1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseElementContext
*/
#ifndef EWOMS_FV_BASE_ELEMENT_CONTEXT_HH
#define EWOMS_FV_BASE_ELEMENT_CONTEXT_HH
#include "fvbaseproperties.hh"
#include <dune/common/fvector.hh>
#include <opm/models/discretization/common/fvbaseparameters.hh>
#include <opm/models/discretization/common/linearizationtype.hh>
#include <opm/models/utils/alignedallocator.hh>
#include <vector>
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief This class stores an array of IntensiveQuantities objects, one
* intensive quantities object for each of the element's vertices
*/
template<class TypeTag>
class FvBaseElementContext
{
using Implementation = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
// the history size of the time discretization in number of steps
enum { timeDiscHistorySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
struct DofStore_ {
IntensiveQuantities intensiveQuantities[timeDiscHistorySize];
const PrimaryVariables* priVars[timeDiscHistorySize];
const IntensiveQuantities *thermodynamicHint[timeDiscHistorySize];
};
using DofVarsVector = std::vector<DofStore_>;
using ExtensiveQuantitiesVector = std::vector<ExtensiveQuantities>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using GradientCalculator = GetPropType<TypeTag, Properties::GradientCalculator>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Element = typename GridView::template Codim<0>::Entity;
static const unsigned dimWorld = GridView::dimensionworld;
static const unsigned numEq = getPropValue<TypeTag, Properties::NumEq>();
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
// we don't allow copies of element contexts!
FvBaseElementContext(const FvBaseElementContext& ) = delete;
public:
/*!
* \brief The constructor.
*/
explicit FvBaseElementContext(const Simulator& simulator)
: gridView_(simulator.gridView())
, stencil_(gridView_, simulator.model().dofMapper() )
{
// remember the simulator object
simulatorPtr_ = &simulator;
enableStorageCache_ = Parameters::Get<Parameters::EnableStorageCache>();
stashedDofIdx_ = -1;
focusDofIdx_ = -1;
}
static void *operator new(size_t size)
{ return aligned_alloc(alignof(FvBaseElementContext), size); }
static void operator delete(void *ptr)
{ aligned_free(ptr); }
/*!
* \brief Construct all volume and extensive quantities of an element
* from scratch.
*
* \param elem The DUNE Codim<0> entity for which the volume
* variables ought to be calculated
*/
void updateAll(const Element& elem)
{
asImp_().updateStencil(elem);
asImp_().updateAllIntensiveQuantities();
asImp_().updateAllExtensiveQuantities();
}
/*!
* \brief Compute the finite volume geometry for an element.
*
* \param elem The grid element for which the finite volume geometry ought to be
* computed.
*/
void updateStencil(const Element& elem)
{
// remember the current element
elemPtr_ = &elem;
// update the stencil. the center gradients are quite expensive to calculate and
// most models don't need them, so that we only do this if the model explicitly
// enables them
stencil_.update(elem);
// resize the arrays containing the flux and the volume variables
dofVars_.resize(stencil_.numDof());
extensiveQuantities_.resize(stencil_.numInteriorFaces());
}
/*!
* \brief Update the primary topological part of the stencil, but nothing else.
*
* \param elem The grid element for which the finite volume geometry ought to be
* computed.
*/
void updatePrimaryStencil(const Element& elem)
{
// remember the current element
elemPtr_ = &elem;
// update the finite element geometry
stencil_.updatePrimaryTopology(elem);
dofVars_.resize(stencil_.numPrimaryDof());
}
/*!
* \brief Update the topological part of the stencil, but nothing else.
*
* \param elem The grid element for which the finite volume geometry ought to be
* computed.
*/
void updateStencilTopology(const Element& elem)
{
// remember the current element
elemPtr_ = &elem;
// update the finite element geometry
stencil_.updateTopology(elem);
}
/*!
* \brief Compute the intensive quantities of all sub-control volumes of the current
* element for all time indices.
*/
void updateAllIntensiveQuantities()
{
if (!enableStorageCache_) {
// if the storage cache is disabled, we need to calculate the storage term
// from scratch, i.e. we need the intensive quantities of all of the history.
for (unsigned timeIdx = 0; timeIdx < timeDiscHistorySize; ++ timeIdx)
asImp_().updateIntensiveQuantities(timeIdx);
}
else
// if the storage cache is enabled, we only need to recalculate the storage
// term for the most recent point of history (i.e., for the current iterative
// solution)
asImp_().updateIntensiveQuantities(/*timeIdx=*/0);
}
/*!
