1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseLinearizer
*/
#ifndef TPFA_LINEARIZER_HH
#define TPFA_LINEARIZER_HH
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <opm/common/Exceptions.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/grid/utility/SparseTable.hpp>
#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
#include <opm/input/eclipse/Schedule/BCProp.hpp>
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/models/discretization/common/linearizationtype.hh>
#include <exception> // current_exception, rethrow_exception
#include <iostream>
#include <numeric>
#include <set>
#include <type_traits>
#include <vector>
namespace Opm::Parameters {
struct SeparateSparseSourceTerms { static constexpr bool value = false; };
} // namespace Opm::Parameters
namespace Opm {
// forward declarations
template<class TypeTag>
class EcfvDiscretization;
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief The common code for the linearizers of non-linear systems of equations
*
* This class assumes that these system of equations to be linearized are stemming from
* models that use an finite volume scheme for spatial discretization and an Euler
* scheme for time discretization.
*/
template<class TypeTag>
class TpfaLinearizer
{
//! \cond SKIP_THIS
using Model = GetPropType<TypeTag, Properties::Model>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using Element = typename GridView::template Codim<0>::Entity;
using ElementIterator = typename GridView::template Codim<0>::Iterator;
using Vector = GlobalEqVector;
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
enum { historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
enum { dimWorld = GridView::dimensionworld };
using MatrixBlock = typename SparseMatrixAdapter::MatrixBlock;
using VectorBlock = Dune::FieldVector<Scalar, numEq>;
using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>;
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
static const bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
static const bool enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>();
// copying the linearizer is not a good idea
TpfaLinearizer(const TpfaLinearizer&) = delete;
//! \endcond
public:
TpfaLinearizer()
: jacobian_()
{
simulatorPtr_ = 0;
separateSparseSourceTerms_ = Parameters::Get<Parameters::SeparateSparseSourceTerms>();
}
~TpfaLinearizer()
{
}
/*!
* \brief Register all run-time parameters for the Jacobian linearizer.
*/
static void registerParameters()
{
Parameters::Register<Parameters::SeparateSparseSourceTerms>
("Treat well source terms all in one go, instead of on a cell by cell basis.");
}
/*!
* \brief Initialize the linearizer.
*
* At this point we can assume that all objects in the simulator
* have been allocated. We cannot assume that they are fully
* initialized, though.
*
* \copydetails Doxygen::simulatorParam
*/
void init(Simulator& simulator)
{
simulatorPtr_ = &simulator;
eraseMatrix();
}
/*!
* \brief Causes the Jacobian matrix to be recreated from scratch before the next
* iteration.
*
* This method is usally called if the sparsity pattern has changed for some
* reason. (e.g. by modifications of the grid or changes of the auxiliary equations.)
*/
void eraseMatrix()
{
jacobian_.reset();
}
/*!
* \brief Linearize the full system of non-linear equations.
*
* The linearizationType() controls the scheme used and the focus
* time index. The default is fully implicit scheme, and focus index
* equal to 0, i.e. current time (end of step).
*
* This linearizes the spatial domain and all auxiliary equations.
*/
void linearize()
{
linearizeDomain();
linearizeAuxiliaryEquations();
}
/*!
* \brief Linearize the part of the non-linear system of equations that is associated
* with the spatial domain.
*
* That means that the global Jacobian of the residual is assembled and the residual
* is evaluated for the current solution.
*
* The current state of affairs (esp. the previous and the current solutions) is
* represented by the model object.
*/
void linearizeDomain()
{
int succeeded;
try {
linearizeDomain(fullDomain_);
succeeded = 1;
}
catch (const std::exception& e)
{
std::cout << "rank " << simulator_().gridView().comm().rank()
<< " caught an exception while linearizing:" << e.what()
<< "\n" << std::flush;
succeeded = 0;
}
catch (...)
{
std::cout << "rank " << simulator_().gridView().comm().rank()
<< " caught an exception while linearizing"
<< "\n" << std::flush;
succeeded = 0;
}
succeeded = simulator_().gridView().comm().min(succeeded);
if (!succeeded)
throw NumericalProblem("A process did not succeed in linearizing the system");
}
/*!
* \brief Linearize the part of the non-linear system of equations that is associated
* with a part of the spatial domain.
