1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseLocalResidual
*/
#ifndef EWOMS_FV_BASE_LOCAL_RESIDUAL_HH
#define EWOMS_FV_BASE_LOCAL_RESIDUAL_HH
#include "fvbaseproperties.hh"
#include <opm/models/utils/parametersystem.hpp>
#include <opm/models/utils/alignedallocator.hh>
#include <opm/material/common/Valgrind.hpp>
#include <dune/istl/bvector.hh>
#include <dune/grid/common/geometry.hh>
#include <dune/common/fvector.hh>
#include <dune/common/classname.hh>
#include <cmath>
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief Element-wise caculation of the residual matrix for models based on a finite
* volume spatial discretization.
*
* \copydetails Doxygen::typeTagTParam
*/
template<class TypeTag>
class FvBaseLocalResidual
{
private:
using Implementation = GetPropType<TypeTag, Properties::LocalResidual>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Element = typename GridView::template Codim<0>::Entity;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using BoundaryContext = GetPropType<TypeTag, Properties::BoundaryContext>;
static constexpr bool useVolumetricResidual = getPropValue<TypeTag, Properties::UseVolumetricResidual>();
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { extensiveStorageTerm = getPropValue<TypeTag, Properties::ExtensiveStorageTerm>() };
using Toolbox = MathToolbox<Evaluation>;
using EvalVector = Dune::FieldVector<Evaluation, numEq>;
// copying the local residual class is not a good idea
FvBaseLocalResidual(const FvBaseLocalResidual& )
{}
public:
using LocalEvalBlockVector = Dune::BlockVector<EvalVector, aligned_allocator<EvalVector, alignof(EvalVector)> >;
FvBaseLocalResidual()
{ }
~FvBaseLocalResidual()
{ }
/*!
* \brief Register all run-time parameters for the local residual.
*/
static void registerParameters()
{ }
/*!
* \brief Return the result of the eval() call using internal
* storage.
*/
const LocalEvalBlockVector& residual() const
{ return internalResidual_; }
/*!
* \brief Return the result of the eval() call using internal
* storage.
*
* \copydetails Doxygen::ecfvScvIdxParam
*/
const EvalVector& residual(unsigned dofIdx) const
{ return internalResidual_[dofIdx]; }
/*!
* \brief Compute the local residual, i.e. the deviation of the
* conservation equations from zero and store the results
* internally.
*
* The results can be requested afterwards using the residual() method.
*
* \copydetails Doxygen::problemParam
* \copydetails Doxygen::elementParam
*/
void eval(const Problem& problem, const Element& element)
{
ElementContext elemCtx(problem);
elemCtx.updateAll(element);
eval(elemCtx);
}
/*!
* \brief Compute the local residual, i.e. the deviation of the
* conservation equations from zero and store the results
* internally.
*
* The results can be requested afterwards using the residual() method.
*
* \copydetails Doxygen::ecfvElemCtxParam
*/
void eval(ElementContext& elemCtx)
{
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
internalResidual_.resize(numDof);
asImp_().eval(internalResidual_, elemCtx);
}
/*!
* \brief Compute the local residual, i.e. the deviation of the
* conservation equations from zero.
*
* \copydetails Doxygen::residualParam
* \copydetails Doxygen::ecfvElemCtxParam
*/
void eval(LocalEvalBlockVector& residual,
ElementContext& elemCtx) const
{
assert(residual.size() == elemCtx.numDof(/*timeIdx=*/0));
residual = 0.0;
// evaluate the flux terms
asImp_().evalFluxes(residual, elemCtx, /*timeIdx=*/0);
// evaluate the storage and the source terms
asImp_().evalVolumeTerms_(residual, elemCtx);
// evaluate the boundary conditions
asImp_().evalBoundary_(residual, elemCtx, /*timeIdx=*/0);
if (useVolumetricResidual) {
// make the residual volume specific (i.e., make it incorrect mass per cubic
// meter instead of total mass)
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned dofIdx=0; dofIdx < numDof; ++dofIdx) {
if (elemCtx.dofTotalVolume(dofIdx, /*timeIdx=*/0) > 0.0) {
// interior DOF
Scalar dofVolume = elemCtx.dofTotalVolume(dofIdx, /*timeIdx=*/0);
assert(std::isfinite(dofVolume));
Valgrind::CheckDefined(dofVolume);
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
residual[dofIdx][eqIdx] /= dofVolume;
}
}
}
}
/*!
* \brief Calculate the amount of all conservation quantities stored in all element's
* sub-control volumes for a given history index.
*
* This is used to figure out how much of each conservation quantity is inside the
* element.
