1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseProblem
*/
#ifndef EWOMS_FV_BASE_PROBLEM_HH
#define EWOMS_FV_BASE_PROBLEM_HH
#include <dune/common/fvector.hh>
#include <opm/models/discretization/common/fvbaseparameters.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/models/discretization/common/restrictprolong.hh>
#include <opm/models/io/vtkmultiwriter.hh>
#include <opm/models/io/restart.hpp>
#include <opm/models/utils/simulatorutils.hpp>
#include <functional>
#include <iostream>
#include <limits>
#include <string>
namespace Opm::Properties {
template <class TypeTag, class MyTypeTag>
struct NewtonMethod;
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief Base class for all problems which use a finite volume spatial discretization.
*
* \note All quantities are specified assuming a threedimensional world. Problems
* discretized using 2D grids are assumed to be extruded by \f$1 m\f$ and 1D grids
* are assumed to have a cross section of \f$1m \times 1m\f$.
*/
template<class TypeTag>
class FvBaseProblem
{
private:
using Implementation = GetPropType<TypeTag, Properties::Problem>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
static const int vtkOutputFormat = getPropValue<TypeTag, Properties::VtkOutputFormat>();
using VtkMultiWriter = ::Opm::VtkMultiWriter<GridView, vtkOutputFormat>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
using NewtonMethod = GetPropType<TypeTag, Properties::NewtonMethod>;
using VertexMapper = GetPropType<TypeTag, Properties::VertexMapper>;
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
enum {
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
using Element = typename GridView::template Codim<0>::Entity;
using Vertex = typename GridView::template Codim<dim>::Entity;
using VertexIterator = typename GridView::template Codim<dim>::Iterator;
using CoordScalar = typename GridView::Grid::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
public:
// the default restriction and prolongation for adaptation is simply an empty one
using RestrictProlongOperator = EmptyRestrictProlong ;
private:
// copying a problem is not a good idea
FvBaseProblem(const FvBaseProblem& ) = delete;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*
* \param simulator The time manager of the simulation
* \param gridView The view on the DUNE grid which ought to be
* used (normally the leaf grid view)
*/
FvBaseProblem(Simulator& simulator)
: nextTimeStepSize_(0.0)
, gridView_(simulator.gridView())
, elementMapper_(gridView_, Dune::mcmgElementLayout())
, vertexMapper_(gridView_, Dune::mcmgVertexLayout())
, boundingBoxMin_(std::numeric_limits<double>::max())
, boundingBoxMax_(-std::numeric_limits<double>::max())
, simulator_(simulator)
, defaultVtkWriter_(0)
{
// calculate the bounding box of the local partition of the grid view
VertexIterator vIt = gridView_.template begin<dim>();
const VertexIterator vEndIt = gridView_.template end<dim>();
for (; vIt!=vEndIt; ++vIt) {
for (unsigned i=0; i<dim; i++) {
boundingBoxMin_[i] = std::min(boundingBoxMin_[i], vIt->geometry().corner(0)[i]);
boundingBoxMax_[i] = std::max(boundingBoxMax_[i], vIt->geometry().corner(0)[i]);
}
}
// communicate to get the bounding box of the whole domain
for (unsigned i = 0; i < dim; ++i) {
boundingBoxMin_[i] = gridView_.comm().min(boundingBoxMin_[i]);
boundingBoxMax_[i] = gridView_.comm().max(boundingBoxMax_[i]);
}
if (enableVtkOutput_()) {
bool asyncVtkOutput =
simulator_.gridView().comm().size() == 1 &&
Parameters::Get<Parameters::EnableAsyncVtkOutput>();
// asynchonous VTK output currently does not work in conjunction with grid
// adaptivity because the async-IO code assumes that the grid stays
// constant. complain about that case.
bool enableGridAdaptation = Parameters::Get<Parameters::EnableGridAdaptation>();
if (asyncVtkOutput && enableGridAdaptation)
throw std::runtime_error("Asynchronous VTK output currently cannot be used "
"at the same time as grid adaptivity");
std::string outputDir = asImp_().outputDir();
defaultVtkWriter_ =
new VtkMultiWriter(asyncVtkOutput, gridView_, outputDir, asImp_().name());
}
}
~FvBaseProblem()
{ delete defaultVtkWriter_; }
/*!
* \brief Registers all available parameters for the problem and
* the model.
