1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseDiscretization
*/
#ifndef EWOMS_FV_BASE_DISCRETIZATION_HH
#define EWOMS_FV_BASE_DISCRETIZATION_HH
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bvector.hh>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
#include <opm/models/discretization/common/fvbaseadlocallinearizer.hh>
#include <opm/models/discretization/common/fvbaseboundarycontext.hh>
#include <opm/models/discretization/common/fvbaseconstraints.hh>
#include <opm/models/discretization/common/fvbaseconstraintscontext.hh>
#include <opm/models/discretization/common/fvbaseelementcontext.hh>
#include <opm/models/discretization/common/fvbaseextensivequantities.hh>
#include <opm/models/discretization/common/fvbasefdlocallinearizer.hh>
#include <opm/models/discretization/common/fvbasegradientcalculator.hh>
#include <opm/models/discretization/common/fvbaseintensivequantities.hh>
#include <opm/models/discretization/common/fvbaselinearizer.hh>
#include <opm/models/discretization/common/fvbaselocalresidual.hh>
#include <opm/models/discretization/common/fvbasenewtonmethod.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/models/discretization/common/fvbaseprimaryvariables.hh>
#include <opm/models/io/vtkprimaryvarsmodule.hpp>
#include <opm/models/parallel/gridcommhandles.hh>
#include <opm/models/parallel/threadmanager.hpp>
#include <opm/models/utils/alignedallocator.hh>
#include <opm/models/utils/simulator.hh>
#include <opm/models/utils/timer.hpp>
#include <opm/models/utils/timerguard.hh>
#include <opm/simulators/linalg/linalgparameters.hh>
#include <opm/simulators/linalg/nullborderlistmanager.hh>
#include <algorithm>
#include <cstddef>
#include <list>
#include <stdexcept>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
namespace Opm {
template<class TypeTag>
class FvBaseDiscretizationNoAdapt;
template<class TypeTag>
class FvBaseDiscretization;
} // namespace Opm
namespace Opm::Properties {
//! Set the default type for the time manager
template<class TypeTag>
struct Simulator<TypeTag, TTag::FvBaseDiscretization>
{ using type = ::Opm::Simulator<TypeTag>; };
//! Mapper for the grid view's vertices.
template<class TypeTag>
struct VertexMapper<TypeTag, TTag::FvBaseDiscretization>
{ using type = Dune::MultipleCodimMultipleGeomTypeMapper<GetPropType<TypeTag, Properties::GridView>>; };
//! Mapper for the grid view's elements.
template<class TypeTag>
struct ElementMapper<TypeTag, TTag::FvBaseDiscretization>
{ using type = Dune::MultipleCodimMultipleGeomTypeMapper<GetPropType<TypeTag, Properties::GridView>>; };
//! marks the border indices (required for the algebraic overlap stuff)
template<class TypeTag>
struct BorderListCreator<TypeTag, TTag::FvBaseDiscretization>
{
using DofMapper = GetPropType<TypeTag, Properties::DofMapper>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
public:
using type = Linear::NullBorderListCreator<GridView, DofMapper>;
};
template<class TypeTag>
struct DiscLocalResidual<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseLocalResidual<TypeTag>; };
template<class TypeTag>
struct DiscIntensiveQuantities<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseIntensiveQuantities<TypeTag>; };
template<class TypeTag>
struct DiscExtensiveQuantities<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseExtensiveQuantities<TypeTag>; };
//! Calculates the gradient of any quantity given the index of a flux approximation point
template<class TypeTag>
struct GradientCalculator<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseGradientCalculator<TypeTag>; };
/*!
* \brief A vector of quanties, each for one equation.
*/
template<class TypeTag>
struct EqVector<TypeTag, TTag::FvBaseDiscretization>
{
using type = Dune::FieldVector<GetPropType<TypeTag, Properties::Scalar>,
getPropValue<TypeTag, Properties::NumEq>()>;
};
/*!
* \brief A vector for mass/energy rates.
*
* E.g. Neumann fluxes or source terms
*/
template<class TypeTag>
struct RateVector<TypeTag, TTag::FvBaseDiscretization>
{ using type = GetPropType<TypeTag, Properties::EqVector>; };
/*!
* \brief Type of object for specifying boundary conditions.
*/
template<class TypeTag>
struct BoundaryRateVector<TypeTag, TTag::FvBaseDiscretization>
{ using type = GetPropType<TypeTag, Properties::RateVector>; };
/*!
* \brief The class which represents constraints.
*/
template<class TypeTag>
struct Constraints<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseConstraints<TypeTag>; };
/*!
* \brief The type for storing a residual for an element.
*/
template<class TypeTag>
struct ElementEqVector<TypeTag, TTag::FvBaseDiscretization>
{ using type = Dune::BlockVector<GetPropType<TypeTag, Properties::EqVector>>; };
/*!
* \brief The type for storing a residual for the whole grid.
*/
template<class TypeTag>
struct GlobalEqVector<TypeTag, TTag::FvBaseDiscretization>
{ using type = Dune::BlockVector<GetPropType<TypeTag, Properties::EqVector>>; };
/*!
* \brief An object representing a local set of primary variables.
*/
template<class TypeTag>
struct PrimaryVariables<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBasePrimaryVariables<TypeTag>; };
/*!
* \brief The type of a solution for the whole grid at a fixed time.
*/
template<class TypeTag>
struct SolutionVector<TypeTag, TTag::FvBaseDiscretization>
{ using type = Dune::BlockVector<GetPropType<TypeTag, Properties::PrimaryVariables>>; };
/*!
* \brief The class representing intensive quantities.
*
* This should almost certainly be overloaded by the model...
*/
template<class TypeTag>
struct IntensiveQuantities<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseIntensiveQuantities<TypeTag>; };
/*!
* \brief The element context
*/
template<class TypeTag>
struct ElementContext<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseElementContext<TypeTag>; };
template<class TypeTag>
struct BoundaryContext<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseBoundaryContext<TypeTag>; };
template<class TypeTag>
struct ConstraintsContext<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseConstraintsContext<TypeTag>; };
/*!
* \brief The OpenMP threads manager
*/
template<class TypeTag>
struct ThreadManager<TypeTag, TTag::FvBaseDiscretization>
{ using type = ::Opm::ThreadManager; };
template<class TypeTag>
struct UseLinearizationLock<TypeTag, TTag::FvBaseDiscretization>
{ static constexpr bool value = true; };
/*!
* \brief Linearizer for the global system of equations.
*/
template<class TypeTag>
struct Linearizer<TypeTag, TTag::FvBaseDiscretization>
{ using type = FvBaseLinearizer<TypeTag>; };
//! Set the format of the VTK output to ASCII by default
template<class TypeTag>
struct VtkOutputFormat<TypeTag, TTag::FvBaseDiscretization>
{ static constexpr int value = Dune::VTK::ascii; };
// disable constraints by default
template<class TypeTag>
struct EnableConstraints<TypeTag, TTag::FvBaseDiscretization>
{ static constexpr bool value = false; };
//! Set the history size of the time discretization to 2 (for implicit euler)
template<class TypeTag>
struct TimeDiscHistorySize<TypeTag, TTag::FvBaseDiscretization>
{ static constexpr int value = 2; };
//! Most models use extensive quantities for their storage term (so far, only the Stokes
//! model does), so we disable this by default.
template<class TypeTag>
struct ExtensiveStorageTerm<TypeTag, TTag::FvBaseDiscretization>
{ static constexpr bool value = false; };
// use volumetric residuals is default
template<class TypeTag>
struct UseVolumetricResidual<TypeTag, TTag::FvBaseDiscretization>
{ static constexpr bool value = true; };
//! eWoms is mainly targeted at research, so experimental features are enabled by
//! default.
template<class TypeTag>
struct EnableExperiments<TypeTag, TTag::FvBaseDiscretization>
{ static constexpr bool value = true; };
template <class TypeTag, class MyTypeTag>
struct BaseDiscretizationType { using type = UndefinedProperty; };
#if !HAVE_DUNE_FEM
template<class TypeTag>
struct BaseDiscretizationType<TypeTag,TTag::FvBaseDiscretization>
{ using type = FvBaseDiscretizationNoAdapt<TypeTag>; };
template<class TypeTag>
struct DiscreteFunction<TypeTag, TTag::FvBaseDiscretization>
{
using BaseDiscretization = FvBaseDiscretization<TypeTag>;
using type = typename BaseDiscretization::BlockVectorWrapper;
};
#endif
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief The base class for the finite volume discretization schemes.
