File: forchheimerfluxmodule.hh

package info (click to toggle)
opm-simulators 2024.10%2Bds-6
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 19,416 kB
  • sloc: cpp: 165,337; sh: 1,285; lisp: 1,108; python: 355; makefile: 24; awk: 10
file content (577 lines) | stat: -rw-r--r-- 21,650 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/
/*!
 * \file
 *
 * \brief This file contains the necessary classes to calculate the
 *        volumetric fluxes out of a pressure potential gradient using the
 *        Forchhheimer approach.
 */
#ifndef EWOMS_FORCHHEIMER_FLUX_MODULE_HH
#define EWOMS_FORCHHEIMER_FLUX_MODULE_HH

#include "darcyfluxmodule.hh"

#include <opm/common/Exceptions.hpp>

#include <opm/models/discretization/common/fvbaseproperties.hh>

#include <opm/material/common/Valgrind.hpp>

#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>

#include <cmath>

namespace Opm {
template <class TypeTag>
class ForchheimerIntensiveQuantities;

template <class TypeTag>
class ForchheimerExtensiveQuantities;

template <class TypeTag>
class ForchheimerBaseProblem;

/*!
 * \ingroup FluxModules
 * \brief Specifies a flux module which uses the Forchheimer relation.
 */
template <class TypeTag>
struct ForchheimerFluxModule
{
    using FluxIntensiveQuantities = ForchheimerIntensiveQuantities<TypeTag>;
    using FluxExtensiveQuantities = ForchheimerExtensiveQuantities<TypeTag>;
    using FluxBaseProblem = ForchheimerBaseProblem<TypeTag>;

    /*!
     * \brief Register all run-time parameters for the flux module.
     */
    static void registerParameters()
    {}
};

/*!
 * \ingroup FluxModules
 * \brief Provides the defaults for the parameters required by the
 *        Forchheimer velocity approach.
 */
template <class TypeTag>
class ForchheimerBaseProblem
{
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;

public:
    /*!
     * \brief Returns the Ergun coefficient.
     *
     * The Ergun coefficient is a measure how much the velocity is
     * reduced by turbolence. It is a quantity that does not depend on
     * the fluid phase but only on the porous medium in question. A
     * value of 0 means that the velocity is not influenced by
     * turbolence.
     */
    template <class Context>
    Scalar ergunCoefficient(const Context&,
                            unsigned,
                            unsigned) const
    {
        throw std::logic_error("Not implemented: Problem::ergunCoefficient()");
    }

    /*!
     * \brief Returns the ratio between the phase mobility
     *        \f$k_{r,\alpha}\f$ and its passability
     *        \f$\eta_{r,\alpha}\f$ for a given fluid phase
     *        \f$\alpha\f$.
     *
     * The passability coefficient specifies the influence of the
     * other fluid phases on the turbolent behaviour of a given fluid
     * phase. By default it is equal to the relative permeability. The
     * mobility to passability ratio is the inverse of phase' the viscosity.
     */
    template <class Context>
    Evaluation mobilityPassabilityRatio(Context& context,
                                        unsigned spaceIdx,
                                        unsigned timeIdx,
                                        unsigned phaseIdx) const
    {
        return 1.0 / context.intensiveQuantities(spaceIdx, timeIdx).fluidState().viscosity(phaseIdx);
    }
};

/*!
 * \ingroup FluxModules
 * \brief Provides the intensive quantities for the Forchheimer module
 */
template <class TypeTag>
class ForchheimerIntensiveQuantities
{
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
    using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;

    enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };

public:
    /*!
     * \brief Returns the Ergun coefficient.
     *
     * The Ergun coefficient is a measure how much the velocity is
     * reduced by turbolence. A value of 0 means that it is not
     * influenced.
     */
    const Evaluation& ergunCoefficient() const
    { return ergunCoefficient_; }