*
* That means that the Jacobian of the residual is assembled and the residual
* is evaluated for the current solution, on the domain passed in as argument.
*
* The current state of affairs (esp. the previous and the current solutions) is
* represented by the model object.
*/
template <class SubDomainType>
void linearizeDomain(const SubDomainType& domain)
{
OPM_TIMEBLOCK(linearizeDomain);
// we defer the initialization of the Jacobian matrix until here because the
// auxiliary modules usually assume the problem, model and grid to be fully
// initialized...
if (!jacobian_)
initFirstIteration_();
// Called here because it is no longer called from linearize_().
if (domain.cells.size() == model_().numTotalDof()) {
// We are on the full domain.
resetSystem_();
} else {
resetSystem_(domain);
}
linearize_(domain);
}
void finalize()
{ jacobian_->finalize(); }
/*!
* \brief Linearize the part of the non-linear system of equations that is associated
* with the spatial domain.
*/
void linearizeAuxiliaryEquations()
{
OPM_TIMEBLOCK(linearizeAuxilaryEquations);
// flush possible local caches into matrix structure
jacobian_->commit();
auto& model = model_();
const auto& comm = simulator_().gridView().comm();
for (unsigned auxModIdx = 0; auxModIdx < model.numAuxiliaryModules(); ++auxModIdx) {
bool succeeded = true;
try {
model.auxiliaryModule(auxModIdx)->linearize(*jacobian_, residual_);
}
catch (const std::exception& e) {
succeeded = false;
std::cout << "rank " << simulator_().gridView().comm().rank()
<< " caught an exception while linearizing:" << e.what()
<< "\n" << std::flush;
}
succeeded = comm.min(succeeded);
if (!succeeded)
throw NumericalProblem("linearization of an auxiliary equation failed");
}
}
/*!
* \brief Return constant reference to global Jacobian matrix backend.
*/
const SparseMatrixAdapter& jacobian() const
{ return *jacobian_; }
SparseMatrixAdapter& jacobian()
{ return *jacobian_; }
/*!
* \brief Return constant reference to global residual vector.
*/
const GlobalEqVector& residual() const
{ return residual_; }
GlobalEqVector& residual()
{ return residual_; }
void setLinearizationType(LinearizationType linearizationType){
linearizationType_ = linearizationType;
};
const LinearizationType& getLinearizationType() const{
return linearizationType_;
};
/*!
* \brief Return constant reference to the flowsInfo.
*
* (This object is only non-empty if the FLOWS keyword is true.)
*/
const auto& getFlowsInfo() const{
return flowsInfo_;
}
/*!
* \brief Return constant reference to the floresInfo.
*
* (This object is only non-empty if the FLORES keyword is true.)
*/
const auto& getFloresInfo() const{
return floresInfo_;
}
/*!
* \brief Return constant reference to the velocityInfo.
*
* (This object is only non-empty if the DISPERC keyword is true.)
*/
const auto& getVelocityInfo() const{
return velocityInfo_;
}
void updateDiscretizationParameters()
{
updateStoredTransmissibilities();
}
void updateBoundaryConditionData() {
for (auto& bdyInfo : boundaryInfo_) {
const auto [type, massrateAD] = problem_().boundaryCondition(bdyInfo.cell, bdyInfo.dir);
// Strip the unnecessary (and zero anyway) derivatives off massrate.
VectorBlock massrate(0.0);
for (size_t ii = 0; ii < massrate.size(); ++ii) {
massrate[ii] = massrateAD[ii].value();
}
if (type != BCType::NONE) {
const auto& exFluidState = problem_().boundaryFluidState(bdyInfo.cell, bdyInfo.dir);
bdyInfo.bcdata.type = type;
bdyInfo.bcdata.massRate = massrate;
bdyInfo.bcdata.exFluidState = exFluidState;
}
}
}
/*!
* \brief Returns the map of constraint degrees of freedom.
*
* (This object is only non-empty if the EnableConstraints property is true.)
