1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseFdLocalLinearizer
*/
#ifndef EWOMS_FV_BASE_FD_LOCAL_LINEARIZER_HH
#define EWOMS_FV_BASE_FD_LOCAL_LINEARIZER_HH
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hpp>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <dune/istl/bvector.hh>
#include <dune/istl/matrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <limits>
namespace Opm {
// forward declaration
template<class TypeTag>
class FvBaseFdLocalLinearizer;
} // namespace Opm
namespace Opm::Properties {
// declare the property tags required for the finite differences local linearizer
namespace TTag {
struct FiniteDifferenceLocalLinearizer {};
} // namespace TTag
template<class TypeTag, class MyTypeTag>
struct BaseEpsilon { using type = UndefinedProperty; };
// set the properties to be spliced in
template<class TypeTag>
struct LocalLinearizer<TypeTag, TTag::FiniteDifferenceLocalLinearizer>
{ using type = FvBaseFdLocalLinearizer<TypeTag>; };
template<class TypeTag>
struct Evaluation<TypeTag, TTag::FiniteDifferenceLocalLinearizer>
{ using type = GetPropType<TypeTag, Properties::Scalar>; };
//! The base epsilon value for finite difference calculations
template<class TypeTag>
struct BaseEpsilon<TypeTag, TTag::FiniteDifferenceLocalLinearizer>
{
using type = GetPropType<TypeTag, Properties::Scalar>;
static constexpr type value = std::max<type>(0.9123e-10, std::numeric_limits<type>::epsilon()*1.23e3);
};
} // namespace Opm::Properties
namespace Opm::Parameters {
/*!
* \brief Specify which kind of method should be used to numerically
* calculate the partial derivatives of the residual.
*
* -1 means backward differences, 0 means central differences, 1 means
* forward differences. By default we use forward differences.
*/
struct NumericDifferenceMethod { static constexpr int value = +1; };
} // namespace Opm::Parameters
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief Calculates the Jacobian of the local residual for finite volume spatial
* discretizations using a finite difference method
*
* The local Jacobian for a given context is defined as the derivatives of the residuals
* of all degrees of freedom featured by the stencil with regard to the primary variables
* of the stencil's "primary" degrees of freedom.
*
* This class implements numeric differentiation using finite difference methods, i.e.
* forward or backward differences (2nd order), or central differences (3rd order). The
* method used is determined by the "NumericDifferenceMethod" property:
*
* - If the value of this property is smaller than 0, backward differences are used,
* i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx \frac{f(x) - f(x - \epsilon)}{\epsilon}
* \f]
*
* - If the value of this property is 0, central differences are used, i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx
* \frac{f(x + \epsilon) - f(x - \epsilon)}{2 \epsilon}
* \f]
*
* - if the value of this property is larger than 0, forward differences are used, i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx
* \frac{f(x + \epsilon) - f(x)}{\epsilon}
* \f]
*
* Here, \f$ f \f$ is the residual function for all equations, \f$x\f$ is the value of a
* sub-control volume's primary variable at the evaluation point and \f$\epsilon\f$ is a
* small scalar value larger than 0.
*/
template<class TypeTag>
class FvBaseFdLocalLinearizer
{
private:
using Implementation = GetPropType<TypeTag, Properties::LocalLinearizer>;
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Model = GetPropType<TypeTag, Properties::Model>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Element = typename GridView::template Codim<0>::Entity;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
// extract local matrices from jacobian matrix for consistency
using ScalarMatrixBlock = typename GetPropType<TypeTag, Properties::SparseMatrixAdapter>::MatrixBlock;
using ScalarVectorBlock = Dune::FieldVector<Scalar, numEq>;
using ScalarLocalBlockVector = Dune::BlockVector<ScalarVectorBlock>;
using ScalarLocalBlockMatrix = Dune::Matrix<ScalarMatrixBlock>;
using LocalEvalBlockVector = typename LocalResidual::LocalEvalBlockVector;
#if __GNUC__ == 4 && __GNUC_MINOR__ <= 6
public:
// make older GCCs happy by providing a public copy constructor (this is necessary
// for their implementation of std::vector, although the method is never called...)
FvBaseFdLocalLinearizer(const FvBaseFdLocalLinearizer&)
: internalElemContext_(0)
{}
#else
// copying local residual objects around is a very bad idea, so we explicitly prevent
// it...
FvBaseFdLocalLinearizer(const FvBaseFdLocalLinearizer&) = delete;
#endif
public:
FvBaseFdLocalLinearizer()
: internalElemContext_(0)
{ }
~FvBaseFdLocalLinearizer()
{ delete internalElemContext_; }
/*!
* \brief Register all run-time parameters for the local jacobian.
*/
static void registerParameters()
{
Parameters::Register<Parameters::NumericDifferenceMethod>
("The method used for numeric differentiation (-1: backward "
"differences, 0: central differences, 1: forward differences)");
}
/*!
* \brief Initialize the local Jacobian object.