    /*!
     * \brief Returns the passability of a phase.
     */
    const Evaluation& mobilityPassabilityRatio(unsigned phaseIdx) const
    { return mobilityPassabilityRatio_[phaseIdx]; }

protected:
    void update_(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
    {
        const auto& problem = elemCtx.problem();
        ergunCoefficient_ = problem.ergunCoefficient(elemCtx, dofIdx, timeIdx);

        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
            mobilityPassabilityRatio_[phaseIdx] =
                problem.mobilityPassabilityRatio(elemCtx,
                                                 dofIdx,
                                                 timeIdx,
                                                 phaseIdx);
    }

private:
    Evaluation ergunCoefficient_;
    Evaluation mobilityPassabilityRatio_[numPhases];
};

/*!
 * \ingroup FluxModules
 * \brief Provides the Forchheimer flux module
 *
 * The commonly used Darcy relation looses its validity for Reynolds numbers \f$ Re <
 * 1\f$.  If one encounters flow velocities in porous media above this threshold, the
 * Forchheimer approach can be used. Like the Darcy approach, it is a relation of with
 * the fluid velocity in terms of the gradient of pressure potential.  However, this
 * relation is not linear (as in the Darcy case) any more.
 *
 * Therefore, the Newton scheme is used to solve the Forchheimer equation. This velocity
 * is then used like the Darcy velocity e.g. by the local residual.
 *
 * Note that for Reynolds numbers above \f$\approx 500\f$ the standard Forchheimer
 * relation also looses it's validity.
 *
 * The Forchheimer equation is given by the following relation:
 *
 * \f[
  \nabla p_\alpha - \rho_\alpha \vec{g} =
  - \frac{\mu_\alpha}{k_{r,\alpha}} K^{-1}\vec{v}_\alpha
  - \frac{\rho_\alpha C_E}{\eta_{r,\alpha}} \sqrt{K}^{-1}
  \left| \vec{v}_\alpha \right| \vec{v}_\alpha
 \f]
 *
 * Where \f$C_E\f$ is the modified Ergun parameter and \f$\eta_{r,\alpha}\f$ is the
 * passability which is given by a closure relation (usually it is assumed to be
 * identical to the relative permeability). To avoid numerical problems, the relation
 * implemented by this class multiplies both sides with \f$\frac{k_{r_alpha}}{mu} K\f$,
 * so we get
 *
 * \f[
  \frac{k_{r_alpha}}{mu} K \left( \nabla p_\alpha - \rho_\alpha \vec{g}\right) =
  - \vec{v}_\alpha
  - \frac{\rho_\alpha C_E}{\eta_{r,\alpha}}  \frac{k_{r_alpha}}{mu} \sqrt{K}
  \left| \vec{v}_\alpha \right| \vec{v}_\alpha
 \f]

 */
template <class TypeTag>
class ForchheimerExtensiveQuantities
    : public DarcyExtensiveQuantities<TypeTag>
{
    using DarcyExtQuants = DarcyExtensiveQuantities<TypeTag>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
    using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Implementation = GetPropType<TypeTag, Properties::ExtensiveQuantities>;

    enum { dimWorld = GridView::dimensionworld };
    enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };

    using Toolbox = MathToolbox<Evaluation>;

    using DimVector = Dune::FieldVector<Scalar, dimWorld>;
    using DimEvalVector = Dune::FieldVector<Evaluation, dimWorld>;
    using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
    using DimEvalMatrix = Dune::FieldMatrix<Evaluation, dimWorld, dimWorld>;

public:
    /*!
     * \brief Return the Ergun coefficent at the face's integration point.
     */
    const Evaluation& ergunCoefficient() const
    { return ergunCoefficient_; }