*/
const std::map<unsigned, Constraints> constraintsMap() const
{ return {}; }
template <class SubDomainType>
void resetSystem_(const SubDomainType& domain)
{
if (!jacobian_) {
initFirstIteration_();
}
for (int globI : domain.cells) {
residual_[globI] = 0.0;
jacobian_->clearRow(globI, 0.0);
}
}
private:
Simulator& simulator_()
{ return *simulatorPtr_; }
const Simulator& simulator_() const
{ return *simulatorPtr_; }
Problem& problem_()
{ return simulator_().problem(); }
const Problem& problem_() const
{ return simulator_().problem(); }
Model& model_()
{ return simulator_().model(); }
const Model& model_() const
{ return simulator_().model(); }
const GridView& gridView_() const
{ return problem_().gridView(); }
void initFirstIteration_()
{
// initialize the BCRS matrix for the Jacobian of the residual function
createMatrix_();
// initialize the Jacobian matrix and the vector for the residual function
residual_.resize(model_().numTotalDof());
resetSystem_();
// initialize the sparse tables for Flows and Flores
createFlows_();
}
// Construct the BCRS matrix for the Jacobian of the residual function
void createMatrix_()
{
OPM_TIMEBLOCK(createMatrix);
if (!neighborInfo_.empty()) {
// It is ok to call this function multiple times, but it
// should not do anything if already called.
return;
}
const auto& model = model_();
Stencil stencil(gridView_(), model_().dofMapper());
// for the main model, find out the global indices of the neighboring degrees of
// freedom of each primary degree of freedom
using NeighborSet = std::set< unsigned >;
std::vector<NeighborSet> sparsityPattern(model.numTotalDof());
const Scalar gravity = problem_().gravity()[dimWorld - 1];
unsigned numCells = model.numTotalDof();
neighborInfo_.reserve(numCells, 6 * numCells);
std::vector<NeighborInfo> loc_nbinfo;
for (const auto& elem : elements(gridView_())) {
stencil.update(elem);
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
loc_nbinfo.resize(stencil.numDof() - 1); // Do not include the primary dof in neighborInfo_
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
sparsityPattern[myIdx].insert(neighborIdx);
if (dofIdx > 0) {
const Scalar trans = problem_().transmissibility(myIdx, neighborIdx);
const auto scvfIdx = dofIdx - 1;
const auto& scvf = stencil.interiorFace(scvfIdx);
const Scalar area = scvf.area();
const Scalar Vin = problem_().model().dofTotalVolume(myIdx);
const Scalar Vex = problem_().model().dofTotalVolume(neighborIdx);
const Scalar zIn = problem_().dofCenterDepth(myIdx);
const Scalar zEx = problem_().dofCenterDepth(neighborIdx);
const Scalar dZg = (zIn - zEx)*gravity;
const Scalar thpres = problem_().thresholdPressure(myIdx, neighborIdx);
Scalar inAlpha {0.};
Scalar outAlpha {0.};
Scalar diffusivity {0.};
Scalar dispersivity {0.};
if constexpr(enableEnergy){
inAlpha = problem_().thermalHalfTransmissibility(myIdx, neighborIdx);
outAlpha = problem_().thermalHalfTransmissibility(neighborIdx, myIdx);
}
if constexpr(enableDiffusion){
diffusivity = problem_().diffusivity(myIdx, neighborIdx);
}
if (simulator_().vanguard().eclState().getSimulationConfig().rock_config().dispersion()) {
dispersivity = problem_().dispersivity(myIdx, neighborIdx);
}
const auto dirId = scvf.dirId();
auto faceDir = dirId < 0 ? FaceDir::DirEnum::Unknown
: FaceDir::FromIntersectionIndex(dirId);
loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, {trans, area, thpres, dZg, faceDir, Vin, Vex, inAlpha, outAlpha, diffusivity, dispersivity}, nullptr};
}
}
neighborInfo_.appendRow(loc_nbinfo.begin(), loc_nbinfo.end());
if (problem_().nonTrivialBoundaryConditions()) {
for (unsigned bfIndex = 0; bfIndex < stencil.numBoundaryFaces(); ++bfIndex) {
const auto& bf = stencil.boundaryFace(bfIndex);
const int dir_id = bf.dirId();
// not for NNCs
if (dir_id < 0)
continue;
const auto [type, massrateAD] = problem_().boundaryCondition(myIdx, dir_id);
// Strip the unnecessary (and zero anyway) derivatives off massrate.