*/
template<class TypeTag>
class FvBaseDiscretization
{
using Implementation = GetPropType<TypeTag, Properties::Model>;
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
using VertexMapper = GetPropType<TypeTag, Properties::VertexMapper>;
using DofMapper = GetPropType<TypeTag, Properties::DofMapper>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Linearizer = GetPropType<TypeTag, Properties::Linearizer>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using BoundaryContext = GetPropType<TypeTag, Properties::BoundaryContext>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using GradientCalculator = GetPropType<TypeTag, Properties::GradientCalculator>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using DiscBaseOutputModule = GetPropType<TypeTag, Properties::DiscBaseOutputModule>;
using GridCommHandleFactory = GetPropType<TypeTag, Properties::GridCommHandleFactory>;
using NewtonMethod = GetPropType<TypeTag, Properties::NewtonMethod>;
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
using LocalLinearizer = GetPropType<TypeTag, Properties::LocalLinearizer>;
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
enum {
numEq = getPropValue<TypeTag, Properties::NumEq>(),
historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>(),
};
using IntensiveQuantitiesVector = std::vector<IntensiveQuantities, aligned_allocator<IntensiveQuantities, alignof(IntensiveQuantities)> >;
using Element = typename GridView::template Codim<0>::Entity;
using ElementIterator = typename GridView::template Codim<0>::Iterator;
using Toolbox = MathToolbox<Evaluation>;
using VectorBlock = Dune::FieldVector<Evaluation, numEq>;
using EvalEqVector = Dune::FieldVector<Evaluation, numEq>;
using LocalEvalBlockVector = typename LocalResidual::LocalEvalBlockVector;
public:
class BlockVectorWrapper
{
protected:
SolutionVector blockVector_;
public:
BlockVectorWrapper(const std::string&, const size_t size)
: blockVector_(size)
{}
BlockVectorWrapper() = default;
static BlockVectorWrapper serializationTestObject()
{
BlockVectorWrapper result("dummy", 3);
result.blockVector_[0] = 1.0;
result.blockVector_[1] = 2.0;
result.blockVector_[2] = 3.0;
return result;
}
SolutionVector& blockVector()
{ return blockVector_; }
const SolutionVector& blockVector() const
{ return blockVector_; }
bool operator==(const BlockVectorWrapper& wrapper) const
{
return std::equal(this->blockVector_.begin(), this->blockVector_.end(),
wrapper.blockVector_.begin(), wrapper.blockVector_.end());
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(blockVector_);
}
};
private:
using DiscreteFunctionSpace = GetPropType<TypeTag, Properties::DiscreteFunctionSpace>;
using DiscreteFunction = GetPropType<TypeTag, Properties::DiscreteFunction>;
// copying a discretization object is not a good idea
FvBaseDiscretization(const FvBaseDiscretization& );
public:
// this constructor required to be explicitly specified because
// we've defined a constructor above which deletes all implicitly
// generated constructors in C++.
FvBaseDiscretization(Simulator& simulator)
: simulator_(simulator)
, gridView_(simulator.gridView())
, elementMapper_(gridView_, Dune::mcmgElementLayout())
, vertexMapper_(gridView_, Dune::mcmgVertexLayout())
, newtonMethod_(simulator)
, localLinearizer_(ThreadManager::maxThreads())
, linearizer_(new Linearizer())
, enableGridAdaptation_(Parameters::Get<Parameters::EnableGridAdaptation>() )
, enableIntensiveQuantityCache_(Parameters::Get<Parameters::EnableIntensiveQuantityCache>())
, enableStorageCache_(Parameters::Get<Parameters::EnableStorageCache>())
, enableThermodynamicHints_(Parameters::Get<Parameters::EnableThermodynamicHints>())
{
bool isEcfv = std::is_same<Discretization, EcfvDiscretization<TypeTag> >::value;
if (enableGridAdaptation_ && !isEcfv)
throw std::invalid_argument("Grid adaptation currently only works for the "
"element-centered finite volume discretization (is: "
+Dune::className<Discretization>()+")");
PrimaryVariables::init();
size_t numDof = asImp_().numGridDof();
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
if (storeIntensiveQuantities()) {
intensiveQuantityCache_[timeIdx].resize(numDof);
intensiveQuantityCacheUpToDate_[timeIdx].resize(numDof, /*value=*/false);
}
if (enableStorageCache_)
storageCache_[timeIdx].resize(numDof);
}
resizeAndResetIntensiveQuantitiesCache_();
asImp_().registerOutputModules_();
}
~FvBaseDiscretization()
{
// delete all output modules
auto modIt = outputModules_.begin();
const auto& modEndIt = outputModules_.end();
for (; modIt != modEndIt; ++modIt)
delete *modIt;
delete linearizer_;
}
/*!
* \brief Register all run-time parameters for the model.
*/
static void registerParameters()
{
Linearizer::registerParameters();
LocalLinearizer::registerParameters();
LocalResidual::registerParameters();
GradientCalculator::registerParameters();
IntensiveQuantities::registerParameters();
ExtensiveQuantities::registerParameters();
NewtonMethod::registerParameters();
Linearizer::registerParameters();
PrimaryVariables::registerParameters();
// register runtime parameters of the output modules
VtkPrimaryVarsModule<TypeTag>::registerParameters();
Parameters::Register<Parameters::EnableGridAdaptation>
("Enable adaptive grid refinement/coarsening");
Parameters::Register<Parameters::EnableVtkOutput>
("Global switch for turning on writing VTK files");
Parameters::Register<Parameters::EnableThermodynamicHints>
("Enable thermodynamic hints");
Parameters::Register<Parameters::EnableIntensiveQuantityCache>
("Turn on caching of intensive quantities");
Parameters::Register<Parameters::EnableStorageCache>
("Store previous storage terms and avoid re-calculating them.");
Parameters::Register<Parameters::OutputDir>
("The directory to which result files are written");
}
/*!
* \brief Apply the initial conditions to the model.