    /*!
     * \brief Return the ratio of the mobility divided by the passability at the face's
     *        integration point for a given fluid phase.
     *
     * Usually, that's the inverse of the viscosity.
     */
    Evaluation& mobilityPassabilityRatio(unsigned phaseIdx) const
    { return mobilityPassabilityRatio_[phaseIdx]; }

protected:
    void calculateGradients_(const ElementContext& elemCtx,
                             unsigned faceIdx,
                             unsigned timeIdx)
    {
        DarcyExtQuants::calculateGradients_(elemCtx, faceIdx, timeIdx);

        auto focusDofIdx = elemCtx.focusDofIndex();
        unsigned i = static_cast<unsigned>(this->interiorDofIdx_);
        unsigned j = static_cast<unsigned>(this->exteriorDofIdx_);
        const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
        const auto& intQuantsEx = elemCtx.intensiveQuantities(j, timeIdx);

        // calculate the square root of the intrinsic permeability
        assert(isDiagonal_(this->K_));
        sqrtK_ = 0.0;
        for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
            sqrtK_[dimIdx] = std::sqrt(this->K_[dimIdx][dimIdx]);

        // obtain the Ergun coefficient. Lacking better ideas, we use its the arithmetic mean.
        if (focusDofIdx == i) {
            ergunCoefficient_ =
                (intQuantsIn.ergunCoefficient() +
                 getValue(intQuantsEx.ergunCoefficient()))/2;
        }
        else if (focusDofIdx == j)
            ergunCoefficient_ =
                (getValue(intQuantsIn.ergunCoefficient()) +
                 intQuantsEx.ergunCoefficient())/2;
        else
            ergunCoefficient_ =
                (getValue(intQuantsIn.ergunCoefficient()) +
                 getValue(intQuantsEx.ergunCoefficient()))/2;

        // obtain the mobility to passability ratio for each phase.
        for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
            if (!elemCtx.model().phaseIsConsidered(phaseIdx))
                continue;

            unsigned upIdx = static_cast<unsigned>(this->upstreamIndex_(phaseIdx));
            const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);

            if (focusDofIdx == upIdx) {
                density_[phaseIdx] =
                    up.fluidState().density(phaseIdx);
                mobilityPassabilityRatio_[phaseIdx] =
                    up.mobilityPassabilityRatio(phaseIdx);
            }
            else {
                density_[phaseIdx] =
                    getValue(up.fluidState().density(phaseIdx));
                mobilityPassabilityRatio_[phaseIdx] =
                    getValue(up.mobilityPassabilityRatio(phaseIdx));
            }
        }
    }

    template <class FluidState>
    void calculateBoundaryGradients_(const ElementContext& elemCtx,
                                     unsigned boundaryFaceIdx,
                                     unsigned timeIdx,
                                     const FluidState& fluidState)
    {
        DarcyExtQuants::calculateBoundaryGradients_(elemCtx,
                                                    boundaryFaceIdx,
                                                    timeIdx,
                                                    fluidState);

        auto focusDofIdx = elemCtx.focusDofIndex();
        unsigned i = static_cast<unsigned>(this->interiorDofIdx_);
        const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);

        // obtain the Ergun coefficient. Because we are on the boundary here, we will
        // take the Ergun coefficient of the interior
        if (focusDofIdx == i)
            ergunCoefficient_ = intQuantsIn.ergunCoefficient();
        else
            ergunCoefficient_ = getValue(intQuantsIn.ergunCoefficient());

        // calculate the square root of the intrinsic permeability
        assert(isDiagonal_(this->K_));
        sqrtK_ = 0.0;
        for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
            sqrtK_[dimIdx] = std::sqrt(this->K_[dimIdx][dimIdx]);

        for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
            if (!elemCtx.model().phaseIsConsidered(phaseIdx))
                continue;

            if (focusDofIdx == i) {
                density_[phaseIdx] = intQuantsIn.fluidState().density(phaseIdx);
                mobilityPassabilityRatio_[phaseIdx] = intQuantsIn.mobilityPassabilityRatio(phaseIdx);
            }
            else {
                density_[phaseIdx] =
                    getValue(intQuantsIn.fluidState().density(phaseIdx));
                mobilityPassabilityRatio_[phaseIdx] =
                    getValue(intQuantsIn.mobilityPassabilityRatio(phaseIdx));
            }
        }
    }