VectorBlock massrate(0.0);
for (size_t ii = 0; ii < massrate.size(); ++ii) {
massrate[ii] = massrateAD[ii].value();
}
const auto& exFluidState = problem_().boundaryFluidState(myIdx, dir_id);
BoundaryConditionData bcdata{type,
massrate,
exFluidState.pvtRegionIndex(),
bfIndex,
bf.area(),
bf.integrationPos()[dimWorld - 1],
exFluidState};
boundaryInfo_.push_back({myIdx, dir_id, bfIndex, bcdata});
}
}
}
}
// add the additional neighbors and degrees of freedom caused by the auxiliary
// equations
size_t numAuxMod = model.numAuxiliaryModules();
for (unsigned auxModIdx = 0; auxModIdx < numAuxMod; ++auxModIdx)
model.auxiliaryModule(auxModIdx)->addNeighbors(sparsityPattern);
// allocate raw matrix
jacobian_.reset(new SparseMatrixAdapter(simulator_()));
diagMatAddress_.resize(numCells);
// create matrix structure based on sparsity pattern
jacobian_->reserve(sparsityPattern);
for (unsigned globI = 0; globI < numCells; globI++) {
const auto& nbInfos = neighborInfo_[globI];
diagMatAddress_[globI] = jacobian_->blockAddress(globI, globI);
for (auto& nbInfo : nbInfos) {
nbInfo.matBlockAddress = jacobian_->blockAddress(nbInfo.neighbor, globI);
}
}
// Create dummy full domain.
fullDomain_.cells.resize(numCells);
std::iota(fullDomain_.cells.begin(), fullDomain_.cells.end(), 0);
}
// reset the global linear system of equations.
void resetSystem_()
{
residual_ = 0.0;
// zero all matrix entries
jacobian_->clear();
}
// Initialize the flows, flores, and velocity sparse tables
void createFlows_()
{
OPM_TIMEBLOCK(createFlows);
// If FLOWS/FLORES is set in any RPTRST in the schedule, then we initializate the sparse tables
// For now, do the same also if any block flows are requested (TODO: only save requested cells...)
// If DISPERC is in the deck, we initialize the sparse table here as well.
const bool anyFlows = simulator_().problem().eclWriter()->outputModule().anyFlows();
const bool anyFlores = simulator_().problem().eclWriter()->outputModule().anyFlores();
const bool enableDispersion = simulator_().vanguard().eclState().getSimulationConfig().rock_config().dispersion();
if (((!anyFlows || !flowsInfo_.empty()) && (!anyFlores || !floresInfo_.empty())) && !enableDispersion) {
return;
}
const auto& model = model_();
const auto& nncOutput = simulator_().problem().eclWriter()->getOutputNnc();
Stencil stencil(gridView_(), model_().dofMapper());
unsigned numCells = model.numTotalDof();
std::unordered_multimap<int, std::pair<int, int>> nncIndices;
std::vector<FlowInfo> loc_flinfo;
std::vector<VelocityInfo> loc_vlinfo;
unsigned int nncId = 0;
VectorBlock flow(0.0);
// Create a nnc structure to use fast lookup
for (unsigned int nncIdx = 0; nncIdx < nncOutput.size(); ++nncIdx) {
const int ci1 = nncOutput[nncIdx].cell1;
const int ci2 = nncOutput[nncIdx].cell2;
nncIndices.emplace(ci1, std::make_pair(ci2, nncIdx));
}
if (anyFlows) {
flowsInfo_.reserve(numCells, 6 * numCells);
}
if (anyFlores) {
floresInfo_.reserve(numCells, 6 * numCells);
}
if (enableDispersion) {
velocityInfo_.reserve(numCells, 6 * numCells);
}
for (const auto& elem : elements(gridView_())) {
stencil.update(elem);
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
int numFaces = stencil.numBoundaryFaces() + stencil.numInteriorFaces();
loc_flinfo.resize(numFaces);
loc_vlinfo.resize(stencil.numDof() - 1);
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
if (dofIdx > 0) {
const auto scvfIdx = dofIdx - 1;
const auto& scvf = stencil.interiorFace(scvfIdx);
int faceId = scvf.dirId();
const int cartMyIdx = simulator_().vanguard().cartesianIndex(myIdx);
