1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseBoundaryContext
*/
#ifndef EWOMS_FV_BASE_BOUNDARY_CONTEXT_HH
#define EWOMS_FV_BASE_BOUNDARY_CONTEXT_HH
#include "fvbaseproperties.hh"
#include <dune/common/fvector.hh>
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief Represents all quantities which available on boundary segments
*/
template<class TypeTag>
class FvBaseBoundaryContext
{
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using GradientCalculator = GetPropType<TypeTag, Properties::GradientCalculator>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Element = typename GridView::template Codim<0>::Entity;
using IntersectionIterator = typename GridView::IntersectionIterator;
using Intersection = typename GridView::Intersection;
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using Vector = Dune::FieldVector<Scalar, dimWorld>;
public:
/*!
* \brief The constructor.
*/
explicit FvBaseBoundaryContext(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
, intersectionIt_(gridView().ibegin(element()))
{ }
void increment()
{
const auto& iend = gridView().iend(element());
if(intersectionIt_ == iend)
return;
++intersectionIt_;
// iterate to the next boundary intersection
while (intersectionIt_ != iend && intersectionIt_->neighbor()) {
++intersectionIt_;
}
}
/*!
* \copydoc Opm::ElementContext::problem()
*/
const Problem& problem() const
{ return elemCtx_.problem(); }
/*!
* \copydoc Opm::ElementContext::model()
*/
const Model& model() const
{ return elemCtx_.model(); }
/*!
* \copydoc Opm::ElementContext::gridView()
*/
const GridView& gridView() const
{ return elemCtx_.gridView(); }
/*!
* \copydoc Opm::ElementContext::element()
*/
const Element& element() const
{ return elemCtx_.element(); }
/*!
* \brief Returns a reference to the element context object.
*/
const ElementContext& elementContext() const
{ return elemCtx_; }
/*!
* \brief Returns a reference to the current gradient calculator.
*/
const GradientCalculator& gradientCalculator() const
{ return elemCtx_.gradientCalculator(); }
/*!
* \copydoc Opm::ElementContext::numDof()
*/
size_t numDof(unsigned timeIdx) const
{ return elemCtx_.numDof(timeIdx); }
/*!
* \copydoc Opm::ElementContext::numPrimaryDof()
*/
size_t numPrimaryDof(unsigned timeIdx) const
{ return elemCtx_.numPrimaryDof(timeIdx); }
/*!
* \copydoc Opm::ElementContext::numInteriorFaces()
*/
size_t numInteriorFaces(unsigned timeIdx) const
{ return elemCtx_.numInteriorFaces(timeIdx); }
/*!
* \brief Return the number of boundary segments of the current element
*/
size_t numBoundaryFaces(unsigned timeIdx) const
{ return elemCtx_.stencil(timeIdx).numBoundaryFaces(); }
/*!
* \copydoc Opm::ElementContext::stencil()
*/
const Stencil& stencil(unsigned timeIdx) const
{ return elemCtx_.stencil(timeIdx); }
/*!
* \brief Returns the outer unit normal of the boundary segment
*
* \param boundaryFaceIdx The local index of the boundary segment
* \param timeIdx The index of the solution used by the time discretization
*/
Vector normal(unsigned boundaryFaceIdx, unsigned timeIdx) const
{
auto tmp = stencil(timeIdx).boundaryFace[boundaryFaceIdx].normal;
tmp /= tmp.two_norm();
return tmp;
}
/*!
* \brief Returns the area [m^2] of a given boudary segment.
*/
Scalar boundarySegmentArea(unsigned boundaryFaceIdx, unsigned timeIdx) const
{ return elemCtx_.stencil(timeIdx).boundaryFace(boundaryFaceIdx).area(); }
/*!
* \brief Return the position of a local entity in global coordinates.
*
* \param boundaryFaceIdx The local index of the boundary segment
* \param timeIdx The index of the solution used by the time discretization
*/
const GlobalPosition& pos(unsigned boundaryFaceIdx, unsigned timeIdx) const
{ return stencil(timeIdx).boundaryFace(boundaryFaceIdx).integrationPos(); }
/*!
* \brief Return the position of a control volume's center in global coordinates.
*
* \param boundaryFaceIdx The local index of the boundary segment
* \param timeIdx The index of the solution used by the time discretization
*/
const GlobalPosition& cvCenter(unsigned boundaryFaceIdx, unsigned timeIdx) const
{
unsigned scvIdx = stencil(timeIdx).boundaryFace(boundaryFaceIdx).interiorIndex();
return stencil(timeIdx).subControlVolume(scvIdx).globalPos();
}
/*!
* \brief Return the local sub-control volume index upon which the linearization is
* currently focused.
*/
unsigned focusDofIndex() const
{ return elemCtx_.focusDofIndex(); }
/*!
* \brief Return the local sub-control volume index of the
* interior of a boundary segment
*
* \param boundaryFaceIdx The local index of the boundary segment
* \param timeIdx The index of the solution used by the time discretization
*/
unsigned interiorScvIndex(unsigned boundaryFaceIdx, unsigned timeIdx) const
{ return stencil(timeIdx).boundaryFace(boundaryFaceIdx).interiorIndex(); }
/*!
* \brief Return the global space index of the sub-control volume
* at the interior of a boundary segment
*
* \param boundaryFaceIdx The local index of the boundary segment
* \param timeIdx The index of the solution used by the time discretization
*/
unsigned globalSpaceIndex(unsigned boundaryFaceIdx, unsigned timeIdx) const
{ return elemCtx_.globalSpaceIndex(interiorScvIndex(boundaryFaceIdx, timeIdx), timeIdx); }
/*!
* \brief Return the intensive quantities for the finite volume in the
* interiour of a boundary segment
*
* \param boundaryFaceIdx The local index of the boundary segment
* \param timeIdx The index of the solution used by the time discretization
*/
const IntensiveQuantities& intensiveQuantities(unsigned boundaryFaceIdx, unsigned timeIdx) const
{
unsigned interiorScvIdx = this->interiorScvIndex(boundaryFaceIdx, timeIdx);
return elemCtx_.intensiveQuantities(interiorScvIdx, timeIdx);
}
/*!
* \brief Return the extensive quantities for a given boundary face.
*
* \param boundaryFaceIdx The local index of the boundary segment
* \param timeIdx The index of the solution used by the time discretization
*/
const ExtensiveQuantities& extensiveQuantities(unsigned boundaryFaceIdx, unsigned timeIdx) const
{ return elemCtx_.boundaryExtensiveQuantities(boundaryFaceIdx, timeIdx); }
/*!
* \brief Return the intersection for the neumann segment
*
* TODO/HACK: The intersection should take a local index as an
* argument. since that's not supported efficiently by the DUNE
* grid interface, we just ignore the index argument here!
*
* \param boundaryFaceIdx The local index of the boundary segment
*/
const Intersection intersection(unsigned) const
{ return *intersectionIt_; }
/*!
* \brief Return the intersection for the neumann segment
*
* TODO/HACK: the intersection iterator can basically be
* considered as an index which is manipulated externally, but
* context classes should not store any indices. it is done this
* way for performance reasons
*/
IntersectionIterator& intersectionIt()
{ return intersectionIt_; }
protected:
const ElementContext& elemCtx_;
IntersectionIterator intersectionIt_;
};
} // namespace Opm
#endif
|