*/
static void registerParameters()
{
Model::registerParameters();
Parameters::Register<Parameters::MaxTimeStepSize<Scalar>>
("The maximum size to which all time steps are limited to [s]");
Parameters::Register<Parameters::MinTimeStepSize<Scalar>>
("The minimum size to which all time steps are limited to [s]");
Parameters::Register<Parameters::MaxTimeStepDivisions>
("The maximum number of divisions by two of the timestep size "
"before the simulation bails out");
Parameters::Register<Parameters::EnableAsyncVtkOutput>
("Dispatch a separate thread to write the VTK output");
Parameters::Register<Parameters::ContinueOnConvergenceError>
("Continue with a non-converged solution instead of giving up "
"if we encounter a time step size smaller than the minimum time "
"step size.");
}
/*!
* \brief Return if the storage term of the first iteration is identical to the storage
* term for the solution of the previous time step.
*
* This is only relevant if the storage cache is enabled and is usually the case,
* i.e., this method only needs to be overwritten in rare corner cases.
*/
bool recycleFirstIterationStorage() const
{ return true; }
/*!
* \brief Determine the directory for simulation output.
*
* The actual problem may chose to transform the value of the OutputDir parameter and
* it can e.g. choose to create the directory on demand if it does not exist. The
* default behaviour is to just return the OutputDir parameter and to throw an
* exception if no directory with this name exists.
*/
std::string outputDir() const
{
return simulatorOutputDir();
}
/*!
* \brief Returns the string that is printed before the list of command line
* parameters in the help message.
*
* If the returned string is empty, no help message will be generated.
*/
static std::string helpPreamble(int,
const char **argv)
{
std::string desc = Implementation::briefDescription();
if (!desc.empty())
desc = desc + "\n";
return
"Usage: "+std::string(argv[0]) + " [OPTIONS]\n"
+ desc;
}
/*!
* \brief Returns a human readable description of the problem for the help message
*
* The problem description is printed as part of the --help message. It is optional
* and should not exceed one or two lines of text.
*/
static std::string briefDescription()
{ return ""; }
// TODO (?): detailedDescription()
/*!
* \brief Handles positional command line parameters.
*
* Positional parameters are parameters that are not prefixed by any parameter name.
*
* \param seenParams The parameters which have already been seen in the current context
* \param errorMsg If the positional argument cannot be handled, this is the reason why
* \param argc The total number of command line parameters
* \param argv The string value of the command line parameters
* \param paramIdx The index of the positional parameter in the array of all parameters
* \param posParamIdx The number of the positional parameter encountered so far
*
* \return The number of array entries which ought to be skipped before processing
* the next regular parameter. If this is less than 1, it indicated that the
* positional parameter was invalid.
*/
static int handlePositionalParameter(std::function<void(const std::string&,
const std::string&)>,
std::set<std::string>&,
std::string& errorMsg,
int,
const char** argv,
int paramIdx,
int)
{
errorMsg = std::string("Illegal parameter \"")+argv[paramIdx]+"\".";
return 0;
}
/*!
* \brief Called by the Opm::Simulator in order to initialize the problem.
*
* If you overload this method don't forget to call ParentType::finishInit()
*/
void finishInit()
{ }
/*!
* \brief Allows to improve the performance by prefetching all data which is
* associated with a given element.
*/
void prefetch(const Element&) const
{
// do nothing by default
}
/*!
* \brief Handle changes of the grid
*/
void gridChanged()
{
#if DUNE_VERSION_GTE(DUNE_GRID, 2, 8)
elementMapper_.update(gridView_);
vertexMapper_.update(gridView_);
#else
elementMapper_.update();
vertexMapper_.update();
#endif
if (enableVtkOutput_())
defaultVtkWriter_->gridChanged();
}
/*!
* \brief Evaluate the boundary conditions for a boundary segment.
*
* \param values Stores the fluxes over the boundary segment.
* \param context The object representing the execution context from
* which this method is called.
* \param spaceIdx The local index of the spatial entity which represents the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
void boundary(BoundaryRateVector&,
const Context&,
unsigned,
unsigned) const
{ throw std::logic_error("Problem does not provide a boundary() method"); }
/*!
* \brief Evaluate the constraints for a control volume.
*
* \param constraints Stores the values of the primary variables at a
* given spatial and temporal location.
* \param context The object representing the execution context from
* which this method is called.
* \param spaceIdx The local index of the spatial entity which represents the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
void constraints(Constraints&,
const Context&,
unsigned,
unsigned) const
{ throw std::logic_error("Problem does not provide a constraints() method"); }
/*!
* \brief Evaluate the source term for all phases within a given
* sub-control-volume.
*
* \param rate Stores the values of the volumetric creation/anihilition
* rates of the conserved quantities.
* \param context The object representing the execution context from which
* this method is called.