const int cartNeighborIdx = simulator_().vanguard().cartesianIndex(neighborIdx);
const auto& range = nncIndices.equal_range(cartMyIdx);
for (auto it = range.first; it != range.second; ++it) {
if (it->second.first == cartNeighborIdx){
// -1 gives problem since is used for the nncInput from the deck
faceId = -2;
// the index is stored to be used for writting the outputs
nncId = it->second.second;
}
}
loc_flinfo[dofIdx - 1] = FlowInfo{faceId, flow, nncId};
loc_vlinfo[dofIdx - 1] = VelocityInfo{flow};
}
}
for (unsigned bdfIdx = 0; bdfIdx < stencil.numBoundaryFaces(); ++bdfIdx) {
const auto& scvf = stencil.boundaryFace(bdfIdx);
int faceId = scvf.dirId();
loc_flinfo[stencil.numInteriorFaces() + bdfIdx] = FlowInfo{faceId, flow, nncId};
}
if (anyFlows) {
flowsInfo_.appendRow(loc_flinfo.begin(), loc_flinfo.end());
}
if (anyFlores) {
floresInfo_.appendRow(loc_flinfo.begin(), loc_flinfo.end());
}
if (enableDispersion) {
velocityInfo_.appendRow(loc_vlinfo.begin(), loc_vlinfo.end());
}
}
}
}
public:
void setResAndJacobi(VectorBlock& res, MatrixBlock& bMat, const ADVectorBlock& resid) const
{
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
res[eqIdx] = resid[eqIdx].value();
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
// with regard to the focus variable 'pvIdx' of the degree of freedom
// 'focusDofIdx'
bMat[eqIdx][pvIdx] = resid[eqIdx].derivative(pvIdx);
}
}
}
void updateFlowsInfo() {
OPM_TIMEBLOCK(updateFlows);
const bool& enableFlows = simulator_().problem().eclWriter()->outputModule().hasFlows() ||
simulator_().problem().eclWriter()->outputModule().hasBlockFlows();
const bool& enableFlores = simulator_().problem().eclWriter()->outputModule().hasFlores();
if (!enableFlows && !enableFlores) {
return;
}
const unsigned int numCells = model_().numTotalDof();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (unsigned globI = 0; globI < numCells; ++globI) {
OPM_TIMEBLOCK_LOCAL(linearizationForEachCell);
const auto& nbInfos = neighborInfo_[globI];
ADVectorBlock adres(0.0);
ADVectorBlock darcyFlux(0.0);
const IntensiveQuantities& intQuantsIn = model_().intensiveQuantities(globI, /*timeIdx*/ 0);
// Flux term.
{
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachCell);
short loc = 0;
for (const auto& nbInfo : nbInfos) {
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachFace);
unsigned globJ = nbInfo.neighbor;
assert(globJ != globI);
adres = 0.0;
darcyFlux = 0.0;
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo, problem_().moduleParams());
adres *= nbInfo.res_nbinfo.faceArea;
if (enableFlows) {
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
flowsInfo_[globI][loc].flow[eqIdx] = adres[eqIdx].value();
}
}
if (enableFlores) {
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
floresInfo_[globI][loc].flow[eqIdx] = darcyFlux[eqIdx].value();
}
}
++loc;
}
}
}
// Boundary terms. Only looping over cells with nontrivial bcs.
for (const auto& bdyInfo : boundaryInfo_) {
if (bdyInfo.bcdata.type == BCType::NONE)
continue;
ADVectorBlock adres(0.0);
const unsigned globI = bdyInfo.cell;
const auto& nbInfos = neighborInfo_[globI];
const IntensiveQuantities& insideIntQuants = model_().intensiveQuantities(globI, /*timeIdx*/ 0);
LocalResidual::computeBoundaryFlux(adres, problem_(), bdyInfo.bcdata, insideIntQuants, globI);
adres *= bdyInfo.bcdata.faceArea;
const unsigned bfIndex = bdyInfo.bfIndex;
if (enableFlows) {
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
flowsInfo_[globI][nbInfos.size() + bfIndex].flow[eqIdx] = adres[eqIdx].value();
}
}
// TODO also store Flores?
