1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseGradientCalculator
*/
#ifndef EWOMS_FV_BASE_GRADIENT_CALCULATOR_HH
#define EWOMS_FV_BASE_GRADIENT_CALCULATOR_HH
#include "fvbaseproperties.hh"
#include <dune/common/fvector.hh>
namespace Opm {
template<class TypeTag>
class EcfvDiscretization;
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief This class calculates gradients of arbitrary quantities at
* flux integration points using the two-point approximation scheme
*/
template<class TypeTag>
class FvBaseGradientCalculator
{
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// maximum number of flux approximation points. to calculate this,
// we assume that the geometry with the most pointsq is a cube.
enum { maxFap = 2 << dim };
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
using EvalDimVector = Dune::FieldVector<Evaluation, dimWorld>;
public:
/*!
* \brief Register all run-time parameters for the gradient calculator
* of the base class of the discretization.
*/
static void registerParameters()
{ }
/*!
* \brief Precomputes the common values to calculate gradients and values of
* quantities at every interior flux approximation point.
*
* \param elemCtx The current execution context
* \param timeIdx The index used by the time discretization.
*/
template <bool prepareValues = true, bool prepareGradients = true>
void prepare(const ElementContext&, unsigned)
{ /* noting to do */ }
/*!
* \brief Calculates the value of an arbitrary scalar quantity at any interior flux
* approximation point.
*
* \param elemCtx The current execution context
* \param fapIdx The local index of the flux approximation point in the current
* element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity at an index of a degree of
* freedom
*/
template <class QuantityCallback>
auto calculateScalarValue(const ElementContext& elemCtx,
unsigned fapIdx,
const QuantityCallback& quantityCallback) const
-> typename std::remove_reference<decltype(quantityCallback.operator()(0))>::type
{
using RawReturnType = decltype(quantityCallback.operator()(0));
using ReturnType = typename std::remove_const<typename std::remove_reference<RawReturnType>::type>::type;
Scalar interiorDistance;
Scalar exteriorDistance;
computeDistances_(interiorDistance, exteriorDistance, elemCtx, fapIdx);
const auto& face = elemCtx.stencil(/*timeIdx=*/0).interiorFace(fapIdx);
auto i = face.interiorIndex();
auto j = face.exteriorIndex();
auto focusDofIdx = elemCtx.focusDofIndex();
// use the average weighted by distance...
ReturnType value;
if (i == focusDofIdx)
value = quantityCallback(i)*interiorDistance;
else
value = getValue(quantityCallback(i))*interiorDistance;
if (j == focusDofIdx)
value += quantityCallback(j)*exteriorDistance;
else
value += getValue(quantityCallback(j))*exteriorDistance;
value /= interiorDistance + exteriorDistance;
return value;
}
/*!
* \brief Calculates the value of an arbitrary vectorial quantity at any interior flux
* approximation point.
*
* \param elemCtx The current execution context
* \param fapIdx The local index of the flux approximation point in the current
* element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity at an index of a degree of
* freedom
*/
template <class QuantityCallback>
auto calculateVectorValue(const ElementContext& elemCtx,
unsigned fapIdx,
const QuantityCallback& quantityCallback) const
-> typename std::remove_reference<decltype(quantityCallback.operator()(0))>::type
{
using RawReturnType = decltype(quantityCallback.operator()(0));
using ReturnType = typename std::remove_const<typename std::remove_reference<RawReturnType>::type>::type;
Scalar interiorDistance;
Scalar exteriorDistance;
computeDistances_(interiorDistance, exteriorDistance, elemCtx, fapIdx);
const auto& face = elemCtx.stencil(/*timeIdx=*/0).interiorFace(fapIdx);
auto i = face.interiorIndex();
auto j = face.exteriorIndex();
auto focusDofIdx = elemCtx.focusDofIndex();
// use the average weighted by distance...
ReturnType value;
if (i == focusDofIdx) {
value = quantityCallback(i);
for (int k = 0; k < value.size(); ++k)
value[k] *= interiorDistance;
}
else {
const auto& dofVal = getValue(quantityCallback(i));
for (int k = 0; k < dofVal.size(); ++k)
value[k] = getValue(dofVal[k])*interiorDistance;
}
if (j == focusDofIdx) {
const auto& dofVal = quantityCallback(j);
for (int k = 0; k < dofVal.size(); ++k)
value[k] += dofVal[k]*exteriorDistance;
}
else {
const auto& dofVal = quantityCallback(j);
for (int k = 0; k < dofVal.size(); ++k)
value[k] += getValue(dofVal[k])*exteriorDistance;
}
Scalar totDistance = interiorDistance + exteriorDistance;
for (int k = 0; k < value.size(); ++k)
value[k] /= totDistance;
return value;
}
/*!
* \brief Calculates the gradient of an arbitrary quantity at any
* flux approximation point.