    /*!
     * \brief Calculate the volumetric fluxes of all phases
     *
     * The pressure potentials and upwind directions must already be
     * determined before calling this method!
     */
    void calculateFluxes_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
    {
        auto focusDofIdx = elemCtx.focusDofIndex();
        auto i = asImp_().interiorIndex();
        auto j = asImp_().exteriorIndex();
        const auto& intQuantsI = elemCtx.intensiveQuantities(i, timeIdx);
        const auto& intQuantsJ = elemCtx.intensiveQuantities(j, timeIdx);

        const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
        const auto& normal = scvf.normal();
        Valgrind::CheckDefined(normal);

        // obtain the Ergun coefficient from the intensive quantity object. Until a
        // better method comes along, we use arithmetic averaging.
        if (focusDofIdx == i)
            ergunCoefficient_ =
                (intQuantsI.ergunCoefficient() +
                 getValue(intQuantsJ.ergunCoefficient())) / 2;
        else if (focusDofIdx == j)
            ergunCoefficient_ =
                (getValue(intQuantsI.ergunCoefficient()) +
                 intQuantsJ.ergunCoefficient()) / 2;
        else
            ergunCoefficient_ =
                (getValue(intQuantsI.ergunCoefficient()) +
                 getValue(intQuantsJ.ergunCoefficient())) / 2;

        ///////////////
        // calculate the weights of the upstream and the downstream control volumes
        ///////////////
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; phaseIdx++) {
            if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
                this->filterVelocity_[phaseIdx] = 0.0;
                this->volumeFlux_[phaseIdx] = 0.0;
                continue;
            }

            calculateForchheimerFlux_(phaseIdx);

            this->volumeFlux_[phaseIdx] = 0.0;
            for (unsigned dimIdx = 0; dimIdx < dimWorld; ++ dimIdx)
                this->volumeFlux_[phaseIdx] +=
                    this->filterVelocity_[phaseIdx][dimIdx]*normal[dimIdx];
        }
    }

    /*!
     * \brief Calculate the volumetric flux rates of all phases at the domain boundary
     */
    void calculateBoundaryFluxes_(const ElementContext& elemCtx,
                                  unsigned bfIdx,
                                  unsigned timeIdx)
    {
        const auto& boundaryFace = elemCtx.stencil(timeIdx).boundaryFace(bfIdx);
        const auto& normal = boundaryFace.normal();

        ///////////////
        // calculate the weights of the upstream and the downstream degrees of freedom
        ///////////////
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; phaseIdx++) {
            if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
                this->filterVelocity_[phaseIdx] = 0.0;
                this->volumeFlux_[phaseIdx] = 0.0;
                continue;
            }

            calculateForchheimerFlux_(phaseIdx);

            this->volumeFlux_[phaseIdx] = 0.0;
            for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
                this->volumeFlux_[phaseIdx] +=
                    this->filterVelocity_[phaseIdx][dimIdx]*normal[dimIdx];
        }
    }

    void calculateForchheimerFlux_(unsigned phaseIdx)
    {
        // initial guess: filter velocity is zero
        DimEvalVector& velocity = this->filterVelocity_[phaseIdx];
        velocity = 0.0;

        // the change of velocity between two consecutive Newton iterations
        DimEvalVector deltaV(1e5);
        // the function value that is to be minimized of the equation that is to be
        // fulfilled
        DimEvalVector residual;
        // derivative of equation that is to be solved
        DimEvalMatrix gradResid;

        // search by means of the Newton method for a root of Forchheimer equation
        unsigned newtonIter = 0;
        while (deltaV.one_norm() > 1e-11) {
            if (newtonIter >= 50)
                throw NumericalProblem("Could not determine Forchheimer velocity within "
                                       + std::to_string(newtonIter)+" iterations");
            ++newtonIter;

            // calculate the residual and its Jacobian matrix
            gradForchheimerResid_(residual, gradResid, phaseIdx);