}
}
private:
template <class SubDomainType>
void linearize_(const SubDomainType& domain)
{
// This check should be removed once this is addressed by
// for example storing the previous timesteps' values for
// rsmax (for DRSDT) and similar.
if (!problem_().recycleFirstIterationStorage()) {
if (!model_().storeIntensiveQuantities() && !model_().enableStorageCache()) {
OPM_THROW(std::runtime_error, "Must have cached either IQs or storage when we cannot recycle.");
}
}
OPM_TIMEBLOCK(linearize);
// We do not call resetSystem_() here, since that will set
// the full system to zero, not just our part.
// Instead, that must be called before starting the linearization.
const bool& enableDispersion = simulator_().vanguard().eclState().getSimulationConfig().rock_config().dispersion();
const unsigned int numCells = domain.cells.size();
const bool on_full_domain = (numCells == model_().numTotalDof());
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (unsigned ii = 0; ii < numCells; ++ii) {
OPM_TIMEBLOCK_LOCAL(linearizationForEachCell);
const unsigned globI = domain.cells[ii];
const auto& nbInfos = neighborInfo_[globI];
VectorBlock res(0.0);
MatrixBlock bMat(0.0);
ADVectorBlock adres(0.0);
ADVectorBlock darcyFlux(0.0);
const IntensiveQuantities& intQuantsIn = model_().intensiveQuantities(globI, /*timeIdx*/ 0);
// Flux term.
{
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachCell);
short loc = 0;
for (const auto& nbInfo : nbInfos) {
OPM_TIMEBLOCK_LOCAL(fluxCalculationForEachFace);
unsigned globJ = nbInfo.neighbor;
assert(globJ != globI);
res = 0.0;
bMat = 0.0;
adres = 0.0;
darcyFlux = 0.0;
const IntensiveQuantities& intQuantsEx = model_().intensiveQuantities(globJ, /*timeIdx*/ 0);
LocalResidual::computeFlux(adres,darcyFlux, globI, globJ, intQuantsIn, intQuantsEx, nbInfo.res_nbinfo, problem_().moduleParams());
adres *= nbInfo.res_nbinfo.faceArea;
if (enableDispersion) {
for (unsigned phaseIdx = 0; phaseIdx < numEq; ++ phaseIdx) {
velocityInfo_[globI][loc].velocity[phaseIdx] = darcyFlux[phaseIdx].value() / nbInfo.res_nbinfo.faceArea;
}
}
setResAndJacobi(res, bMat, adres);
residual_[globI] += res;
//SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
*diagMatAddress_[globI] += bMat;
bMat *= -1.0;
//SparseAdapter syntax: jacobian_->addToBlock(globJ, globI, bMat);
*nbInfo.matBlockAddress += bMat;
++loc;
}
}
// Accumulation term.
double dt = simulator_().timeStepSize();
double volume = model_().dofTotalVolume(globI);
Scalar storefac = volume / dt;
adres = 0.0;
{
OPM_TIMEBLOCK_LOCAL(computeStorage);
LocalResidual::computeStorage(adres, intQuantsIn);
}
setResAndJacobi(res, bMat, adres);
// Either use cached storage term, or compute it on the fly.
if (model_().enableStorageCache()) {
// The cached storage for timeIdx 0 (current time) is not
// used, but after storage cache is shifted at the end of the
// timestep, it will become cached storage for timeIdx 1.
model_().updateCachedStorage(globI, /*timeIdx=*/0, res);
if (model_().newtonMethod().numIterations() == 0) {
// Need to update the storage cache.
if (problem_().recycleFirstIterationStorage()) {
// Assumes nothing have changed in the system which
// affects masses calculated from primary variables.
if (on_full_domain) {
// This is to avoid resetting the start-of-step storage
// to incorrect numbers when we do local solves, where the iteration
// number will start from 0, but the starting state may not be identical
// to the start-of-step state.
// Note that a full assembly must be done before local solves
// otherwise this will be left un-updated.
model_().updateCachedStorage(globI, /*timeIdx=*/1, res);
}
} else {
Dune::FieldVector<Scalar, numEq> tmp;
IntensiveQuantities intQuantOld = model_().intensiveQuantities(globI, 1);
LocalResidual::computeStorage(tmp, intQuantOld);
model_().updateCachedStorage(globI, /*timeIdx=*/1, tmp);
}
}
res -= model_().cachedStorage(globI, 1);
} else {
OPM_TIMEBLOCK_LOCAL(computeStorage0);
Dune::FieldVector<Scalar, numEq> tmp;
IntensiveQuantities intQuantOld = model_().intensiveQuantities(globI, 1);
LocalResidual::computeStorage(tmp, intQuantOld);
// assume volume do not change
res -= tmp;
}
res *= storefac;
bMat *= storefac;
residual_[globI] += res;
//SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
*diagMatAddress_[globI] += bMat;
// Cell-wise source terms.
