = intQuantsIn.intrinsicPermeability();

        // correct the pressure gradients by the gravitational acceleration
        if (Parameters::Get<Parameters::EnableGravity>()) {
            // estimate the gravitational acceleration at a given SCV face
            // using the arithmetic mean
            const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx);
            const auto& posIn = elemCtx.pos(i, timeIdx);
            const auto& posFace = scvf.integrationPos();

            // the distance between the face center and the center of the control volume
            DimVector distVecIn(posIn);
            distVecIn -= posFace;
            Scalar absDistSquared = distVecIn.two_norm2();
            Scalar gTimesDist = gIn*distVecIn;

            for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
                if (!elemCtx.model().phaseIsConsidered(phaseIdx))
                    continue;

                // calculate the hydrostatic pressure at the integration point of the face
                Evaluation rhoIn = intQuantsIn.fluidState().density(phaseIdx);
                Evaluation pStatIn = - gTimesDist*rhoIn;

                Valgrind::CheckDefined(pStatIn);
                // compute the hydrostatic gradient between the control volume and face integration
                // point. This gradient exhibitis the same direction as the vector between the
                // control volume center and face integration point (-distVecIn / absDist) and the
                // length of the vector is -pStaticIn / absDist. Note that the two negatives become
                // + and the 1 / (absDist * absDist) -> absDistSquared.
                EvalDimVector f(distVecIn);
                f *= pStatIn / absDistSquared;

                // calculate the final potential gradient
                for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
                    potentialGrad_[phaseIdx][dimIdx] += f[dimIdx];

                Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
                for (unsigned dimIdx = 0; dimIdx < potentialGrad_[phaseIdx].size(); ++dimIdx) {
                    if (!isfinite(potentialGrad_[phaseIdx][dimIdx])) {
                        throw NumericalProblem("Non-finite potential gradient for phase '"
                                               + std::string(FluidSystem::phaseName(phaseIdx))+"'");
                    }
                }
            }
        }

        // determine the upstream and downstream DOFs
        const auto& faceNormal = scvf.normal();

        const auto& matParams = elemCtx.problem().materialLawParams(elemCtx, i, timeIdx);

        Scalar kr[numPhases];
        MaterialLaw::relativePermeabilities(kr, matParams, fluidState);
        Valgrind::CheckDefined(kr);

        for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
            if (!elemCtx.model().phaseIsConsidered(phaseIdx))
                continue;

            Evaluation tmp = 0.0;
            for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx)
                tmp += potentialGrad_[phaseIdx][dimIdx]*faceNormal[dimIdx];

            if (tmp > 0) {
                upstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
                downstreamDofIdx_[phaseIdx] = interiorDofIdx_;
            }
            else {
                upstreamDofIdx_[phaseIdx] = interiorDofIdx_;
                downstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
            }

            // take the phase mobility from the DOF in upstream direction
            if (upstreamDofIdx_[phaseIdx] < 0) {
                if (interiorDofIdx_ == focusDofIdx)
                    mobility_[phaseIdx] =
                        kr[phaseIdx] / fluidState.viscosity(phaseIdx);
                else
                    mobility_[phaseIdx] =
                        Toolbox::value(kr[phaseIdx])
                        / Toolbox::value(fluidState.viscosity(phaseIdx));
            }
            else if (upstreamDofIdx_[phaseIdx] != focusDofIdx)
                mobility_[phaseIdx] = Toolbox::value(intQuantsIn.mobility(phaseIdx));
            else
                mobility_[phaseIdx] = intQuantsIn.mobility(phaseIdx);
            Valgrind::CheckDefined(mobility_[phaseIdx]);
        }
    }

    /*!
     * \brief Calculate the volumetric fluxes of all phases
     *
     * The pressure potentials and upwind directions must already be
     * determined before calling this method!
     */
    void calculateFluxes_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
    {
        const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
        const DimVector& normal = scvf.normal();
        Valgrind::CheckDefined(normal);

        for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
            filterVelocity_[phaseIdx] = 0.0;
            volumeFlux_[phaseIdx] = 0.0;
            if (!elemCtx.model().phaseIsConsidered(phaseIdx))
                continue;

            asImp_().calculateFilterVelocity_(phaseIdx);
            Valgrind::CheckDefined(filterVelocity_[phaseIdx]);

            volumeFlux_[phaseIdx] = 0.0;
            for (unsigned i = 0; i < normal.size(); ++i)
                volumeFlux_[phaseIdx] += filterVelocity_[phaseIdx][i] * normal[i];
        }
    }

    /*!
     * \brief Calculate the volumetric fluxes at a boundary face of all fluid phases
     *
     * The pressure potentials and upwind directions must already be determined before
     * calling this method!
     */
    void calculateBoundaryFluxes_(const ElementContext& elemCtx,
                                  unsigned boundaryFaceIdx,
                                  unsigned timeIdx)
    {
        const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(boundaryFaceIdx);
        const DimVector& normal = scvf.normal();
        Valgrind::CheckDefined(normal);

        for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
            if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
                filterVelocity_[phaseIdx] = 0.0;
                volumeFlux_[phaseIdx] = 0.0;
                continue;
            }

            asImp_().calculateFilterVelocity_(phaseIdx);
            Valgrind::CheckDefined(filterVelocity_[phaseIdx]);
            volumeFlux_[phaseIdx] = 0.0;
            for (unsigned i = 0; i < normal.size(); ++i)
                volumeFlux_[phaseIdx] += filterVelocity_[phaseIdx][i] * normal[i];
        }
    }

    void calculateFilterVelocity_(unsigned phaseIdx)
    {
#ifndef NDEBUG
        assert(isfinite(mobility_[phaseIdx]));
        for (unsigned i = 0; i < K_.M(); ++ i)
            for (unsigned j = 0; j < K_.N(); ++ j)
                assert(std::isfinite(K_[i][j]));
#endif

        K_.mv(potentialGrad_[phaseIdx], filterVelocity_[phaseIdx]);
        filterVelocity_[phaseIdx] *= - mobility_[phaseIdx];

#ifndef NDEBUG
        for (unsigned i = 0; i < filterVelocity_[phaseIdx].size(); ++ i)
            assert(isfinite(filterVelocity_[phaseIdx][i]));
#endif
    }

private:
    Implementation& asImp_()
    { return *static_cast<Implementation*>(this); }

    const Implementation& asImp_() const
    { return *static_cast<const Implementation*>(this); }

protected:
    // intrinsic permeability tensor and its square root
    DimMatrix K_;

    // mobilities of all fluid phases [1 / (Pa s)]
    Evaluation mobility_[numPhases];

    // filter velocities of all phases [m/s]
    EvalDimVector filterVelocity_[numPhases];

    // the volumetric flux of all fluid phases over the control
    // volume's face [m^3/s / m^2]
    Evaluation volumeFlux_[numPhases];

    // pressure potential gradients of all phases [Pa / m]
    EvalDimVector potentialGrad_[numPhases];

    // upstream, downstream, interior and exterior DOFs
    short upstreamDofIdx_[numPhases];
    short downstreamDofIdx_[numPhases];
    short interiorDofIdx_;
    short exteriorDofIdx_;
};

} // namespace Opm

#endif