*/
void finishInit()
{
// initialize the volume of the finite volumes to zero
size_t numDof = asImp_().numGridDof();
dofTotalVolume_.resize(numDof);
std::fill(dofTotalVolume_.begin(), dofTotalVolume_.end(), 0.0);
ElementContext elemCtx(simulator_);
gridTotalVolume_ = 0.0;
// iterate through the grid and evaluate the initial condition
for (const auto& elem : elements(gridView_)) {
const bool isInteriorElement = elem.partitionType() == Dune::InteriorEntity;
// ignore everything which is not in the interior if the
// current process' piece of the grid
if (!isInteriorElement)
continue;
// deal with the current element
elemCtx.updateStencil(elem);
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
// loop over all element vertices, i.e. sub control volumes
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); dofIdx++) {
// map the local degree of freedom index to the global one
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
Scalar dofVolume = stencil.subControlVolume(dofIdx).volume();
dofTotalVolume_[globalIdx] += dofVolume;
if (isInteriorElement)
gridTotalVolume_ += dofVolume;
}
}
// determine which DOFs should be considered to lie fully in the interior of the
// local process grid partition: those which do not have a non-zero volume
// before taking the peer processes into account...
isLocalDof_.resize(numDof);
for (unsigned dofIdx = 0; dofIdx < numDof; ++dofIdx)
isLocalDof_[dofIdx] = (dofTotalVolume_[dofIdx] != 0.0);
// add the volumes of the DOFs on the process boundaries
const auto sumHandle =
GridCommHandleFactory::template sumHandle<Scalar>(dofTotalVolume_,
asImp_().dofMapper());
gridView_.communicate(*sumHandle,
Dune::InteriorBorder_All_Interface,
Dune::ForwardCommunication);
// sum up the volumes of the grid partitions
gridTotalVolume_ = gridView_.comm().sum(gridTotalVolume_);
linearizer_->init(simulator_);
for (unsigned threadId = 0; threadId < ThreadManager::maxThreads(); ++threadId)
localLinearizer_[threadId].init(simulator_);
resizeAndResetIntensiveQuantitiesCache_();
if (storeIntensiveQuantities()) {
// invalidate all cached intensive quantities
for (unsigned timeIdx = 0; timeIdx < historySize; ++ timeIdx)
invalidateIntensiveQuantitiesCache(timeIdx);
}
newtonMethod_.finishInit();
}
/*!
* \brief Returns whether the grid ought to be adapted to the solution during the simulation.
*/
bool enableGridAdaptation() const
{ return enableGridAdaptation_; }
/*!
* \brief Applies the initial solution for all degrees of freedom to which the model
* applies.
*/
void applyInitialSolution()
{
// first set the whole domain to zero
SolutionVector& uCur = asImp_().solution(/*timeIdx=*/0);
uCur = Scalar(0.0);
ElementContext elemCtx(simulator_);
// iterate through the grid and evaluate the initial condition
for (const auto& elem : elements(gridView_)) {
// ignore everything which is not in the interior if the
// current process' piece of the grid
if (elem.partitionType() != Dune::InteriorEntity)
continue;
// deal with the current element
elemCtx.updateStencil(elem);
// loop over all element vertices, i.e. sub control volumes
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); dofIdx++)
{
// map the local degree of freedom index to the global one
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
// let the problem do the dirty work of nailing down
// the initial solution.
simulator_.problem().initial(uCur[globalIdx], elemCtx, dofIdx, /*timeIdx=*/0);
asImp_().supplementInitialSolution_(uCur[globalIdx], elemCtx, dofIdx, /*timeIdx=*/0);
uCur[globalIdx].checkDefined();
}
}
// synchronize the ghost DOFs (if necessary)
asImp_().syncOverlap();
// also set the solutions of the "previous" time steps to the initial solution.
for (unsigned timeIdx = 1; timeIdx < historySize; ++timeIdx)
solution(timeIdx) = solution(/*timeIdx=*/0);
simulator_.problem().initialSolutionApplied();
#ifndef NDEBUG
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
const auto& sol = solution(timeIdx);
for (unsigned dofIdx = 0; dofIdx < sol.size(); ++dofIdx)
sol[dofIdx].checkDefined();
}
#endif // NDEBUG
}
/*!
* \brief Allows to improve the performance by prefetching all data which is
* associated with a given element.
*/
void prefetch(const Element&) const
{
// do nothing by default
}
/*!
* \brief Returns the newton method object
*/
NewtonMethod& newtonMethod()
{ return newtonMethod_; }
/*!
* \copydoc newtonMethod()
*/
const NewtonMethod& newtonMethod() const
{ return newtonMethod_; }
/*!
* \brief Return the thermodynamic hint for a entity on the grid at given time.
*
* The hint is defined as a IntensiveQuantities object which is supposed to be
* "close" to the IntensiveQuantities of the current solution. It can be used as a
* good starting point for non-linear solvers when having to solve non-linear
* relations while updating the intensive quantities. (This may yield a major
* performance boost depending on how the physical models require.)
*
* \attention If no up-to date intensive quantities are available, or if hints have been
* disabled, this method will return 0.
*
* \param globalIdx The global space index for the entity where a hint is requested.
* \param timeIdx The index used by the time discretization.
*/
const IntensiveQuantities* thermodynamicHint(unsigned globalIdx, unsigned timeIdx) const
{
if (!enableThermodynamicHints_)
return 0;
// the intensive quantities cache doubles as thermodynamic hint
return cachedIntensiveQuantities(globalIdx, timeIdx);
}
/*!
* \brief Return the cached intensive quantities for a entity on the
* grid at given time.
*
* \attention If no up-to date intensive quantities are available,
* this method will return 0.
*
* \param globalIdx The global space index for the entity where a
* hint is requested.
* \param timeIdx The index used by the time discretization.
*/
const IntensiveQuantities* cachedIntensiveQuantities(unsigned globalIdx, unsigned timeIdx) const
{
if (!enableIntensiveQuantityCache_ || !intensiveQuantityCacheUpToDate_[timeIdx][globalIdx]) {
return nullptr;
}
// With the storage cache enabled, usually only the
// intensive quantities for the most recent time step are
// cached. However, this may be false for some Problem
// variants, so we should check if the cache exists for
// the timeIdx in question.
if (timeIdx > 0 && enableStorageCache_ && intensiveQuantityCache_[timeIdx].empty()) {
return nullptr;
}
return &intensiveQuantityCache_[timeIdx][globalIdx];
}
/*!
* \brief Update the intensive quantity cache for a entity on the grid at given time.
*
* \param intQuants The IntensiveQuantities object hint for a given degree of freedom.
* \param globalIdx The global space index for the entity where a
* hint is to be set.
* \param timeIdx The index used by the time discretization.
*/
void updateCachedIntensiveQuantities(const IntensiveQuantities& intQuants,
unsigned globalIdx,
unsigned timeIdx) const
{
if (!storeIntensiveQuantities())
return;
intensiveQuantityCache_[timeIdx][globalIdx] = intQuants;
intensiveQuantityCacheUpToDate_[timeIdx][globalIdx] = 1;
}
/*!
* \brief Invalidate the cache for a given intensive quantities object.
*
* \param globalIdx The global space index for the entity where a
* hint is to be set.
* \param timeIdx The index used by the time discretization.
*/
void setIntensiveQuantitiesCacheEntryValidity(unsigned globalIdx,
unsigned timeIdx,
bool newValue) const
{
if (!storeIntensiveQuantities())
return;
intensiveQuantityCacheUpToDate_[timeIdx][globalIdx] = newValue ? 1 : 0;
}
/*!
* \brief Invalidate the whole intensive quantity cache for time index.
*
* \param timeIdx The index used by the time discretization.
*/
void invalidateIntensiveQuantitiesCache(unsigned timeIdx) const
{
if (storeIntensiveQuantities()) {
std::fill(intensiveQuantityCacheUpToDate_[timeIdx].begin(),
intensiveQuantityCacheUpToDate_[timeIdx].end(),
/*value=*/0);
}
}
void invalidateAndUpdateIntensiveQuantities(unsigned timeIdx) const
{
invalidateIntensiveQuantitiesCache(timeIdx);
// loop over all elements...