*
* \param elemCtx The current execution context
* \param fapIdx The local index of the flux approximation point
* in the current element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity given the index of a degree of
* freedom
*/
template <class QuantityCallback>
void calculateGradient(EvalDimVector& quantityGrad,
const ElementContext& elemCtx,
unsigned fapIdx,
const QuantityCallback& quantityCallback) const
{
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
const auto& face = stencil.interiorFace(fapIdx);
auto i = face.interiorIndex();
auto j = face.exteriorIndex();
auto focusIdx = elemCtx.focusDofIndex();
const auto& interiorPos = stencil.subControlVolume(i).globalPos();
const auto& exteriorPos = stencil.subControlVolume(j).globalPos();
Evaluation deltay;
if (i == focusIdx) {
deltay =
getValue(quantityCallback(j))
- quantityCallback(i);
}
else if (j == focusIdx) {
deltay =
quantityCallback(j)
- getValue(quantityCallback(i));
}
else
deltay =
getValue(quantityCallback(j))
- getValue(quantityCallback(i));
Scalar distSquared = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
Scalar tmp = exteriorPos[dimIdx] - interiorPos[dimIdx];
distSquared += tmp*tmp;
}
// divide the gradient by the squared distance between the centers of the
// sub-control volumes: the gradient is the normalized directional vector between
// the two centers times the ratio of the difference of the values and their
// distance, i.e., d/abs(d) * delta y / abs(d) = d*delta y / abs(d)^2.
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
Scalar tmp = exteriorPos[dimIdx] - interiorPos[dimIdx];
quantityGrad[dimIdx] = deltay*(tmp/distSquared);
}
}
/*!
* \brief Calculates the value of an arbitrary quantity at any
* flux approximation point on the grid boundary.
*
* Boundary values are always calculated using the two-point
* approximation.
*
* \param elemCtx The current execution context
* \param fapIdx The local index of the flux approximation point
* in the current element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity given the index of a degree of
* freedom
*/
template <class QuantityCallback>
auto calculateBoundaryValue(const ElementContext&,
unsigned,
const QuantityCallback& quantityCallback)
-> decltype(quantityCallback.boundaryValue())
{ return quantityCallback.boundaryValue(); }
/*!
* \brief Calculates the gradient of an arbitrary quantity at any
* flux approximation point on the boundary.
*
* Boundary gradients are always calculated using the two-point
* approximation.
*
* \param elemCtx The current execution context
* \param faceIdx The local index of the flux approximation point
* in the current element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity at an index of a degree of
* freedom
*/
template <class QuantityCallback>
void calculateBoundaryGradient(EvalDimVector& quantityGrad,
const ElementContext& elemCtx,
unsigned faceIdx,
const QuantityCallback& quantityCallback) const
{
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
const auto& face = stencil.boundaryFace(faceIdx);
Evaluation deltay;
if (face.interiorIndex() == elemCtx.focusDofIndex())
deltay = quantityCallback.boundaryValue() - quantityCallback(face.interiorIndex());
else
deltay =
getValue(quantityCallback.boundaryValue())
- getValue(quantityCallback(face.interiorIndex()));
const auto& boundaryFacePos = face.integrationPos();
const auto& interiorPos = stencil.subControlVolume(face.interiorIndex()).center();
Scalar distSquared = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
Scalar tmp = boundaryFacePos[dimIdx] - interiorPos[dimIdx];
distSquared += tmp*tmp;
}
// divide the gradient by the squared distance between the center of the
// sub-control and the center of the boundary face: the gradient is the
// normalized directional vector between the two centers times the ratio of the
// difference of the values and their distance, i.e., d/abs(d) * deltay / abs(d)
// = d*deltay / abs(d)^2.
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
Scalar tmp = boundaryFacePos[dimIdx] - interiorPos[dimIdx];
quantityGrad[dimIdx] = deltay*(tmp/distSquared);
}
}
private:
void computeDistances_(Scalar& interiorDistance,
Scalar& exteriorDistance,
const ElementContext& elemCtx,
unsigned fapIdx) const
{
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
const auto& face = stencil.interiorFace(fapIdx);
// calculate the distances of the position of the interior and of the exterior
// finite volume to the position of the integration point.
const auto& normal = face.normal();
auto i = face.interiorIndex();
auto j = face.exteriorIndex();
const auto& interiorPos = stencil.subControlVolume(i).globalPos();
const auto& exteriorPos = stencil.subControlVolume(j).globalPos();
const auto& integrationPos = face.integrationPos();
interiorDistance = 0.0;
exteriorDistance = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
interiorDistance +=
(interiorPos[dimIdx] - integrationPos[dimIdx])
* normal[dimIdx];
exteriorDistance +=
(exteriorPos[dimIdx] - integrationPos[dimIdx])
* normal[dimIdx];
}
interiorDistance = std::sqrt(std::abs(interiorDistance));
exteriorDistance = std::sqrt(std::abs(exteriorDistance));
}
};
} // namespace Opm
#endif
|