// This will include well sources if SeparateSparseSourceTerms is false.
res = 0.0;
bMat = 0.0;
adres = 0.0;
if (separateSparseSourceTerms_) {
LocalResidual::computeSourceDense(adres, problem_(), globI, 0);
} else {
LocalResidual::computeSource(adres, problem_(), globI, 0);
}
adres *= -volume;
setResAndJacobi(res, bMat, adres);
residual_[globI] += res;
//SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
*diagMatAddress_[globI] += bMat;
} // end of loop for cell globI.
// Add sparse source terms. For now only wells.
if (separateSparseSourceTerms_) {
problem_().wellModel().addReservoirSourceTerms(residual_, diagMatAddress_);
}
// Boundary terms. Only looping over cells with nontrivial bcs.
for (const auto& bdyInfo : boundaryInfo_) {
if (bdyInfo.bcdata.type == BCType::NONE)
continue;
VectorBlock res(0.0);
MatrixBlock bMat(0.0);
ADVectorBlock adres(0.0);
const unsigned globI = bdyInfo.cell;
const IntensiveQuantities& insideIntQuants = model_().intensiveQuantities(globI, /*timeIdx*/ 0);
LocalResidual::computeBoundaryFlux(adres, problem_(), bdyInfo.bcdata, insideIntQuants, globI);
adres *= bdyInfo.bcdata.faceArea;
setResAndJacobi(res, bMat, adres);
residual_[globI] += res;
////SparseAdapter syntax: jacobian_->addToBlock(globI, globI, bMat);
*diagMatAddress_[globI] += bMat;
}
}
void updateStoredTransmissibilities()
{
if (neighborInfo_.empty()) {
// This function was called before createMatrix_() was called.
// We call initFirstIteration_(), not createMatrix_(), because
// that will also initialize the residual consistently.
initFirstIteration_();
}
unsigned numCells = model_().numTotalDof();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (unsigned globI = 0; globI < numCells; globI++) {
auto nbInfos = neighborInfo_[globI]; // nbInfos will be a SparseTable<...>::mutable_iterator_range.
for (auto& nbInfo : nbInfos) {
unsigned globJ = nbInfo.neighbor;
nbInfo.res_nbinfo.trans = problem_().transmissibility(globI, globJ);
}
}
}
Simulator *simulatorPtr_;
// the jacobian matrix
std::unique_ptr<SparseMatrixAdapter> jacobian_;
// the right-hand side
GlobalEqVector residual_;
LinearizationType linearizationType_;
using ResidualNBInfo = typename LocalResidual::ResidualNBInfo;
struct NeighborInfo
{
unsigned int neighbor;
ResidualNBInfo res_nbinfo;
MatrixBlock* matBlockAddress;
};
SparseTable<NeighborInfo> neighborInfo_;
std::vector<MatrixBlock*> diagMatAddress_;
struct FlowInfo
{
int faceId;
VectorBlock flow;
unsigned int nncId;
};
SparseTable<FlowInfo> flowsInfo_;
SparseTable<FlowInfo> floresInfo_;
struct VelocityInfo
{
VectorBlock velocity;
};
SparseTable<VelocityInfo> velocityInfo_;
using ScalarFluidState = typename IntensiveQuantities::ScalarFluidState;
struct BoundaryConditionData
{
BCType type;
VectorBlock massRate;
unsigned pvtRegionIdx;
unsigned boundaryFaceIndex;
double faceArea;
double faceZCoord;
ScalarFluidState exFluidState;
};
struct BoundaryInfo
{
unsigned int cell;
int dir;
unsigned int bfIndex;
BoundaryConditionData bcdata;
};
std::vector<BoundaryInfo> boundaryInfo_;
bool separateSparseSourceTerms_ = false;
struct FullDomain
{
std::vector<int> cells;
std::vector<bool> interior;
};
FullDomain fullDomain_;
};
} // namespace Opm
#endif // TPFA_LINEARIZER
|