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(gridView_);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
ElementContext elemCtx(simulator_);
ElementIterator elemIt = threadedElemIt.beginParallel();
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(timeIdx);
}
}
}
template <class GridViewType>
void invalidateAndUpdateIntensiveQuantities(unsigned timeIdx, const GridViewType& gridView) const
{
// loop over all elements...
ThreadedEntityIterator<GridViewType, /*codim=*/0> threadedElemIt(gridView);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
ElementContext elemCtx(simulator_);
auto elemIt = threadedElemIt.beginParallel();
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
if (elemIt->partitionType() != Dune::InteriorEntity) {
continue;
}
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
// Mark cache for this element as invalid.
const std::size_t numPrimaryDof = elemCtx.numPrimaryDof(timeIdx);
for (unsigned dofIdx = 0; dofIdx < numPrimaryDof; ++dofIdx) {
const unsigned globalIndex = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
setIntensiveQuantitiesCacheEntryValidity(globalIndex, timeIdx, false);
}
// Update for this element.
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
}
}
}
/*!
* \brief Move the intensive quantities for a given time index to the back.
*
* This method should only be called by the time discretization.
*
* \param numSlots The number of time step slots for which the
* hints should be shifted.
*/
void shiftIntensiveQuantityCache(unsigned numSlots = 1)
{
if (!storeIntensiveQuantities())
return;
if (enableStorageCache() && simulator_.problem().recycleFirstIterationStorage()) {
// If the storage term is cached, the intensive quantities of the previous
// time steps do not need to be accessed, and we can thus spare ourselves to
// copy the objects for the intensive quantities.
// However, if the storage term at the start of the timestep cannot be deduced
// from the primary variables, we must calculate it from the old intensive
// quantities, and need to shift them.
return;
}
assert(numSlots > 0);
for (unsigned timeIdx = 0; timeIdx < historySize - numSlots; ++ timeIdx) {
intensiveQuantityCache_[timeIdx + numSlots] = intensiveQuantityCache_[timeIdx];
intensiveQuantityCacheUpToDate_[timeIdx + numSlots] = intensiveQuantityCacheUpToDate_[timeIdx];
}
// the cache for the most recent time indices do not need to be invalidated
// because the solution for them did not change (TODO: that assumes that there is
// no post-processing of the solution after a time step! fix it?)
}
/*!
* \brief Returns true iff the storage term is cached.
*
* Be aware that calling the *CachedStorage() methods if the storage cache is
* disabled will crash the program.
*/
bool enableStorageCache() const
{ return enableStorageCache_; }
/*!
* \brief Set the value of enable storage cache
*
* Be aware that calling the *CachedStorage() methods if the storage cache is
* disabled will crash the program.
*/
void setEnableStorageCache(bool enableStorageCache)
{ enableStorageCache_= enableStorageCache; }
/*!
* \brief Retrieve an entry of the cache for the storage term.
*
* This is supposed to represent a DOF's total amount of conservation quantities per
* volume unit at a given time. The user is responsible for making sure that the
* value of this is correct and that it can be used before this method is called.
*
* \param globalDofIdx The index of the relevant degree of freedom in a grid-global vector
* \param timeIdx The relevant index for the time discretization
*/
const EqVector& cachedStorage(unsigned globalIdx, unsigned timeIdx) const
{
assert(enableStorageCache_);
return storageCache_[timeIdx][globalIdx];
}
/*!
* \brief Set an entry of the cache for the storage term.
*
* This is supposed to represent a DOF's total amount of conservation quantities per
* volume unit at a given time. The user is responsible for making sure that the
* storage cache is enabled before this method is called.
*
* \param globalDofIdx The index of the relevant degree of freedom in a grid-global vector
* \param timeIdx The relevant index for the time discretization
* \param value The new value of the cache for the storage term
*/
void updateCachedStorage(unsigned globalIdx, unsigned timeIdx, const EqVector& value) const
{
assert(enableStorageCache_);
storageCache_[timeIdx][globalIdx] = value;
}
/*!
* \brief Compute the global residual for an arbitrary solution
* vector.
*
* \param dest Stores the result
* \param u The solution for which the residual ought to be calculated
*/
Scalar globalResidual(GlobalEqVector& dest,
const SolutionVector& u) const
{
SolutionVector tmp(asImp_().solution(/*timeIdx=*/0));
mutableSolution(/*timeIdx=*/0) = u;
Scalar res = asImp_().globalResidual(dest);
mutableSolution(/*timeIdx=*/0) = tmp;
return res;
}
/*!
* \brief Compute the global residual for the current solution
* vector.
*
* \param dest Stores the result
*/
Scalar globalResidual(GlobalEqVector& dest) const
{
dest = 0;
std::mutex mutex;
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(gridView_);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// Attention: the variables below are thread specific and thus cannot be
// moved in front of the #pragma!
unsigned threadId = ThreadManager::threadId();
ElementContext elemCtx(simulator_);
ElementIterator elemIt = threadedElemIt.beginParallel();
LocalEvalBlockVector residual, storageTerm;
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updateAll(elem);
residual.resize(elemCtx.numDof(/*timeIdx=*/0));
storageTerm.resize(elemCtx.numPrimaryDof(/*timeIdx=*/0));
asImp_().localResidual(threadId).eval(residual, elemCtx);
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
mutex.lock();
for (unsigned dofIdx = 0; dofIdx < numPrimaryDof; ++dofIdx) {
unsigned globalI = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
dest[globalI][eqIdx] += Toolbox::value(residual[dofIdx][eqIdx]);
}
mutex.unlock();
}
}
// add up the residuals on the process borders
const auto sumHandle =
GridCommHandleFactory::template sumHandle<EqVector>(dest, asImp_().dofMapper());
gridView_.communicate(*sumHandle,
Dune::InteriorBorder_InteriorBorder_Interface,
Dune::ForwardCommunication);
// calculate the square norm of the residual. this is not
// entirely correct, since the residual for the finite volumes
// which are on the boundary are counted once for every
// process. As often in life: shit happens (, we don't care)...
Scalar result2 = dest.two_norm2();
result2 = asImp_().gridView().comm().sum(result2);
return std::sqrt(result2);
}
/*!
* \brief Compute the integral over the domain of the storage
* terms of all conservation quantities.
*
* \copydetails Doxygen::storageParam
*/
void globalStorage(EqVector& storage, unsigned timeIdx = 0) const
{
storage = 0;
std::mutex mutex;
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(gridView());
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// Attention: the variables below are thread specific and thus cannot be
// moved in front of the #pragma!
unsigned threadId = ThreadManager::threadId();
ElementContext elemCtx(simulator_);
ElementIterator elemIt = threadedElemIt.beginParallel();
LocalEvalBlockVector elemStorage;
// in this method, we need to disable the storage cache because we want to
// evaluate the storage term for other time indices than the most recent one
elemCtx.setEnableStorageCache(false);
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue; // ignore ghost and overlap elements
elemCtx.updateStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(timeIdx);
size_t numPrimaryDof = elemCtx.numPrimaryDof(timeIdx);
elemStorage.resize(numPrimaryDof);
localResidual(threadId).evalStorage(elemStorage, elemCtx, timeIdx);
mutex.lock();
for (unsigned dofIdx = 0; dofIdx < numPrimaryDof; ++dofIdx)
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
storage[eqIdx] += Toolbox::value(elemStorage[dofIdx][eqIdx]);
mutex.unlock();
}
}
storage = gridView_.comm().sum(storage);
}
/*!
