1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseDiscretization
*/
#ifndef EWOMS_FV_BASE_DISCRETIZATION_FEMADAPT_HH
#define EWOMS_FV_BASE_DISCRETIZATION_FEMADAPT_HH
#include <opm/models/discretization/common/fvbasediscretization.hh>
#include <dune/fem/space/common/adaptationmanager.hh>
#include <dune/fem/space/common/restrictprolongtuple.hh>
#include <dune/fem/function/blockvectorfunction.hh>
#include <dune/fem/misc/capabilities.hh>
namespace Opm {
template<class TypeTag>
class FvBaseDiscretizationFemAdapt;
namespace Properties {
template<class TypeTag>
struct BaseDiscretizationType<TypeTag,TTag::FvBaseDiscretization> {
using type = FvBaseDiscretizationFemAdapt<TypeTag>;
};
template<class TypeTag>
struct DiscreteFunction<TypeTag, TTag::FvBaseDiscretization> {
using DiscreteFunctionSpace = GetPropType<TypeTag, Properties::DiscreteFunctionSpace>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using type = Dune::Fem::ISTLBlockVectorDiscreteFunction<DiscreteFunctionSpace, PrimaryVariables>;
};
} // namespace Properties
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief The base class for the finite volume discretization schemes.
*/
template <class TypeTag>
class FvBaseDiscretizationFemAdapt : public FvBaseDiscretization<TypeTag>
{
using Grid = GetPropType<TypeTag, Properties::Grid>;
using ParentType = FvBaseDiscretization<TypeTag>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
static constexpr unsigned historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>();
using DiscreteFunctionSpace = GetPropType<TypeTag, Properties::DiscreteFunctionSpace>;
// discrete function storing solution data
using DiscreteFunction = Dune::Fem::ISTLBlockVectorDiscreteFunction<DiscreteFunctionSpace, PrimaryVariables>;
// problem restriction and prolongation operator for adaptation
using ProblemRestrictProlongOperator = typename Problem::RestrictProlongOperator;
// discrete function restriction and prolongation operator for adaptation
using DiscreteFunctionRestrictProlong = Dune::Fem::RestrictProlongDefault<DiscreteFunction>;
using RestrictProlong
= Dune::Fem::RestrictProlongTuple<DiscreteFunctionRestrictProlong, ProblemRestrictProlongOperator>;
// adaptation classes
using AdaptationManager = Dune::Fem::AdaptationManager<Grid, RestrictProlong>;
public:
template<class Serializer>
struct SerializeHelper {
template<class SolutionType>
static void serializeOp(Serializer& serializer,
SolutionType& solution)
{
for (auto& sol : solution) {
serializer(sol->blockVector());
}
}
};
FvBaseDiscretizationFemAdapt(Simulator& simulator)
: ParentType(simulator)
, space_(simulator.vanguard().gridPart())
{
if (this->enableGridAdaptation_ && !Dune::Fem::Capabilities::isLocallyAdaptive<Grid>::v) {
throw std::invalid_argument("Grid adaptation enabled, but chosen Grid is not capable"
" of adaptivity");
}
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
this->solution_[timeIdx] = std::make_unique<DiscreteFunction>("solution", space_);
}
}
void adaptGrid()
{
// adapt the grid if enabled and if all dependencies are available
// adaptation is only done if markForGridAdaptation returns true
if (this->enableGridAdaptation_) {
// check if problem allows for adaptation and cells were marked
if (this->simulator_.problem().markForGridAdaptation()) {
// adapt the grid and load balance if necessary
adaptationManager().adapt();
// if the grid has potentially changed, we need to re-create the
// supporting data structures.
this->elementMapper_.update(this->gridView_);
this->vertexMapper_.update(this->gridView_);
this->resetLinearizer();
// this is a bit hacky because it supposes that Problem::finishInit()
// works fine multiple times in a row.
//
// TODO: move this to Problem::gridChanged()
this->finishInit();
// notify the problem that the grid has changed
//
// TODO: come up with a mechanism to access the unadapted data structures
// outside of the problem (i.e., grid, mappers, solutions)
this->simulator_.problem().gridChanged();
// notify the modules for visualization output
auto outIt = this->outputModules_.begin();
auto outEndIt = this->outputModules_.end();
for (; outIt != outEndIt; ++outIt)
(*outIt)->allocBuffers();
}
}
}
AdaptationManager& adaptationManager()
{
if (!adaptationManager_) {
// create adaptation objects here, because when doing so in constructor
// problem is not yet intialized, aka seg fault
restrictProlong_ = std::make_unique<RestrictProlong>(DiscreteFunctionRestrictProlong(*(this->solution_[/*timeIdx=*/0])),
this->simulator_.problem().restrictProlongOperator());
adaptationManager_ = std::make_unique<AdaptationManager>(this->simulator_.vanguard().grid(), *restrictProlong_);
}
return *adaptationManager_;
}
private:
DiscreteFunctionSpace space_;
std::unique_ptr<RestrictProlong> restrictProlong_;
std::unique_ptr<AdaptationManager> adaptationManager_;
};
} // namespace Opm
#endif
|