* \param spaceIdx The local index of the spatial entity which represents
* the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
void source(RateVector&,
const Context&,
unsigned,
unsigned) const
{ throw std::logic_error("Problem does not provide a source() method"); }
/*!
* \brief Evaluate the initial value for a control volume.
*
* \param values Stores the primary variables.
* \param context The object representing the execution context from which
* this method is called.
* \param spaceIdx The local index of the spatial entity which represents
* the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
void initial(PrimaryVariables&,
const Context&,
unsigned,
unsigned) const
{ throw std::logic_error("Problem does not provide a initial() method"); }
/*!
* \brief Return how much the domain is extruded at a given sub-control volume.
*
* This means the factor by which a lower-dimensional (1D or 2D)
* entity needs to be expanded to get a full dimensional cell. The
* default is 1.0 which means that 1D problems are actually
* thought as pipes with a cross section of 1 m^2 and 2D problems
* are assumed to extend 1 m to the back.
*
* \param context The object representing the execution context from which
* this method is called.
* \param spaceIdx The local index of the spatial entity which represents
* the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
Scalar extrusionFactor(const Context&,
unsigned,
unsigned) const
{ return asImp_().extrusionFactor(); }
Scalar extrusionFactor() const
{ return 1.0; }
/*!
* \brief Callback used by the model to indicate that the initial solution has been
* determined for all degrees of freedom.
*/
void initialSolutionApplied()
{}
/*!
* \brief Called at the beginning of an simulation episode.
*/
void beginEpisode()
{ }
/*!
* \brief Called by the simulator before each time integration.
*/
void beginTimeStep()
{ }
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{ }
/*!
* \brief Called by the simulator after each Newton-Raphson update.
*/
void endIteration()
{ }
/*!
* \brief Called by the simulator after each time integration.
*
* This method is intended to do some post processing of the
* solution. (e.g., some additional output)
*/
void endTimeStep()
{ }
/*!
* \brief Called when the end of an simulation episode is reached.
*
* Typically, a new episode is started in this method.
*/
void endEpisode()
{
std::cerr << "The end of episode " << simulator().episodeIndex() + 1 << " has been "
<< "reached, but the problem does not override the endEpisode() method. "
<< "Doing nothing!\n";
}
/*!
* \brief Called after the simulation has been run sucessfully.
*/
void finalize()
{
const auto& executionTimer = simulator().executionTimer();
Scalar executionTime = executionTimer.realTimeElapsed();
Scalar setupTime = simulator().setupTimer().realTimeElapsed();
Scalar prePostProcessTime = simulator().prePostProcessTimer().realTimeElapsed();
Scalar localCpuTime = executionTimer.cpuTimeElapsed();
Scalar globalCpuTime = executionTimer.globalCpuTimeElapsed();
Scalar writeTime = simulator().writeTimer().realTimeElapsed();
Scalar linearizeTime = simulator().linearizeTimer().realTimeElapsed();
Scalar solveTime = simulator().solveTimer().realTimeElapsed();
Scalar updateTime = simulator().updateTimer().realTimeElapsed();
unsigned numProcesses = static_cast<unsigned>(this->gridView().comm().size());
unsigned threadsPerProcess = ThreadManager::maxThreads();
if (gridView().comm().rank() == 0) {
std::cout << std::setprecision(3)
<< "Simulation of problem '" << asImp_().name() << "' finished.\n"
<< "\n"
<< "------------------------ Timing ------------------------\n"
<< "Setup time: " << setupTime << " seconds"
<< humanReadableTime(setupTime)
<< ", " << setupTime/(executionTime + setupTime)*100 << "%\n"
<< "Simulation time: " << executionTime << " seconds"
<< humanReadableTime(executionTime)
<< ", " << executionTime/(executionTime + setupTime)*100 << "%\n"
<< " Linearization time: " << linearizeTime << " seconds"
<< humanReadableTime(linearizeTime)
<< ", " << linearizeTime/executionTime*100 << "%\n"
<< " Linear solve time: " << solveTime << " seconds"
<< humanReadableTime(solveTime)
<< ", " << solveTime/executionTime*100 << "%\n"
<< " Newton update time: " << updateTime << " seconds"
<< humanReadableTime(updateTime)
<< ", " << updateTime/executionTime*100 << "%\n"
<< " Pre/postprocess time: " << prePostProcessTime << " seconds"
<< humanReadableTime(prePostProcessTime)
<< ", " << prePostProcessTime/executionTime*100 << "%\n"
<< " Output write time: " << writeTime << " seconds"
<< humanReadableTime(writeTime)
<< ", " << writeTime/executionTime*100 << "%\n"
<< "First process' simulation CPU time: " << localCpuTime << " seconds"
<< humanReadableTime(localCpuTime) << "\n"
<< "Number of processes: " << numProcesses << "\n"
<< "Threads per processes: " << threadsPerProcess << "\n"
<< "Total CPU time: " << globalCpuTime << " seconds"
<< humanReadableTime(globalCpuTime) << "\n"
<< "\n"
<< "----------------------------------------------------------------\n"
<< std::endl;
}
}
/*!