* \brief Ensure that the difference between the storage terms of the last and of the
* current time step is consistent with the source and boundary terms.
*
* This method is purely intented for debugging purposes. If the program is compiled
* with optimizations enabled, it becomes a no-op.
*/
void checkConservativeness([[maybe_unused]] Scalar tolerance = -1,
[[maybe_unused]] bool verbose=false) const
{
#ifndef NDEBUG
Scalar totalBoundaryArea(0.0);
Scalar totalVolume(0.0);
EvalEqVector totalRate(0.0);
// take the newton tolerance times the total volume of the grid if we're not
// given an explicit tolerance...
if (tolerance <= 0) {
tolerance =
simulator_.model().newtonMethod().tolerance()
* simulator_.model().gridTotalVolume()
* 1000;
}
// we assume the implicit Euler time discretization for now...
assert(historySize == 2);
EqVector storageBeginTimeStep(0.0);
globalStorage(storageBeginTimeStep, /*timeIdx=*/1);
EqVector storageEndTimeStep(0.0);
globalStorage(storageEndTimeStep, /*timeIdx=*/0);
// calculate the rate at the boundary and the source rate
ElementContext elemCtx(simulator_);
elemCtx.setEnableStorageCache(false);
auto eIt = simulator_.gridView().template begin</*codim=*/0>();
const auto& elemEndIt = simulator_.gridView().template end</*codim=*/0>();
for (; eIt != elemEndIt; ++eIt) {
if (eIt->partitionType() != Dune::InteriorEntity)
continue; // ignore ghost and overlap elements
elemCtx.updateAll(*eIt);
// handle the boundary terms
if (elemCtx.onBoundary()) {
BoundaryContext boundaryCtx(elemCtx);
for (unsigned faceIdx = 0; faceIdx < boundaryCtx.numBoundaryFaces(/*timeIdx=*/0); ++faceIdx) {
BoundaryRateVector values;
simulator_.problem().boundary(values,
boundaryCtx,
faceIdx,
/*timeIdx=*/0);
Valgrind::CheckDefined(values);
unsigned dofIdx = boundaryCtx.interiorScvIndex(faceIdx, /*timeIdx=*/0);
const auto& insideIntQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
Scalar bfArea =
boundaryCtx.boundarySegmentArea(faceIdx, /*timeIdx=*/0)
* insideIntQuants.extrusionFactor();
for (unsigned i = 0; i < values.size(); ++i)
values[i] *= bfArea;
totalBoundaryArea += bfArea;
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
totalRate[eqIdx] += values[eqIdx];
}
}
// deal with the source terms
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++ dofIdx) {
RateVector values;
simulator_.problem().source(values,
elemCtx,
dofIdx,
/*timeIdx=*/0);
Valgrind::CheckDefined(values);
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
Scalar dofVolume =
elemCtx.dofVolume(dofIdx, /*timeIdx=*/0)
* intQuants.extrusionFactor();
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
totalRate[eqIdx] += -dofVolume*Toolbox::value(values[eqIdx]);
totalVolume += dofVolume;
}
}
// summarize everything over all processes
const auto& comm = simulator_.gridView().comm();
totalRate = comm.sum(totalRate);
totalBoundaryArea = comm.sum(totalBoundaryArea);
totalVolume = comm.sum(totalVolume);
if (comm.rank() == 0) {
EqVector storageRate = storageBeginTimeStep;
storageRate -= storageEndTimeStep;
storageRate /= simulator_.timeStepSize();
if (verbose) {
std::cout << "storage at beginning of time step: " << storageBeginTimeStep << "\n";
std::cout << "storage at end of time step: " << storageEndTimeStep << "\n";
std::cout << "rate based on storage terms: " << storageRate << "\n";
std::cout << "rate based on source and boundary terms: " << totalRate << "\n";
std::cout << "difference in rates: ";
for (unsigned eqIdx = 0; eqIdx < EqVector::dimension; ++eqIdx)
std::cout << (storageRate[eqIdx] - Toolbox::value(totalRate[eqIdx])) << " ";
std::cout << "\n";
}
for (unsigned eqIdx = 0; eqIdx < EqVector::dimension; ++eqIdx) {
Scalar eps =
(std::abs(storageRate[eqIdx]) + Toolbox::value(totalRate[eqIdx]))*tolerance;
eps = std::max(tolerance, eps);
assert(std::abs(storageRate[eqIdx] - Toolbox::value(totalRate[eqIdx])) <= eps);
}
}
#endif // NDEBUG
}
/*!
* \brief Returns the volume \f$\mathrm{[m^3]}\f$ of a given control volume.
*
* \param globalIdx The global index of the degree of freedom
*/
Scalar dofTotalVolume(unsigned globalIdx) const
{ return dofTotalVolume_[globalIdx]; }
/*!
* \brief Returns if the overlap of the volume ofa degree of freedom is non-zero.
*
* \param globalIdx The global index of the degree of freedom
*/
bool isLocalDof(unsigned globalIdx) const
{ return isLocalDof_[globalIdx]; }
/*!
* \brief Returns the volume \f$\mathrm{[m^3]}\f$ of the whole grid which represents
* the spatial domain.
*/
Scalar gridTotalVolume() const
{ return gridTotalVolume_; }
/*!
* \brief Reference to the solution at a given history index as a block vector.
*
* \param timeIdx The index of the solution used by the time discretization.
*/
const SolutionVector& solution(unsigned timeIdx) const
{ return solution_[timeIdx]->blockVector(); }
/*!
* \copydoc solution(int) const
*/
SolutionVector& solution(unsigned timeIdx)
{ return solution_[timeIdx]->blockVector(); }
protected:
/*!
* \copydoc solution(int) const
*/
SolutionVector& mutableSolution(unsigned timeIdx) const
{ return solution_[timeIdx]->blockVector(); }
public:
/*!
* \brief Returns the operator linearizer for the global jacobian of
* the problem.
*/
const Linearizer& linearizer() const
{ return *linearizer_; }
/*!
* \brief Returns the object which linearizes the global system of equations at the
* current solution.
*/
Linearizer& linearizer()
{ return *linearizer_; }
/*!
* \brief Returns the local jacobian which calculates the local
* stiffness matrix for an arbitrary element.
*
* The local stiffness matrices of the element are used by
* the jacobian linearizer to produce a global linerization of the
* problem.
*/
const LocalLinearizer& localLinearizer(unsigned openMpThreadId) const
{ return localLinearizer_[openMpThreadId]; }
/*!
* \copydoc localLinearizer() const
*/
LocalLinearizer& localLinearizer(unsigned openMpThreadId)
{ return localLinearizer_[openMpThreadId]; }
/*!
* \brief Returns the object to calculate the local residual function.
*/
const LocalResidual& localResidual(unsigned openMpThreadId) const
{ return asImp_().localLinearizer(openMpThreadId).localResidual(); }
/*!
* \copydoc localResidual() const
*/
LocalResidual& localResidual(unsigned openMpThreadId)
{ return asImp_().localLinearizer(openMpThreadId).localResidual(); }
/*!
* \brief Returns the relative weight of a primary variable for
* calculating relative errors.
*
* \param globalDofIdx The global index of the degree of freedom
* \param pvIdx The index of the primary variable
*/
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
{
Scalar absPv = std::abs(asImp_().solution(/*timeIdx=*/1)[globalDofIdx][pvIdx]);
return 1.0/std::max(absPv, 1.0);
}
/*!