* \brief Compute the intensive quantities of all sub-control volumes of the current
* element for a single time index.
*
* \param timeIdx The index of the solution vector used by the time discretization.
*/
void updateIntensiveQuantities(unsigned timeIdx)
{ updateIntensiveQuantities_(timeIdx, numDof(timeIdx)); }
/*!
* \brief Compute the intensive quantities of all sub-control volumes of the current
* element for a single time index.
*
* \param timeIdx The index of the solution vector used by the time discretization.
*/
void updatePrimaryIntensiveQuantities(unsigned timeIdx)
{ updateIntensiveQuantities_(timeIdx, numPrimaryDof(timeIdx)); }
/*!
* \brief Compute the intensive quantities of a single sub-control volume of the
* current element for a single time index.
*
* \param priVars The PrimaryVariables which should be used to calculate the
* intensive quantities.
* \param dofIdx The local index in the current element of the sub-control volume
* which should be updated.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
void updateIntensiveQuantities(const PrimaryVariables& priVars, unsigned dofIdx, unsigned timeIdx)
{ asImp_().updateSingleIntQuants_(priVars, dofIdx, timeIdx); }
/*!
* \brief Compute the extensive quantities of all sub-control volume
* faces of the current element for all time indices.
*/
void updateAllExtensiveQuantities()
{ asImp_().updateExtensiveQuantities(/*timeIdx=*/0); }
/*!
* \brief Compute the extensive quantities of all sub-control volume
* faces of the current element for a single time index.
*
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
void updateExtensiveQuantities(unsigned timeIdx)
{
gradientCalculator_.prepare(/*context=*/asImp_(), timeIdx);
for (unsigned fluxIdx = 0; fluxIdx < numInteriorFaces(timeIdx); fluxIdx++) {
extensiveQuantities_[fluxIdx].update(/*context=*/asImp_(),
/*localIndex=*/fluxIdx,
timeIdx);
}
}
/*!
* \brief Sets the degree of freedom on which the simulator is currently "focused" on
*
* I.e., in the case of automatic differentiation, all derivatives are with regard to
* the primary variables of that degree of freedom. Only "primary" DOFs can be
* focused on.
*/
void setFocusDofIndex(unsigned dofIdx)
{ focusDofIdx_ = dofIdx; }
/*!
* \brief Returns the degree of freedom on which the simulator is currently "focused" on
*
* \copydetails setFocusDof()
*/
unsigned focusDofIndex() const
{ return focusDofIdx_; }
/*!
* \brief Returns the linearization type.
*
* \copydetails setLinearizationType()
*/
LinearizationType linearizationType() const
{ return this->model().linearizer().getLinearizationType(); }
/*!
* \brief Return a reference to the simulator.
*/
const Simulator& simulator() const
{ return *simulatorPtr_; }
/*!
* \brief Return a reference to the problem.
*/
const Problem& problem() const
{ return simulatorPtr_->problem(); }
/*!
* \brief Return a reference to the model.
*/
const Model& model() const
{ return simulatorPtr_->model(); }
/*!
* \brief Return a reference to the grid view.
*/
const GridView& gridView() const
{ return gridView_; }
/*!
* \brief Return the current element.
*/
const Element& element() const
{ return *elemPtr_; }
/*!
* \brief Return the number of sub-control volumes of the current element.
*/
size_t numDof(unsigned timeIdx) const
{ return stencil(timeIdx).numDof(); }
/*!
* \brief Return the number of primary degrees of freedom of the current element.
*/
size_t numPrimaryDof(unsigned timeIdx) const
{ return stencil(timeIdx).numPrimaryDof(); }
/*!
* \brief Return the number of non-boundary faces which need to be
* considered for the flux apporixmation.
*/
size_t numInteriorFaces(unsigned timeIdx) const
{ return stencil(timeIdx).numInteriorFaces(); }
/*!
* \brief Return the number of boundary faces which need to be
* considered for the flux apporixmation.
*/
size_t numBoundaryFaces(unsigned timeIdx) const
{ return stencil(timeIdx).numBoundaryFaces(); }
/*!
* \brief Return the current finite element geometry.
*
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
const Stencil& stencil(unsigned) const
{ return stencil_; }
/*!