*
* \copydetails Doxygen::storageParam
* \copydetails Doxygen::ecfvElemCtxParam
* \copydetails Doxygen::timeIdxParam
*/
void evalStorage(LocalEvalBlockVector& storage,
const ElementContext& elemCtx,
unsigned timeIdx) const
{
// the derivative of the storage term depends on the current primary variables;
// for time indices != 0, the storage term is constant (because these solutions
// are not changed by the Newton method!)
if (timeIdx == 0) {
// calculate the amount of conservation each quantity inside
// all primary sub control volumes
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
storage[dofIdx] = 0.0;
// the volume of the associated DOF
Scalar alpha =
elemCtx.stencil(timeIdx).subControlVolume(dofIdx).volume()
* elemCtx.intensiveQuantities(dofIdx, timeIdx).extrusionFactor();
// If the degree of freedom which we currently look at is the one at the
// center of attention, we need to consider the derivatives for the
// storage term, else the storage term is constant w.r.t. the primary
// variables of the focused DOF.
if (dofIdx == elemCtx.focusDofIndex()) {
asImp_().computeStorage(storage[dofIdx],
elemCtx,
dofIdx,
timeIdx);
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
storage[dofIdx][eqIdx] *= alpha;
}
else {
Dune::FieldVector<Scalar, numEq> tmp;
asImp_().computeStorage(tmp,
elemCtx,
dofIdx,
timeIdx);
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
storage[dofIdx][eqIdx] = tmp[eqIdx]*alpha;
}
}
}
else {
// for all previous solutions, the storage term does _not_ depend on the
// current primary variables, so we use scalars to store it.
if (elemCtx.enableStorageCache()) {
size_t numPrimaryDof = elemCtx.numPrimaryDof(timeIdx);
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
const auto& cachedStorage = elemCtx.model().cachedStorage(globalDofIdx, timeIdx);
for (unsigned eqIdx=0; eqIdx < numEq; eqIdx++)
storage[dofIdx][eqIdx] = cachedStorage[eqIdx];
}
}
else {
// calculate the amount of conservation each quantity inside
// all primary sub control volumes
Dune::FieldVector<Scalar, numEq> tmp;
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
tmp = 0.0;
asImp_().computeStorage(tmp,
elemCtx,
dofIdx,
timeIdx);
tmp *=
elemCtx.stencil(timeIdx).subControlVolume(dofIdx).volume()
* elemCtx.intensiveQuantities(dofIdx, timeIdx).extrusionFactor();
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
storage[dofIdx][eqIdx] = tmp[eqIdx];
}
}
}
#ifndef NDEBUG
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
Valgrind::CheckDefined(storage[dofIdx][eqIdx]);
assert(isfinite(storage[dofIdx][eqIdx]));
}
}
#endif
}
/*!
* \brief Add the flux term to a local residual.
*
* \copydetails Doxygen::residualParam
* \copydetails Doxygen::ecfvElemCtxParam
* \copydetails Doxygen::timeIdxParam
*/
void evalFluxes(LocalEvalBlockVector& residual,
const ElementContext& elemCtx,
unsigned timeIdx) const
{
RateVector flux;
const auto& stencil = elemCtx.stencil(timeIdx);
// calculate the mass flux over the sub-control volume faces
size_t numInteriorFaces = elemCtx.numInteriorFaces(timeIdx);
for (unsigned scvfIdx = 0; scvfIdx < numInteriorFaces; scvfIdx++) {
const auto& face = stencil.interiorFace(scvfIdx);
unsigned i = face.interiorIndex();
unsigned j = face.exteriorIndex();
Valgrind::SetUndefined(flux);
asImp_().computeFlux(flux, /*context=*/elemCtx, scvfIdx, timeIdx);
Valgrind::CheckDefined(flux);
#ifndef NDEBUG
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
assert(isfinite(flux[eqIdx]));
#endif
Scalar alpha = elemCtx.extensiveQuantities(scvfIdx, timeIdx).extrusionFactor();
alpha *= face.area();
Valgrind::CheckDefined(alpha);
assert(alpha > 0.0);
assert(isfinite(alpha));
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
flux[eqIdx] *= alpha;
// The balance equation for a finite volume is given by
//
// dStorage/dt + Flux = Source
//
// where the 'Flux' and the 'Source' terms represent the
// mass per second which leaves the finite
// volume. Re-arranging this, we get
//
// dStorage/dt + Flux - Source = 0
//
// Since the mass flux as calculated by computeFlux() goes out of sub-control
// volume i and into sub-control volume j, we need to add the flux to finite
// volume i and subtract it from finite volume j
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
assert(isfinite(flux[eqIdx]));
residual[i][eqIdx] += flux[eqIdx];
residual[j][eqIdx] -= flux[eqIdx];
}
}
#if !defined NDEBUG
// in debug mode, ensure that the residual is well-defined
size_t numDof = elemCtx.numDof(timeIdx);
for (unsigned i=0; i < numDof; i++) {
for (unsigned j = 0; j < numEq; ++ j) {
assert(isfinite(residual[i][j]));
Valgrind::CheckDefined(residual[i][j]);
}
}
#endif
}
/////////////////////////////
// The following methods _must_ be overloaded by the actual flow
// models!