* \brief Returns the relative weight of an equation
*
* \param globalVertexIdx The global index of the vertex
* \param eqIdx The index of the equation
*/
Scalar eqWeight(unsigned, unsigned) const
{ return 1.0; }
/*!
* \brief Returns the relative error between two vectors of
* primary variables.
*
* \param vertexIdx The global index of the control volume's
* associated vertex
* \param pv1 The first vector of primary variables
* \param pv2 The second vector of primary variables
*/
Scalar relativeDofError(unsigned vertexIdx,
const PrimaryVariables& pv1,
const PrimaryVariables& pv2) const
{
Scalar result = 0.0;
for (unsigned j = 0; j < numEq; ++j) {
Scalar weight = asImp_().primaryVarWeight(vertexIdx, j);
Scalar eqErr = std::abs((pv1[j] - pv2[j])*weight);
//Scalar eqErr = std::abs(pv1[j] - pv2[j]);
//eqErr *= std::max<Scalar>(1.0, std::abs(pv1[j] + pv2[j])/2);
result = std::max(result, eqErr);
}
return result;
}
/*!
* \brief Try to progress the model to the next timestep.
*
* \param solver The non-linear solver
*/
bool update()
{
TimerGuard prePostProcessGuard(prePostProcessTimer_);
#ifndef NDEBUG
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
// Make sure that the primary variables are defined. Note that because of padding
// bytes, we can't just simply ask valgrind to check the whole solution vectors
// for definedness...
for (size_t i = 0; i < asImp_().solution(/*timeIdx=*/0).size(); ++i) {
asImp_().solution(timeIdx)[i].checkDefined();
}
}
#endif // NDEBUG
// make sure all timers are prestine
prePostProcessTimer_.halt();
linearizeTimer_.halt();
solveTimer_.halt();
updateTimer_.halt();
prePostProcessTimer_.start();
asImp_().updateBegin();
prePostProcessTimer_.stop();
bool converged = false;
try {
converged = newtonMethod_.apply();
}
catch(...) {
prePostProcessTimer_ += newtonMethod_.prePostProcessTimer();
linearizeTimer_ += newtonMethod_.linearizeTimer();
solveTimer_ += newtonMethod_.solveTimer();
updateTimer_ += newtonMethod_.updateTimer();
throw;
}
#ifndef NDEBUG
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
// Make sure that the primary variables are defined. Note that because of padding
// bytes, we can't just simply ask valgrind to check the whole solution vectors
// for definedness...
for (size_t i = 0; i < asImp_().solution(/*timeIdx=*/0).size(); ++i) {
asImp_().solution(timeIdx)[i].checkDefined();
}
}
#endif // NDEBUG
prePostProcessTimer_ += newtonMethod_.prePostProcessTimer();
linearizeTimer_ += newtonMethod_.linearizeTimer();
solveTimer_ += newtonMethod_.solveTimer();
updateTimer_ += newtonMethod_.updateTimer();
prePostProcessTimer_.start();
if (converged)
asImp_().updateSuccessful();
else
asImp_().updateFailed();
prePostProcessTimer_.stop();
#ifndef NDEBUG
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
// Make sure that the primary variables are defined. Note that because of padding
// bytes, we can't just simply ask valgrind to check the whole solution vectors
// for definedness...
for (size_t i = 0; i < asImp_().solution(/*timeIdx=*/0).size(); ++i) {
asImp_().solution(timeIdx)[i].checkDefined();
}
}
#endif // NDEBUG
return converged;
}
/*!
* \brief Syncronize the values of the primary variables on the
* degrees of freedom that overlap with the neighboring
* processes.
*
* By default, this method does nothing...
*/
void syncOverlap()
{ }
/*!
* \brief Called by the update() method before it tries to
* apply the newton method. This is primary a hook
* which the actual model can overload.
*/
void updateBegin()
{ }
/*!
* \brief Called by the update() method if it was
* successful.
*/
void updateSuccessful()
{ }
/*!
* \brief Called by the update() method when the grid should be refined.
*/
void adaptGrid()
{
throw std::invalid_argument("Grid adaptation need to be implemented for "
"specific settings of grid and function spaces");
}
/*!
* \brief Called by the update() method if it was
* unsuccessful. This is primary a hook which the actual
* model can overload.
*/
void updateFailed()
{
// Reset the current solution to the one of the
// previous time step so that we can start the next
// update at a physically meaningful solution.
solution(/*timeIdx=*/0) = solution(/*timeIdx=*/1);
invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
#ifndef NDEBUG
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
// Make sure that the primary variables are defined. Note that because of padding
// bytes, we can't just simply ask valgrind to check the whole solution vectors
// for definedness...
for (size_t i = 0; i < asImp_().solution(/*timeIdx=*/0).size(); ++i)
asImp_().solution(timeIdx)[i].checkDefined();
}
#endif // NDEBUG
}
/*!
* \brief Called by the problem if a time integration was
* successful, post processing of the solution is done and
* the result has been written to disk.
*
* This should prepare the model for the next time integration.
*/
void advanceTimeLevel()
{
// at this point we can adapt the grid
if (this->enableGridAdaptation_) {
asImp_().adaptGrid();
}
// make the current solution the previous one.
solution(/*timeIdx=*/1) = solution(/*timeIdx=*/0);
// shift the intensive quantities cache by one position in the
// history
asImp_().shiftIntensiveQuantityCache(/*numSlots=*/1);
}
/*!
* \brief Serializes the current state of the model.
*
* \tparam Restarter The type of the serializer class
*
* \param res The serializer object
*/
template <class Restarter>
void serialize(Restarter&)
{
throw std::runtime_error("Not implemented: The discretization chosen for this problem "
"does not support restart files. (serialize() method unimplemented)");
}
/*!
* \brief Deserializes the state of the model.
*
* \tparam Restarter The type of the serializer class
*
* \param res The serializer object
*/
template <class Restarter>
void deserialize(Restarter&)
{
throw std::runtime_error("Not implemented: The discretization chosen for this problem "
"does not support restart files. (deserialize() method unimplemented)");
}
/*!
* \brief Write the current solution for a degree of freedom to a
* restart file.
*
* \param outstream The stream into which the vertex data should
* be serialized to
* \param dof The Dune entity which's data should be serialized
*/
template <class DofEntity>
void serializeEntity(std::ostream& outstream,
const DofEntity& dof)
{
unsigned dofIdx = static_cast<unsigned>(asImp_().dofMapper().index(dof));
// write phase state
if (!outstream.good()) {
throw std::runtime_error("Could not serialize degree of freedom "
+std::to_string(dofIdx));
}
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
outstream << solution(/*timeIdx=*/0)[dofIdx][eqIdx] << " ";
}
}
/*!
* \brief Reads the current solution variables for a degree of
* freedom from a restart file.
*
* \param instream The stream from which the vertex data should
* be deserialized from
* \param dof The Dune entity which's data should be deserialized
*/
template <class DofEntity>
void deserializeEntity(std::istream& instream,
const DofEntity& dof)
{
unsigned dofIdx = static_cast<unsigned>(asImp_().dofMapper().index(dof));
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
if (!instream.good())
throw std::runtime_error("Could not deserialize degree of freedom "
+std::to_string(dofIdx));
instream >> solution(/*timeIdx=*/0)[dofIdx][eqIdx];
}
}
/*!
* \brief Returns the number of degrees of freedom (DOFs) for the computational grid
*/
size_t numGridDof() const
{ throw std::logic_error("The discretization class must implement the numGridDof() method!"); }
/*!