* \brief Return the position of a local entities in global coordinates
*
* \param dofIdx The local index of the degree of freedom
* in the current element.
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
decltype(auto) pos(unsigned dofIdx, unsigned) const
{ return stencil_.subControlVolume(dofIdx).globalPos(); }
/*!
* \brief Return the global spatial index for a sub-control volume
*
* \param dofIdx The local index of the degree of freedom
* in the current element.
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
unsigned globalSpaceIndex(unsigned dofIdx, unsigned timeIdx) const
{ return stencil(timeIdx).globalSpaceIndex(dofIdx); }
/*!
* \brief Return the element-local volume associated with a degree of freedom
*
* In the case of the vertex-centered finite volume method, this is different from
* the total volume because a finite volume usually spans multiple elements...
*
* \param dofIdx The local index of the degree of freedom in the current element.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
Scalar dofVolume(unsigned dofIdx, unsigned timeIdx) const
{ return stencil(timeIdx).subControlVolume(dofIdx).volume(); }
/*!
* \brief Return the total volume associated with a degree of freedom
*
* "Total" means the volume controlled by a degree of freedom disregarding the
* element. (For example in the vertex-centered finite volume method, a control
* volume typically encompasses parts of multiple elements.)
*
* \param dofIdx The local index of the degree of freedom in the current element.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
Scalar dofTotalVolume(unsigned dofIdx, unsigned timeIdx) const
{ return model().dofTotalVolume(globalSpaceIndex(dofIdx, timeIdx)); }
/*!
* \brief Returns whether the current element is on the domain's
* boundary.
*/
bool onBoundary() const
{ return element().hasBoundaryIntersections(); }
/*!
* \brief Return a reference to the intensive quantities of a
* sub-control volume at a given time.
*
* If the time step index is not given, return the volume
* variables for the current time.
*
* \param dofIdx The local index of the degree of freedom in the current element.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
const IntensiveQuantities& intensiveQuantities(unsigned dofIdx, unsigned timeIdx) const
{
#ifndef NDEBUG
assert(dofIdx < numDof(timeIdx));
if (enableStorageCache_ && timeIdx != 0 && problem().recycleFirstIterationStorage())
throw std::logic_error("If caching of the storage term is enabled, only the intensive quantities "
"for the most-recent substep (i.e. time index 0) are available!");
#endif
return dofVars_[dofIdx].intensiveQuantities[timeIdx];
}
/*!
* \brief Return the thermodynamic hint for a given local index.
*
* \sa Discretization::thermodynamicHint(int, int)
*
* \param dofIdx The local index of the degree of freedom in the current element.
* \param timeIdx The index of the solution vector used by the time discretization.
*/
const IntensiveQuantities *thermodynamicHint(unsigned dofIdx, unsigned timeIdx) const
{
assert(dofIdx < numDof(timeIdx));
return dofVars_[dofIdx].thermodynamicHint[timeIdx];
}
/*!
* \copydoc intensiveQuantities()
*/
IntensiveQuantities& intensiveQuantities(unsigned dofIdx, unsigned timeIdx)
{
assert(dofIdx < numDof(timeIdx));
return dofVars_[dofIdx].intensiveQuantities[timeIdx];
}
/*!
* \brief Return the primary variables for a given local index.
*
* \param dofIdx The local index of the degree of freedom
* in the current element.
* \param timeIdx The index of the solution vector used by the
* time discretization.
*/
const PrimaryVariables& primaryVars(unsigned dofIdx, unsigned timeIdx) const
{
assert(dofIdx < numDof(timeIdx));
return *dofVars_[dofIdx].priVars[timeIdx];
}
/*!
* \brief Returns true if no intensive quanties are stashed
*
* In most cases quantities are stashed only if a partial derivative is to be
* calculated via finite difference methods.
*/
bool haveStashedIntensiveQuantities() const
{ return stashedDofIdx_ != -1; }
/*!
* \brief Return the (local) index of the DOF for which the primary variables were
* stashed
*
* If none, then this returns -1.
*/
int stashedDofIdx() const
{ return stashedDofIdx_; }
/*!
* \brief Stash the intensive quantities for a degree of freedom on internal memory.
*
* \param dofIdx The local index of the degree of freedom in the current element.