/////////////////////////////
/*!
* \brief Evaluate the amount all conservation quantities
* (e.g. phase mass) within a finite sub-control volume.
*
* \copydetails Doxygen::storageParam
* \copydetails Doxygen::ecfvScvCtxParams
*/
void computeStorage(EqVector&,
const ElementContext&,
unsigned,
unsigned) const
{
throw std::logic_error("Not implemented: The local residual "+Dune::className<Implementation>()
+" does not implement the required method 'computeStorage()'");
}
/*!
* \brief Evaluates the total mass flux of all conservation
* quantities over a face of a sub-control volume.
*
* \copydetails Doxygen::areaFluxParam
* \copydetails Doxygen::ecfvScvfCtxParams
*/
void computeFlux(RateVector&,
const ElementContext&,
unsigned,
unsigned) const
{
throw std::logic_error("Not implemented: The local residual "+Dune::className<Implementation>()
+" does not implement the required method 'computeFlux()'");
}
/*!
* \brief Calculate the source term of the equation
*
* \copydoc Doxygen::sourceParam
* \copydoc Doxygen::ecfvScvCtxParams
*/
void computeSource(RateVector&,
const ElementContext&,
unsigned,
unsigned) const
{
throw std::logic_error("Not implemented: The local residual "+Dune::className<Implementation>()
+" does not implement the required method 'computeSource()'");
}
protected:
/*!
* \brief Evaluate the boundary conditions of an element.
*/
void evalBoundary_(LocalEvalBlockVector& residual,
const ElementContext& elemCtx,
unsigned timeIdx) const
{
if (!elemCtx.onBoundary())
return;
BoundaryContext boundaryCtx(elemCtx);
// move the iterator to the first boundary
if(boundaryCtx.intersection(0).neighbor())
boundaryCtx.increment();
// evaluate the boundary for all boundary faces of the current context
size_t numBoundaryFaces = boundaryCtx.numBoundaryFaces(/*timeIdx=*/0);
for (unsigned faceIdx = 0; faceIdx < numBoundaryFaces; ++faceIdx, boundaryCtx.increment()) {
// add the residual of all vertices of the boundary
// segment
evalBoundarySegment_(residual,
boundaryCtx,
faceIdx,
timeIdx);
}
#if !defined NDEBUG
// in debug mode, ensure that the residual and the storage terms are well-defined
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned i=0; i < numDof; i++) {
for (unsigned j = 0; j < numEq; ++ j) {
assert(isfinite(residual[i][j]));
Valgrind::CheckDefined(residual[i][j]);
}
}
#endif
}
/*!
* \brief Evaluate all boundary conditions for a single
* sub-control volume face to the local residual.
*/
void evalBoundarySegment_(LocalEvalBlockVector& residual,
const BoundaryContext& boundaryCtx,
unsigned boundaryFaceIdx,
unsigned timeIdx) const
{
BoundaryRateVector values;
Valgrind::SetUndefined(values);
boundaryCtx.problem().boundary(values, boundaryCtx, boundaryFaceIdx, timeIdx);
Valgrind::CheckDefined(values);
const auto& stencil = boundaryCtx.stencil(timeIdx);
unsigned dofIdx = stencil.boundaryFace(boundaryFaceIdx).interiorIndex();
const auto& insideIntQuants = boundaryCtx.elementContext().intensiveQuantities(dofIdx, timeIdx);
for (unsigned eqIdx = 0; eqIdx < values.size(); ++eqIdx) {
values[eqIdx] *=
stencil.boundaryFace(boundaryFaceIdx).area()
* insideIntQuants.extrusionFactor();
Valgrind::CheckDefined(values[eqIdx]);
assert(isfinite(values[eqIdx]));
}
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
residual[dofIdx][eqIdx] += values[eqIdx];
}
/*!
* \brief Add the change in the storage terms and the source term
* to the local residual of all sub-control volumes of the
* current element.