* \brief Called by Opm::Simulator in order to do a time
* integration on the model.
*/
void timeIntegration()
{
unsigned maxFails = asImp_().maxTimeIntegrationFailures();
Scalar minTimeStepSize = asImp_().minTimeStepSize();
std::string errorMessage;
for (unsigned i = 0; i < maxFails; ++i) {
bool converged = model().update();
if (converged)
return;
Scalar dt = simulator().timeStepSize();
Scalar nextDt = dt / 2.0;
if (dt < minTimeStepSize*(1 + 1e-9)) {
if (asImp_().continueOnConvergenceError()) {
if (gridView().comm().rank() == 0)
std::cout << "Newton solver did not converge with minimum time step of "
<< dt << " seconds. Continuing with unconverged solution!\n"
<< std::flush;
return;
}
else {
errorMessage =
"Time integration did not succeed with the minumum time step size of "
+ std::to_string(double(minTimeStepSize)) + " seconds. Giving up!";
break; // give up: we can't make the time step smaller anymore!
}
}
else if (nextDt < minTimeStepSize)
nextDt = minTimeStepSize;
simulator().setTimeStepSize(nextDt);
// update failed
if (gridView().comm().rank() == 0)
std::cout << "Newton solver did not converge with "
<< "dt=" << dt << " seconds. Retrying with time step of "
<< nextDt << " seconds\n" << std::flush;
}
if (errorMessage.empty())
errorMessage =
"Newton solver didn't converge after "
+std::to_string(maxFails)+" time-step divisions. dt="
+std::to_string(double(simulator().timeStepSize()));
throw std::runtime_error(errorMessage);
}
/*!
* \brief Returns the minimum allowable size of a time step.
*/
Scalar minTimeStepSize() const
{ return Parameters::Get<Parameters::MinTimeStepSize<Scalar>>(); }
/*!
* \brief Returns the maximum number of subsequent failures for the time integration
* before giving up.
*/
unsigned maxTimeIntegrationFailures() const
{ return Parameters::Get<Parameters::MaxTimeStepDivisions>(); }
/*!
* \brief Returns if we should continue with a non-converged solution instead of
* giving up if we encounter a time step size smaller than the minimum time
* step size.
*/
bool continueOnConvergenceError() const
{ return Parameters::Get<Parameters::ContinueOnConvergenceError>(); }
/*!
* \brief Impose the next time step size to be used externally.
*/
void setNextTimeStepSize(Scalar dt)
{ nextTimeStepSize_ = dt; }
/*!
* \brief Called by Opm::Simulator whenever a solution for a
* time step has been computed and the simulation time has
* been updated.
*/
Scalar nextTimeStepSize() const
{
if (nextTimeStepSize_ > 0.0)
return nextTimeStepSize_;
Scalar dtNext = std::min(Parameters::Get<Parameters::MaxTimeStepSize<Scalar>>(),
newtonMethod().suggestTimeStepSize(simulator().timeStepSize()));
if (dtNext < simulator().maxTimeStepSize()
&& simulator().maxTimeStepSize() < dtNext*2)
{
dtNext = simulator().maxTimeStepSize()/2 * 1.01;
}
return dtNext;
}
/*!
* \brief Returns true if a restart file should be written to
* disk.
*
* The default behavior is to write one restart file every 10 time
* steps. This method should be overwritten by the
* implementation if the default behavior is deemed insufficient.
*/
bool shouldWriteRestartFile() const
{
return simulator().timeStepIndex() > 0 &&
(simulator().timeStepIndex() % 10 == 0);
}
/*!
* \brief Returns true if the current solution should be written to
* disk (i.e. as a VTK file)
*
* The default behavior is to write out the solution for every
* time step. This method is should be overwritten by the
* implementation if the default behavior is deemed insufficient.
*/
bool shouldWriteOutput() const
{ return true; }
/*!
* \brief Called by the simulator after everything which can be
* done about the current time step is finished and the
* model should be prepared to do the next time integration.
*/
void advanceTimeLevel()
{ model().advanceTimeLevel(); }
/*!