*
* At this point we can assume that everything has been allocated,
* although some objects may not yet be completely initialized.
*
* \param simulator The simulator object of the simulation.
*/
void init(Simulator& simulator)
{
simulatorPtr_ = &simulator;
delete internalElemContext_;
internalElemContext_ = new ElementContext(simulator);
}
/*!
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
*
* The local Jacobian for a given context is defined as the derivatives of the
* residuals of all degrees of freedom featured by the stencil with regard to the
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
*
* \param element The grid element for which the local residual and its local
* Jacobian should be calculated.
*/
void linearize(const Element& element)
{
linearize(*internalElemContext_, element);
}
/*!
* \brief Compute an element's local Jacobian matrix and evaluate its residual.
*
* The local Jacobian for a given context is defined as the derivatives of the
* residuals of all degrees of freedom featured by the stencil with regard to the
* primary variables of the stencil's "primary" degrees of freedom. Adding the local
* Jacobians for all elements in the grid will give the global Jacobian 'grad f(x)'.
*
* After calling this method the ElementContext is in an undefined state, so do not
* use it anymore!
*
* \param elemCtx The element execution context for which the local residual and its
* local Jacobian should be calculated.
*/
void linearize(ElementContext& elemCtx, const Element& elem)
{
elemCtx.updateAll(elem);
// update the weights of the primary variables for the context
model_().updatePVWeights(elemCtx);
resize_(elemCtx);
reset_(elemCtx);
// calculate the local residual
localResidual_.eval(residual_, elemCtx);
// calculate the local jacobian matrix
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < numPrimaryDof; dofIdx++) {
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
asImp_().evalPartialDerivative_(elemCtx, dofIdx, pvIdx);
// incorporate the partial derivatives into the local Jacobian matrix
updateLocalJacobian_(elemCtx, dofIdx, pvIdx);
}
}
}
/*!
* \brief Returns the unweighted epsilon value used to calculate
* the local derivatives
*/
static Scalar baseEpsilon()
{ return getPropValue<TypeTag, Properties::BaseEpsilon>(); }
/*!
* \brief Returns the epsilon value which is added and removed
* from the current solution.
*
* \param elemCtx The element execution context for which the
* local residual and its gradient should be
* calculated.
* \param dofIdx The local index of the element's vertex for
* which the local derivative ought to be calculated.
* \param pvIdx The index of the primary variable which gets varied
*/
Scalar numericEpsilon(const ElementContext& elemCtx,
unsigned dofIdx,
unsigned pvIdx) const
{
unsigned globalIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
Scalar pvWeight = elemCtx.model().primaryVarWeight(globalIdx, pvIdx);
assert(pvWeight > 0 && std::isfinite(pvWeight));
Valgrind::CheckDefined(pvWeight);
return baseEpsilon()/pvWeight;
}
/*!
* \brief Return reference to the local residual.
*/
LocalResidual& localResidual()
{ return localResidual_; }
/*!
* \brief Return reference to the local residual.
*/
const LocalResidual& localResidual() const
{ return localResidual_; }
/*!
* \brief Returns the local Jacobian matrix of the residual of a sub-control volume.
*
* \param domainScvIdx The local index of the sub control volume
* which contains the independents
* \param rangeScvIdx The local index of the sub control volume
* which contains the local residual
*/
const ScalarMatrixBlock& jacobian(unsigned domainScvIdx, unsigned rangeScvIdx) const
{ return jacobian_[domainScvIdx][rangeScvIdx]; }
/*!
* \brief Returns the local residual of a sub-control volume.
*
* \param dofIdx The local index of the sub control volume
*/
const ScalarVectorBlock& residual(unsigned dofIdx) const
{ return residual_[dofIdx]; }
protected:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
const Simulator& simulator_() const
{ return *simulatorPtr_; }
const Problem& problem_() const
{ return simulatorPtr_->problem(); }
const Model& model_() const
{ return simulatorPtr_->model(); }
/*!
* \brief Returns the numeric difference method which is applied.
*/
static int numericDifferenceMethod_()
{
static int diff = Parameters::Get<Parameters::NumericDifferenceMethod>();
return diff;
}
/*!
* \brief Resize all internal attributes to the size of the
* element.
*/
void resize_(const ElementContext& elemCtx)
{
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
residual_.resize(numDof);
jacobian_.setSize(numDof, numPrimaryDof);
derivResidual_.resize(numDof);
}
/*!
* \brief Reset the all relevant internal attributes to 0
*/
void reset_(const ElementContext& elemCtx)
{
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned primaryDofIdx = 0; primaryDofIdx < numPrimaryDof; ++ primaryDofIdx)
for (unsigned dof2Idx = 0; dof2Idx < numDof; ++ dof2Idx)
jacobian_[dof2Idx][primaryDofIdx] = 0.0;
for (unsigned primaryDofIdx = 0; primaryDofIdx < numDof; ++ primaryDofIdx)
residual_[primaryDofIdx] = 0.0;
}
/*!