*/
void evalVolumeTerms_(LocalEvalBlockVector& residual,
ElementContext& elemCtx) const
{
EvalVector tmp;
EqVector tmp2;
RateVector sourceRate;
tmp = 0.0;
tmp2 = 0.0;
// evaluate the volumetric terms (storage + source terms)
size_t numPrimaryDof = elemCtx.numPrimaryDof(/*timeIdx=*/0);
for (unsigned dofIdx=0; dofIdx < numPrimaryDof; dofIdx++) {
Scalar extrusionFactor =
elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0).extrusionFactor();
Valgrind::CheckDefined(extrusionFactor);
assert(isfinite(extrusionFactor));
assert(extrusionFactor > 0.0);
Scalar scvVolume =
elemCtx.stencil(/*timeIdx=*/0).subControlVolume(dofIdx).volume() * extrusionFactor;
Valgrind::CheckDefined(scvVolume);
assert(isfinite(scvVolume));
assert(scvVolume > 0.0);
// if the model uses extensive quantities in its storage term, and we use
// automatic differention and current DOF is also not the one we currently
// focus on, the storage term does not need any derivatives!
if (!extensiveStorageTerm &&
!std::is_same<Scalar, Evaluation>::value &&
dofIdx != elemCtx.focusDofIndex())
{
asImp_().computeStorage(tmp2, elemCtx, dofIdx, /*timeIdx=*/0);
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
tmp[eqIdx] = tmp2[eqIdx];
}
else
asImp_().computeStorage(tmp, elemCtx, dofIdx, /*timeIdx=*/0);
#ifndef NDEBUG
Valgrind::CheckDefined(tmp);
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
assert(isfinite(tmp[eqIdx]));
#endif
if (elemCtx.enableStorageCache()) {
const auto& model = elemCtx.model();
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
if (model.newtonMethod().numIterations() == 0 &&
!elemCtx.haveStashedIntensiveQuantities())
{
if (!elemCtx.problem().recycleFirstIterationStorage()) {
// we re-calculate the storage term for the solution of the
// previous time step from scratch instead of using the one of
// the first iteration of the current time step.
tmp2 = 0.0;
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/1);
asImp_().computeStorage(tmp2, elemCtx, dofIdx, /*timeIdx=*/1);
}
else {
// if the storage term is cached and we're in the first iteration
// of the time step, use the storage term of the first iteration
// as the one as the solution of the last time step (this assumes
// that the initial guess for the solution at the end of the time
// step is the same as the solution at the beginning of the time
// step. This is usually true, but some fancy preprocessing
// scheme might invalidate that assumption.)
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
tmp2[eqIdx] = Toolbox::value(tmp[eqIdx]);
}
Valgrind::CheckDefined(tmp2);
model.updateCachedStorage(globalDofIdx, /*timeIdx=*/1, tmp2);
}
else {
// if the mass storage at the beginning of the time step is not cached,
// if the storage term is cached and we're not looking at the first
// iteration of the time step, we take the cached data.
tmp2 = model.cachedStorage(globalDofIdx, /*timeIdx=*/1);
Valgrind::CheckDefined(tmp2);
}
}
else {
// if the mass storage at the beginning of the time step is not cached,
// we re-calculate it from scratch.
tmp2 = 0.0;
asImp_().computeStorage(tmp2, elemCtx, dofIdx, /*timeIdx=*/1);
Valgrind::CheckDefined(tmp2);
}
// Use the implicit Euler time discretization
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
double dt = elemCtx.simulator().timeStepSize();
assert(dt > 0);
tmp[eqIdx] -= tmp2[eqIdx];
tmp[eqIdx] *= scvVolume / dt;
residual[dofIdx][eqIdx] += tmp[eqIdx];
}
Valgrind::CheckDefined(residual[dofIdx]);
// deal with the source term
asImp_().computeSource(sourceRate, elemCtx, dofIdx, /*timeIdx=*/0);
// if the model uses extensive quantities in its storage term, and we use
// automatic differention and current DOF is also not the one we currently
// focus on, the storage term does not need any derivatives!
if (!extensiveStorageTerm &&
!std::is_same<Scalar, Evaluation>::value &&
dofIdx != elemCtx.focusDofIndex())
{
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
residual[dofIdx][eqIdx] -= scalarValue(sourceRate[eqIdx])*scvVolume;
}
else {
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) {
sourceRate[eqIdx] *= scvVolume;
residual[dofIdx][eqIdx] -= sourceRate[eqIdx];
}
}
Valgrind::CheckDefined(residual[dofIdx]);
}
#if !defined NDEBUG
// in debug mode, ensure that the residual is well-defined
size_t numDof = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned i=0; i < numDof; i++) {
for (unsigned j = 0; j < numEq; ++ j) {
assert(isfinite(residual[i][j]));
Valgrind::CheckDefined(residual[i][j]);
}
}
#endif
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
LocalEvalBlockVector internalResidual_;
};
} // namespace Opm
#endif
|