* \brief Returns the number of degrees of freedom (DOFs) of the auxiliary equations
*/
size_t numAuxiliaryDof() const
{
size_t result = 0;
auto auxModIt = auxEqModules_.begin();
const auto& auxModEndIt = auxEqModules_.end();
for (; auxModIt != auxModEndIt; ++auxModIt)
result += (*auxModIt)->numDofs();
return result;
}
/*!
* \brief Returns the total number of degrees of freedom (i.e., grid plux auxiliary DOFs)
*/
size_t numTotalDof() const
{ return asImp_().numGridDof() + numAuxiliaryDof(); }
/*!
* \brief Mapper to convert the Dune entities of the
* discretization's degrees of freedoms are to indices.
*/
const DofMapper& dofMapper() const
{ throw std::logic_error("The discretization class must implement the dofMapper() method!"); }
/*!
* \brief Returns the mapper for vertices to indices.
*/
const VertexMapper& vertexMapper() const
{ return vertexMapper_; }
/*!
* \brief Returns the mapper for elements to indices.
*/
const ElementMapper& elementMapper() const
{ return elementMapper_; }
/*!
* \brief Resets the Jacobian matrix linearizer, so that the
* boundary types can be altered.
*/
void resetLinearizer ()
{
delete linearizer_;
linearizer_ = new Linearizer;
linearizer_->init(simulator_);
}
/*!
* \brief Returns a string of discretization's human-readable name
*/
static std::string discretizationName()
{ return ""; }
/*!
* \brief Given an primary variable index, return a human readable name.
*
* \param pvIdx The index of the primary variable of interest.
*/
std::string primaryVarName(unsigned pvIdx) const
{
std::ostringstream oss;
oss << "primary variable_" << pvIdx;
return oss.str();
}
/*!
* \brief Given an equation index, return a human readable name.
*
* \param eqIdx The index of the conservation equation of interest.
*/
std::string eqName(unsigned eqIdx) const
{
std::ostringstream oss;
oss << "equation_" << eqIdx;
return oss.str();
}
/*!
* \brief Update the weights of all primary variables within an
* element given the complete set of intensive quantities
*
* \copydetails Doxygen::ecfvElemCtxParam
*/
void updatePVWeights(const ElementContext&) const
{ }
/*!
* \brief Add an module for writing visualization output after a timestep.
*/
void addOutputModule(BaseOutputModule<TypeTag>* newModule)
{ outputModules_.push_back(newModule); }
/*!
* \brief Add the vector fields for analysing the convergence of
* the newton method to the a VTK writer.
*
* \param writer The writer object to which the fields should be added.
* \param u The solution function
* \param deltaU The delta of the solution function before and after the Newton update
*/
template <class VtkMultiWriter>
void addConvergenceVtkFields(VtkMultiWriter& writer,
const SolutionVector& u,
const GlobalEqVector& deltaU) const
{
using ScalarBuffer = std::vector<double>;
GlobalEqVector globalResid(u.size());
asImp_().globalResidual(globalResid, u);
// create the required scalar fields
size_t numGridDof = asImp_().numGridDof();
// global defect of the two auxiliary equations
ScalarBuffer* def[numEq];
ScalarBuffer* delta[numEq];
ScalarBuffer* priVars[numEq];
ScalarBuffer* priVarWeight[numEq];
ScalarBuffer* relError = writer.allocateManagedScalarBuffer(numGridDof);
ScalarBuffer* normalizedRelError = writer.allocateManagedScalarBuffer(numGridDof);
for (unsigned pvIdx = 0; pvIdx < numEq; ++pvIdx) {
priVars[pvIdx] = writer.allocateManagedScalarBuffer(numGridDof);
priVarWeight[pvIdx] = writer.allocateManagedScalarBuffer(numGridDof);
delta[pvIdx] = writer.allocateManagedScalarBuffer(numGridDof);
def[pvIdx] = writer.allocateManagedScalarBuffer(numGridDof);
}
Scalar minRelErr = 1e30;
Scalar maxRelErr = -1e30;
for (unsigned globalIdx = 0; globalIdx < numGridDof; ++ globalIdx) {
for (unsigned pvIdx = 0; pvIdx < numEq; ++pvIdx) {
(*priVars[pvIdx])[globalIdx] = u[globalIdx][pvIdx];
(*priVarWeight[pvIdx])[globalIdx] = asImp_().primaryVarWeight(globalIdx, pvIdx);
(*delta[pvIdx])[globalIdx] = - deltaU[globalIdx][pvIdx];
(*def[pvIdx])[globalIdx] = globalResid[globalIdx][pvIdx];
}
PrimaryVariables uOld(u[globalIdx]);
PrimaryVariables uNew(uOld);
uNew -= deltaU[globalIdx];
Scalar err = asImp_().relativeDofError(globalIdx, uOld, uNew);
(*relError)[globalIdx] = err;
(*normalizedRelError)[globalIdx] = err;
minRelErr = std::min(err, minRelErr);
maxRelErr = std::max(err, maxRelErr);
}
// do the normalization of the relative error
Scalar alpha = std::max(Scalar{1e-20},
std::max(std::abs(maxRelErr),
std::abs(minRelErr)));
for (unsigned globalIdx = 0; globalIdx < numGridDof; ++ globalIdx)
(*normalizedRelError)[globalIdx] /= alpha;
DiscBaseOutputModule::attachScalarDofData_(writer, *relError, "relative error");
DiscBaseOutputModule::attachScalarDofData_(writer, *normalizedRelError, "normalized relative error");
for (unsigned i = 0; i < numEq; ++i) {
std::ostringstream oss;
oss.str(""); oss << "priVar_" << asImp_().primaryVarName(i);
DiscBaseOutputModule::attachScalarDofData_(writer,
*priVars[i],
oss.str());
oss.str(""); oss << "delta_" << asImp_().primaryVarName(i);
DiscBaseOutputModule::attachScalarDofData_(writer,
*delta[i],
oss.str());
oss.str(""); oss << "weight_" << asImp_().primaryVarName(i);
DiscBaseOutputModule::attachScalarDofData_(writer,
*priVarWeight[i],
oss.str());
oss.str(""); oss << "defect_" << asImp_().eqName(i);
DiscBaseOutputModule::attachScalarDofData_(writer,
*def[i],
oss.str());
}
asImp_().prepareOutputFields();
asImp_().appendOutputFields(writer);
}
/*!
* \brief Prepare the quantities relevant for the current solution
* to be appended to the output writers.
*/
void prepareOutputFields() const
{
bool needFullContextUpdate = false;
auto modIt = outputModules_.begin();
const auto& modEndIt = outputModules_.end();
for (; modIt != modEndIt; ++modIt) {
(*modIt)->allocBuffers();
needFullContextUpdate = needFullContextUpdate || (*modIt)->needExtensiveQuantities();
}
// iterate over grid
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(gridView());
#ifdef _OPENMP
#pragma omp parallel
#endif
{
ElementContext elemCtx(simulator_);
ElementIterator elemIt = threadedElemIt.beginParallel();
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
// ignore non-interior entities
continue;
if (needFullContextUpdate)
elemCtx.updateAll(elem);
else {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
}
// we cannot reuse the "modIt" variable here because the code here might
// be threaded and "modIt" is is the same for all threads, i.e., if a
// given thread modifies it, the changes affect all threads.
auto modIt2 = outputModules_.begin();
for (; modIt2 != modEndIt; ++modIt2)
(*modIt2)->processElement(elemCtx);
}
}
}
/*!