*/
void stashIntensiveQuantities(unsigned dofIdx)
{
assert(dofIdx < numDof(/*timeIdx=*/0));
intensiveQuantitiesStashed_ = dofVars_[dofIdx].intensiveQuantities[/*timeIdx=*/0];
priVarsStashed_ = *dofVars_[dofIdx].priVars[/*timeIdx=*/0];
stashedDofIdx_ = static_cast<int>(dofIdx);
}
/*!
* \brief Restores the intensive quantities for a degree of freedom from internal memory.
*
* \param dofIdx The local index of the degree of freedom in the current element.
*/
void restoreIntensiveQuantities(unsigned dofIdx)
{
dofVars_[dofIdx].priVars[/*timeIdx=*/0] = &priVarsStashed_;
dofVars_[dofIdx].intensiveQuantities[/*timeIdx=*/0] = intensiveQuantitiesStashed_;
stashedDofIdx_ = -1;
}
/*!
* \brief Return a reference to the gradient calculation class of
* the chosen spatial discretization.
*/
const GradientCalculator& gradientCalculator() const
{ return gradientCalculator_; }
/*!
* \brief Return a reference to the extensive quantities of a
* sub-control volume face.
*
* \param fluxIdx The local index of the sub-control volume face for which the
* extensive quantities are requested
* \param timeIdx The index of the solution vector used by the time discretization.
*/
const ExtensiveQuantities& extensiveQuantities(unsigned fluxIdx, unsigned) const
{ return extensiveQuantities_[fluxIdx]; }
/*!
* \brief Returns true iff the cache for the storage term ought to be used for this context.
*
* If it is used, intensive quantities can only be accessed for the most recent time
* index. (time index 0.)
*/
bool enableStorageCache() const
{ return enableStorageCache_; }
/*!
* \brief Specifies if the cache for the storage term ought to be used for this context.
*/
void setEnableStorageCache(bool yesno)
{ enableStorageCache_ = yesno; }
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
protected:
/*!
* \brief Update the first 'n' intensive quantities objects from the primary variables.
*
* This method considers the intensive quantities cache.
*/
void updateIntensiveQuantities_(unsigned timeIdx, size_t numDof)
{
// update the intensive quantities for the whole history
const SolutionVector& globalSol = model().solution(timeIdx);
// update the non-gradient quantities
for (unsigned dofIdx = 0; dofIdx < numDof; dofIdx++) {
unsigned globalIdx = globalSpaceIndex(dofIdx, timeIdx);
const PrimaryVariables& dofSol = globalSol[globalIdx];
dofVars_[dofIdx].priVars[timeIdx] = &dofSol;
dofVars_[dofIdx].thermodynamicHint[timeIdx] =
model().thermodynamicHint(globalIdx, timeIdx);
const auto *cachedIntQuants = model().cachedIntensiveQuantities(globalIdx, timeIdx);
if (cachedIntQuants) {
dofVars_[dofIdx].intensiveQuantities[timeIdx] = *cachedIntQuants;
}
else {
updateSingleIntQuants_(dofSol, dofIdx, timeIdx);
model().updateCachedIntensiveQuantities(dofVars_[dofIdx].intensiveQuantities[timeIdx],
globalIdx,
timeIdx);
}
}
}
void updateSingleIntQuants_(const PrimaryVariables& priVars, unsigned dofIdx, unsigned timeIdx)
{
#ifndef NDEBUG
if (enableStorageCache_ && timeIdx != 0 && problem().recycleFirstIterationStorage())
throw std::logic_error("If caching of the storage term is enabled, only the intensive quantities "
"for the most-recent substep (i.e. time index 0) are available!");
#endif
dofVars_[dofIdx].priVars[timeIdx] = &priVars;
dofVars_[dofIdx].intensiveQuantities[timeIdx].update(/*context=*/asImp_(), dofIdx, timeIdx);
}
IntensiveQuantities intensiveQuantitiesStashed_;
PrimaryVariables priVarsStashed_;
GradientCalculator gradientCalculator_;
std::vector<DofStore_, aligned_allocator<DofStore_, alignof(DofStore_)> > dofVars_;
std::vector<ExtensiveQuantities, aligned_allocator<ExtensiveQuantities, alignof(ExtensiveQuantities)> > extensiveQuantities_;
const Simulator *simulatorPtr_;
const Element *elemPtr_;
const GridView gridView_;
Stencil stencil_;
int stashedDofIdx_;
int focusDofIdx_;
bool enableStorageCache_;
};
} // namespace Opm
#endif
|