            // newton method
            gradResid.solve(deltaV, residual);
            velocity -= deltaV;
        }
    }

    void forchheimerResid_(DimEvalVector& residual, unsigned phaseIdx) const
    {
        const DimEvalVector& velocity = this->filterVelocity_[phaseIdx];

        // Obtaining the upstreamed quantities
        const auto& mobility = this->mobility_[phaseIdx];
        const auto& density = density_[phaseIdx];
        const auto& mobilityPassabilityRatio = mobilityPassabilityRatio_[phaseIdx];

        // optain the quantites for the integration point
        const auto& pGrad = this->potentialGrad_[phaseIdx];

        // residual = v_\alpha
        residual = velocity;

        // residual += mobility_\alpha K(\grad p_\alpha - \rho_\alpha g)
        // -> this->K_.usmv(mobility, pGrad, residual);
        assert(isDiagonal_(this->K_));
        for (unsigned dimIdx = 0; dimIdx < dimWorld; ++ dimIdx)
            residual[dimIdx] += mobility*pGrad[dimIdx]*this->K_[dimIdx][dimIdx];

        // Forchheimer turbulence correction:
        //
        // residual +=
        //   \rho_\alpha
        //   * mobility_\alpha
        //   * C_E / \eta_{r,\alpha}
        //   * abs(v_\alpha) * sqrt(K)*v_\alpha
        //
        // -> sqrtK_.usmv(density*mobilityPassabilityRatio*ergunCoefficient_*velocity.two_norm(),
        //                velocity,
        //                residual);
        Evaluation absVel = 0.0;
        for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
            absVel += velocity[dimIdx]*velocity[dimIdx];
        // the derivatives of the square root of 0 are undefined, so we must guard
        // against this case
        if (absVel <= 0.0)
            absVel = 0.0;
        else
            absVel = Toolbox::sqrt(absVel);
        const auto& alpha = density*mobilityPassabilityRatio*ergunCoefficient_*absVel;
        for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
            residual[dimIdx] += sqrtK_[dimIdx]*alpha*velocity[dimIdx];
        Valgrind::CheckDefined(residual);
    }

    void gradForchheimerResid_(DimEvalVector& residual,
                               DimEvalMatrix& gradResid,
                               unsigned phaseIdx)
    {
        // TODO (?) use AD for this.
        DimEvalVector& velocity = this->filterVelocity_[phaseIdx];
        forchheimerResid_(residual, phaseIdx);

        Scalar eps = 1e-11;
        DimEvalVector tmp;
        for (unsigned i = 0; i < dimWorld; ++i) {
            Scalar coordEps = std::max(eps, Toolbox::scalarValue(velocity[i]) * (1 + eps));
            velocity[i] += coordEps;
            forchheimerResid_(tmp, phaseIdx);
            tmp -= residual;
            tmp /= coordEps;
            gradResid[i] = tmp;
            velocity[i] -= coordEps;
        }
    }

    /*!
     * \brief Check whether all off-diagonal entries of a tensor are zero.
     *
     * \param K the tensor that is to be checked.
     * \return True iff all off-diagonals are zero.
     *
     */
    bool isDiagonal_(const DimMatrix& K) const
    {
        for (unsigned i = 0; i < dimWorld; i++) {
            for (unsigned j = 0; j < dimWorld; j++) {
                if (i == j)
                    continue;

                if (std::abs(K[i][j]) > 1e-25)
                    return false;
            }
        }
        return true;
    }

private:
    Implementation& asImp_()
    { return *static_cast<Implementation *>(this); }

    const Implementation& asImp_() const
    { return *static_cast<const Implementation *>(this); }

protected:
    // intrinsic permeability tensor and its square root
    DimVector sqrtK_;

    // Ergun coefficient of all phases at the integration point
    Evaluation ergunCoefficient_;

    // Passability of all phases at the integration point
    Evaluation mobilityPassabilityRatio_[numPhases];

    // Density of all phases at the integration point
    Evaluation density_[numPhases];
};

} // namespace Opm

#endif