File: fvbasenewtonmethod.hh

package info (click to toggle)
opm-simulators 2024.10%2Bds-6
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 19,416 kB
  • sloc: cpp: 165,337; sh: 1,285; lisp: 1,108; python: 355; makefile: 24; awk: 10
file content (171 lines) | stat: -rw-r--r-- 5,806 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/
/*!
 * \file
 *
 * \copydoc Opm::FvBaseNewtonMethod
 */
#ifndef EWOMS_FV_BASE_NEWTON_METHOD_HH
#define EWOMS_FV_BASE_NEWTON_METHOD_HH

#include "fvbasenewtonconvergencewriter.hh"

#include <opm/models/nonlinear/newtonmethod.hh>
#include <opm/models/utils/propertysystem.hh>

namespace Opm {

template <class TypeTag>
class FvBaseNewtonMethod;

template <class TypeTag>
class FvBaseNewtonConvergenceWriter;
} // namespace Opm

namespace Opm::Properties {

//! create a type tag for the Newton method of the finite-volume discretization
// Create new type tags
namespace TTag {
struct FvBaseNewtonMethod { using InheritsFrom = std::tuple<NewtonMethod>; };
} // end namespace TTag

//! The discretization specific part of he implementing the Newton algorithm
template<class TypeTag, class MyTypeTag>
struct DiscNewtonMethod { using type = UndefinedProperty; };

// set default values
template<class TypeTag>
struct DiscNewtonMethod<TypeTag, TTag::FvBaseNewtonMethod>
{ using type = FvBaseNewtonMethod<TypeTag>; };

template<class TypeTag>
struct NewtonMethod<TypeTag, TTag::FvBaseNewtonMethod>
{ using type = GetPropType<TypeTag, Properties::DiscNewtonMethod>; };

template<class TypeTag>
struct NewtonConvergenceWriter<TypeTag, TTag::FvBaseNewtonMethod>
{ using type = FvBaseNewtonConvergenceWriter<TypeTag>; };

} // namespace Opm::Properties

namespace Opm {

/*!
 * \ingroup FiniteVolumeDiscretizations
 *
 * \brief A Newton method for models using a finite volume discretization.
 *
 * This class is sufficient for most models which use an Element or a
 * Vertex Centered Finite Volume discretization.
 */
template <class TypeTag>
class FvBaseNewtonMethod : public NewtonMethod<TypeTag>
{
    using ParentType = NewtonMethod<TypeTag>;
    using Implementation = GetPropType<TypeTag, Properties::NewtonMethod>;

    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using Simulator = GetPropType<TypeTag, Properties::Simulator>;
    using Model = GetPropType<TypeTag, Properties::Model>;
    using Linearizer = GetPropType<TypeTag, Properties::Linearizer>;
    using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
    using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using EqVector = GetPropType<TypeTag, Properties::EqVector>;


public:
    FvBaseNewtonMethod(Simulator& simulator)
        : ParentType(simulator)
    { }

protected:
    friend class NewtonMethod<TypeTag>;

    /*!
     * \brief Update the current solution with a delta vector.
     *
     * The error estimates required for the converged() and
     * proceed() methods should be updated inside this method.
     *
     * Different update strategies, such as line search and chopped
     * updates can be implemented. The default behavior is just to
     * subtract deltaU from uLastIter, i.e.
     * \f[ u^{k+1} = u^k - \Delta u^k \f]
     *
     * \param nextSolution The solution vector at the end of the current iteration
     * \param currentSolution The solution vector at the beginning of the current iteration
     * \param solutionUpdate The delta as calculated by solving the linear system of
     *                       equations. This parameter also stores the updated solution.
     * \param currentResidual The residual (i.e., right-hand-side) of the current solution.
     */
    void update_(SolutionVector& nextSolution,
                 const SolutionVector& currentSolution,
                 const GlobalEqVector& solutionUpdate,
                 const GlobalEqVector& currentResidual)
    {
        ParentType::update_(nextSolution, currentSolution, solutionUpdate, currentResidual);

        // make sure that the intensive quantities get recalculated at the next
        // linearization
        if (model_().storeIntensiveQuantities()) {
            for (unsigned dofIdx = 0; dofIdx < model_().numGridDof(); ++dofIdx)
                model_().setIntensiveQuantitiesCacheEntryValidity(dofIdx,
                                                                  /*timeIdx=*/0,
                                                                  /*valid=*/false);
        }
    }

    /*!
     * \brief Indicates the beginning of a Newton iteration.
     */
    void beginIteration_()
    {
        model_().syncOverlap();

        ParentType::beginIteration_();
    }

    /*!
     * \brief Returns a reference to the model.
     */
    Model& model_()
    { return ParentType::model(); }

    /*!
     * \brief Returns a reference to the model.
     */
    const Model& model_() const
    { return ParentType::model(); }

private:
    Implementation& asImp_()
    { return *static_cast<Implementation*>(this); }

    const Implementation& asImp_() const
    { return *static_cast<const Implementation*>(this); }
};
} // namespace Opm

#endif