* \brief The problem name.
*
* This is used as a prefix for files generated by the simulation.
* It is highly recommend to overwrite this method in the concrete
* problem which is simulated.
*/
std::string name() const
{ return "sim"; }
/*!
* \brief The GridView which used by the problem.
*/
const GridView& gridView() const
{ return gridView_; }
/*!
* \brief The coordinate of the corner of the GridView's bounding
* box with the smallest values.
*/
const GlobalPosition& boundingBoxMin() const
{ return boundingBoxMin_; }
/*!
* \brief The coordinate of the corner of the GridView's bounding
* box with the largest values.
*/
const GlobalPosition& boundingBoxMax() const
{ return boundingBoxMax_; }
/*!
* \brief Returns the mapper for vertices to indices.
*/
const VertexMapper& vertexMapper() const
{ return vertexMapper_; }
/*!
* \brief Returns the mapper for elements to indices.
*/
const ElementMapper& elementMapper() const
{ return elementMapper_; }
/*!
* \brief Returns Simulator object used by the simulation
*/
Simulator& simulator()
{ return simulator_; }
/*!
* \copydoc simulator()
*/
const Simulator& simulator() const
{ return simulator_; }
/*!
* \brief Returns numerical model used for the problem.
*/
Model& model()
{ return simulator_.model(); }
/*!
* \copydoc model()
*/
const Model& model() const
{ return simulator_.model(); }
/*!
* \brief Returns object which implements the Newton method.
*/
NewtonMethod& newtonMethod()
{ return model().newtonMethod(); }
/*!
* \brief Returns object which implements the Newton method.
*/
const NewtonMethod& newtonMethod() const
{ return model().newtonMethod(); }
// \}
/*!
* \brief return restriction and prolongation operator
* \note This method has to be overloaded by the implementation.
*/
RestrictProlongOperator restrictProlongOperator()
{
return RestrictProlongOperator();
}
/*!
* \brief Mark grid cells for refinement or coarsening
* \note This method has to be overloaded in derived classes to proper implement
* marking of grid entities.
*
* \return number of marked cells (default is 0)
*/
unsigned markForGridAdaptation()
{
return 0;
}
/*!
* \brief This method writes the complete state of the problem
* to the harddisk.
*
* The file will start with the prefix returned by the name()
* method, has the current time of the simulation clock in it's
* name and uses the extension <tt>.ers</tt>. (Ewoms ReStart
* file.) See Opm::Restart for details.
*
* \tparam Restarter The serializer type
*
* \param res The serializer object
*/
template <class Restarter>
void serialize(Restarter& res)
{
if (enableVtkOutput_())
defaultVtkWriter_->serialize(res);
}
/*!
* \brief This method restores the complete state of the problem
* from disk.
*
* It is the inverse of the serialize() method.
*
* \tparam Restarter The deserializer type
*
* \param res The deserializer object
*/
template <class Restarter>
void deserialize(Restarter& res)
{
if (enableVtkOutput_())
defaultVtkWriter_->deserialize(res);
}
/*!
* \brief Write the relevant secondary variables of the current
* solution into an VTK output file.
*
* \param verbose Specify if a message should be printed whenever a file is written
*/
void writeOutput(bool verbose = true)
{
if (!enableVtkOutput_())
return;
if (verbose && gridView().comm().rank() == 0)
std::cout << "Writing visualization results for the current time step.\n"
<< std::flush;
// calculate the time _after_ the time was updated
Scalar t = simulator().time() + simulator().timeStepSize();
defaultVtkWriter_->beginWrite(t);
model().prepareOutputFields();
model().appendOutputFields(*defaultVtkWriter_);
defaultVtkWriter_->endWrite();
}
/*!
* \brief Method to retrieve the VTK writer which should be used
* to write the default ouput after each time step to disk.
*/
VtkMultiWriter& defaultVtkWriter() const
{ return defaultVtkWriter_; }
protected:
Scalar nextTimeStepSize_;
private:
bool enableVtkOutput_() const
{ return Parameters::Get<Parameters::EnableVtkOutput>(); }
//! Returns the implementation of the problem (i.e. static polymorphism)
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
//! \copydoc asImp_()
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
// Grid management stuff
const GridView gridView_;
ElementMapper elementMapper_;
VertexMapper vertexMapper_;
GlobalPosition boundingBoxMin_;
GlobalPosition boundingBoxMax_;
// Attributes required for the actual simulation
Simulator& simulator_;
mutable VtkMultiWriter *defaultVtkWriter_;
};
} // namespace Opm
#endif
|