* \brief Append the quantities relevant for the current solution
* to an output writer.
*/
void appendOutputFields(BaseOutputWriter& writer) const
{
auto modIt = outputModules_.begin();
const auto& modEndIt = outputModules_.end();
for (; modIt != modEndIt; ++modIt)
(*modIt)->commitBuffers(writer);
}
/*!
* \brief Reference to the grid view of the spatial domain.
*/
const GridView& gridView() const
{ return gridView_; }
/*!
* \brief Add a module for an auxiliary equation.
*
* This module can add additional degrees of freedom and additional off-diagonal
* elements, but the number of equations per DOF needs to be the same as for the
* "main" model.
*
* For example, auxiliary modules can be used to specify non-neighboring connections,
* well equations or model couplings via mortar DOFs. Auxiliary equations are
* completely optional, though.
*/
void addAuxiliaryModule(BaseAuxiliaryModule<TypeTag>* auxMod)
{
auxMod->setDofOffset(numTotalDof());
auxEqModules_.push_back(auxMod);
// resize the solutions
if (enableGridAdaptation_
&& !std::is_same<DiscreteFunction, BlockVectorWrapper>::value)
{
throw std::invalid_argument("Problems which require auxiliary modules cannot be used in"
" conjunction with dune-fem");
}
size_t numDof = numTotalDof();
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx)
solution(timeIdx).resize(numDof);
auxMod->applyInitial();
}
/*!
* \brief Causes the list of auxiliary equations to be cleared
*
* Note that this method implies recreateMatrix()
*/
void clearAuxiliaryModules()
{
auxEqModules_.clear();
linearizer_->eraseMatrix();
newtonMethod_.eraseMatrix();
}
/*!
* \brief Returns the number of modules for auxiliary equations
*/
size_t numAuxiliaryModules() const
{ return auxEqModules_.size(); }
/*!
* \brief Returns a given module for auxiliary equations
*/
BaseAuxiliaryModule<TypeTag>* auxiliaryModule(unsigned auxEqModIdx)
{ return auxEqModules_[auxEqModIdx]; }
/*!
* \brief Returns a given module for auxiliary equations
*/
const BaseAuxiliaryModule<TypeTag>* auxiliaryModule(unsigned auxEqModIdx) const
{ return auxEqModules_[auxEqModIdx]; }
/*!
* \brief Returns true if the cache for intensive quantities is enabled
*/
bool storeIntensiveQuantities() const
{ return enableIntensiveQuantityCache_ || enableThermodynamicHints_; }
const Timer& prePostProcessTimer() const
{ return prePostProcessTimer_; }
const Timer& linearizeTimer() const
{ return linearizeTimer_; }
const Timer& solveTimer() const
{ return solveTimer_; }
const Timer& updateTimer() const
{ return updateTimer_; }
template<class Serializer>
void serializeOp(Serializer& serializer)
{
using BaseDiscretization = GetPropType<TypeTag, Properties::BaseDiscretizationType>;
using Helper = typename BaseDiscretization::template SerializeHelper<Serializer>;
Helper::serializeOp(serializer, solution_);
}
bool operator==(const FvBaseDiscretization& rhs) const
{
return std::equal(this->solution_.begin(), this->solution_.end(),
rhs.solution_.begin(), rhs.solution_.end(),
[](const auto& x, const auto& y)
{
return *x == *y;
});
}
protected:
void resizeAndResetIntensiveQuantitiesCache_()
{
// allocate the storage cache
if (enableStorageCache()) {
size_t numDof = asImp_().numGridDof();
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
storageCache_[timeIdx].resize(numDof);
}
}
// allocate the intensive quantities cache
if (storeIntensiveQuantities()) {
size_t numDof = asImp_().numGridDof();
for(unsigned timeIdx=0; timeIdx<historySize; ++timeIdx) {
intensiveQuantityCache_[timeIdx].resize(numDof);
intensiveQuantityCacheUpToDate_[timeIdx].resize(numDof);
invalidateIntensiveQuantitiesCache(timeIdx);
}
}
}
template <class Context>
void supplementInitialSolution_(PrimaryVariables&,
const Context&,
unsigned,
unsigned)
{ }
/*!
* \brief Register all output modules which make sense for the model.
*
* This method is supposed to be overloaded by the actual models,
* or else only the primary variables can be written to the result
* files.
*/
void registerOutputModules_()
{
// add the output modules available on all model
auto *mod = new VtkPrimaryVarsModule<TypeTag>(simulator_);
this->outputModules_.push_back(mod);
}
/*!
* \brief Reference to the local residal object
*/
LocalResidual& localResidual_()
{ return localLinearizer_.localResidual(); }
/*!
* \brief Returns whether messages should be printed
*/
bool verbose_() const
{ return gridView_.comm().rank() == 0; }
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
// the problem we want to solve. defines the constitutive
// relations, matxerial laws, etc.
Simulator& simulator_;
// the representation of the spatial domain of the problem
GridView gridView_;
// the mappers for element and vertex entities to global indices
ElementMapper elementMapper_;
VertexMapper vertexMapper_;
// a vector with all auxiliary equations to be considered
std::vector<BaseAuxiliaryModule<TypeTag>*> auxEqModules_;
NewtonMethod newtonMethod_;
Timer prePostProcessTimer_;
Timer linearizeTimer_;
Timer solveTimer_;
Timer updateTimer_;
// calculates the local jacobian matrix for a given element
std::vector<LocalLinearizer> localLinearizer_;
// Linearizes the problem at the current time step using the
// local jacobian
Linearizer *linearizer_;
// cur is the current iterative solution, prev the converged
// solution of the previous time step
mutable IntensiveQuantitiesVector intensiveQuantityCache_[historySize];
// while these are logically bools, concurrent writes to vector<bool> are not thread safe.
mutable std::vector<unsigned char> intensiveQuantityCacheUpToDate_[historySize];
mutable std::array< std::unique_ptr< DiscreteFunction >, historySize > solution_;
std::list<BaseOutputModule<TypeTag>*> outputModules_;
Scalar gridTotalVolume_;
std::vector<Scalar> dofTotalVolume_;
std::vector<bool> isLocalDof_;
mutable GlobalEqVector storageCache_[historySize];
bool enableGridAdaptation_;
bool enableIntensiveQuantityCache_;
bool enableStorageCache_;
bool enableThermodynamicHints_;
};
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief The base class for the finite volume discretization schemes without adaptation.
*/
template<class TypeTag>
class FvBaseDiscretizationNoAdapt : public FvBaseDiscretization<TypeTag>
{
using ParentType = FvBaseDiscretization<TypeTag>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using DiscreteFunction = GetPropType<TypeTag, Properties::DiscreteFunction>;
static constexpr unsigned historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>();
public:
template<class Serializer>
struct SerializeHelper {
template<class SolutionType>
static void serializeOp(Serializer& serializer,
SolutionType& solution)
{
for (auto& sol : solution) {
serializer(*sol);
}
}
};
FvBaseDiscretizationNoAdapt(Simulator& simulator)
: ParentType(simulator)
{
if (this->enableGridAdaptation_) {
throw std::invalid_argument("Grid adaptation need to use"
" BaseDiscretization = FvBaseDiscretizationFemAdapt"
" which currently requires the presence of the"
" dune-fem module");
}
size_t numDof = this->asImp_().numGridDof();
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
this->solution_[timeIdx] = std::make_unique<DiscreteFunction>("solution", numDof);
}
}
};
} // namespace Opm
#endif // EWOMS_FV_BASE_DISCRETIZATION_HH
|