* \brief Compute the partial derivatives of a context's residual functions
*
* This method can be overwritten by the implementation if a better scheme than
* numerical differentiation is available.
*
* The default implementation of this method uses numeric differentiation,
* i.e. forward or backward differences (2nd order), or central differences (3rd
* order). The method used is determined by the "NumericDifferenceMethod" property:
*
* - If the value of this property is smaller than 0, backward differences are used,
* i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx \frac{f(x) - f(x - \epsilon)}{\epsilon}
* \f]
*
* - If the value of this property is 0, central differences are used, i.e.:
* \f[
* \frac{\partial f(x)}{\partial x} \approx
* \frac{f(x + \epsilon) - f(x - \epsilon)}{2 \epsilon}
* \f]
*
* - if the value of this property is larger than 0, forward
* differences are used, i.e.:
* \f[
\frac{\partial f(x)}{\partial x} \approx \frac{f(x + \epsilon) - f(x)}{\epsilon}
* \f]
*
* Here, \f$ f \f$ is the residual function for all equations, \f$x\f$ is the value
* of a sub-control volume's primary variable at the evaluation point and
* \f$\epsilon\f$ is a small value larger than 0.
*
* \param elemCtx The element context for which the local partial
* derivative ought to be calculated
* \param dofIdx The sub-control volume index of the current
* finite element for which the partial derivative
* ought to be calculated
* \param pvIdx The index of the primary variable at the dofIdx'
* sub-control volume of the current finite element
* for which the partial derivative ought to be
* calculated
*/
void evalPartialDerivative_(ElementContext& elemCtx,
unsigned dofIdx,
unsigned pvIdx)
{
// save all quantities which depend on the specified primary
// variable at the given sub control volume
elemCtx.stashIntensiveQuantities(dofIdx);
PrimaryVariables priVars(elemCtx.primaryVars(dofIdx, /*timeIdx=*/0));
Scalar eps = asImp_().numericEpsilon(elemCtx, dofIdx, pvIdx);
Scalar delta = 0.0;
if (numericDifferenceMethod_() >= 0) {
// we are not using backward differences, i.e. we need to
// calculate f(x + \epsilon)
// deflect primary variables
priVars[pvIdx] += eps;
delta += eps;
// calculate the deflected residual
elemCtx.updateIntensiveQuantities(priVars, dofIdx, /*timeIdx=*/0);
elemCtx.updateAllExtensiveQuantities();
localResidual_.eval(derivResidual_, elemCtx);
}
else {
// we are using backward differences, i.e. we don't need
// to calculate f(x + \epsilon) and we can recycle the
// (already calculated) residual f(x)
derivResidual_ = residual_;
}
if (numericDifferenceMethod_() <= 0) {
// we are not using forward differences, i.e. we don't
// need to calculate f(x - \epsilon)
// deflect the primary variables
priVars[pvIdx] -= delta + eps;
delta += eps;
// calculate the deflected residual again, this time we use the local
// residual's internal storage.
elemCtx.updateIntensiveQuantities(priVars, dofIdx, /*timeIdx=*/0);
elemCtx.updateAllExtensiveQuantities();
localResidual_.eval(elemCtx);
derivResidual_ -= localResidual_.residual();
}
else {
// we are using forward differences, i.e. we don't need to
// calculate f(x - \epsilon) and we can recycle the
// (already calculated) residual f(x)
derivResidual_ -= residual_;
}
assert(delta > 0);
// divide difference in residuals by the magnitude of the
// deflections between the two function evaluation
derivResidual_ /= delta;
// restore the original state of the element's volume
// variables
elemCtx.restoreIntensiveQuantities(dofIdx);
#ifndef NDEBUG
for (unsigned i = 0; i < derivResidual_.size(); ++i)
Valgrind::CheckDefined(derivResidual_[i]);
#endif
}
/*!
* \brief Updates the current local Jacobian matrix with the partial derivatives of
* all equations for primary variable 'pvIdx' at the degree of freedom
* associated with 'focusDofIdx'.
*/
void updateLocalJacobian_(const ElementContext& elemCtx,
unsigned focusDofIdx,
unsigned pvIdx)
{
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < numDof; dofIdx++) {
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of the
// residual function 'eqIdx' for the degree of freedom 'dofIdx' with
// regard to the primary variable 'pvIdx' of the degree of freedom
// 'focusDofIdx'
jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx] = derivResidual_[dofIdx][eqIdx];
Valgrind::CheckDefined(jacobian_[dofIdx][focusDofIdx][eqIdx][pvIdx]);
}
}
}
Simulator *simulatorPtr_;
Model *modelPtr_;
ElementContext *internalElemContext_;
LocalEvalBlockVector residual_;
LocalEvalBlockVector derivResidual_;
ScalarLocalBlockMatrix jacobian_;
LocalResidual localResidual_;
};
} // namespace Opm
#endif
|