1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::co2ptflashproblem
*/
#ifndef OPM_CO2PTFLASH_PROBLEM_HH
#define OPM_CO2PTFLASH_PROBLEM_HH
#include <opm/common/Exceptions.hpp>
#include <opm/input/eclipse/EclipseState/Compositional/CompositionalConfig.hpp>
#include <opm/material/components/SimpleCO2.hpp>
#include <opm/material/components/C10.hpp>
#include <opm/material/components/C1.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/BrooksCorey.hpp>
#include <opm/material/constraintsolvers/PTFlash.hpp>
#include <opm/material/fluidsystems/GenericOilGasWaterFluidSystem.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <opm/models/immiscible/immisciblemodel.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include <opm/models/ptflash/flashmodel.hh>
#include <opm/models/io/structuredgridvanguard.hh>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/start.hh>
#include <opm/simulators/linalg/parallelistlbackend.hh>
#include <opm/simulators/linalg/parallelbicgstabbackend.hh>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
namespace Opm {
template <class TypeTag>
class CO2PTProblem;
} // namespace Opm */
namespace Opm::Properties {
namespace TTag {
struct CO2PTBaseProblem {};
} // end namespace TTag
template <class TypeTag, class MyTypeTag>
struct NumComp { using type = UndefinedProperty; };
template <class TypeTag>
struct NumComp<TypeTag, TTag::CO2PTBaseProblem> {
static constexpr int value = 3;
};
template <class TypeTag, class MyTypeTag>
struct EnableDummyWater { using type = UndefinedProperty; };
template <class TypeTag>
struct EnableDummyWater<TypeTag, TTag::CO2PTBaseProblem> {
static constexpr bool value = true;
};
// Set the grid type: --->2D
template <class TypeTag>
struct Grid<TypeTag, TTag::CO2PTBaseProblem> { using type = Dune::YaspGrid</*dim=*/2>; };
// Set the problem property
template <class TypeTag>
struct Problem<TypeTag, TTag::CO2PTBaseProblem>
{ using type = Opm::CO2PTProblem<TypeTag>; };
// Set flash solver
template <class TypeTag>
struct FlashSolver<TypeTag, TTag::CO2PTBaseProblem> {
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
public:
using type = Opm::PTFlash<Scalar, FluidSystem>;
};
// Set fluid configuration
template <class TypeTag>
struct FluidSystem<TypeTag, TTag::CO2PTBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
static constexpr int num_comp = getPropValue<TypeTag, Properties::NumComp>();
static constexpr bool enable_water = getPropValue<TypeTag, Properties::EnableDummyWater>();
public:
using type = Opm::GenericOilGasWaterFluidSystem<Scalar, num_comp, enable_water>;
};
// Set the material Law
template <class TypeTag>
struct MaterialLaw<TypeTag, TTag::CO2PTBaseProblem> {
private:
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Traits = Opm::ThreePhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx,
/* hysteresis */ false,
/* endpointscaling */ false>;
// define the material law which is parameterized by effective saturation
using EffMaterialLaw = Opm::NullMaterial<Traits>;
//using EffMaterialLaw = Opm::BrooksCorey<Traits>;
public:
using type = EffMaterialLaw;
};
// mesh grid
template <class TypeTag>
struct Vanguard<TypeTag, TTag::CO2PTBaseProblem> {
using type = Opm::StructuredGridVanguard<TypeTag>;
};
template <class TypeTag>
struct EnableEnergy<TypeTag, TTag::CO2PTBaseProblem> {
static constexpr bool value = false;
};
} // namespace Opm::Properties
namespace Opm::Parameters {
// this is kinds of telling the report step length
template<class Scalar>
struct EpisodeLength { static constexpr Scalar value = 0.1 * 60. * 60.; };
template<class Scalar>
struct Initialpressure { static constexpr Scalar value = 75e5; };
struct SimulationName { static constexpr auto value = "co2_ptflash"; };
// set the defaults for the problem specific properties
template<class Scalar>
struct Temperature { static constexpr Scalar value = 423.25; };
} // namespace Opm::Parameters
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief 3 component simple testproblem with ["CO2", "C1", "C10"]
*
*/
template <class TypeTag>
class CO2PTProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
using Indices = GetPropType<TypeTag, Properties::Indices>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Model = GetPropType<TypeTag, Properties::Model>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using Toolbox = Opm::MathToolbox<Evaluation>;
using CoordScalar = typename GridView::ctype;
enum { numPhases = FluidSystem::numPhases };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { conti0EqIdx = Indices::conti0EqIdx };
enum { pressure0Idx = Indices::pressure0Idx };
enum { z0Idx = Indices::z0Idx };
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
using ComponentVector = Dune::FieldVector<Evaluation, numComponents>;
using FlashSolver = GetPropType<TypeTag, Properties::FlashSolver>;
public:
using FluidState = Opm::CompositionalFluidState<Evaluation, FluidSystem, enableEnergy>;
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
explicit CO2PTProblem(Simulator& simulator)
: ParentType(simulator)
{
const Scalar epi_len = Parameters::Get<Parameters::EpisodeLength<Scalar>>();
simulator.setEpisodeLength(epi_len);
FluidSystem::init();
using CompParm = typename FluidSystem::ComponentParam;
using CO2 = Opm::SimpleCO2<Scalar>;
using C1 = Opm::C1<Scalar>;
using C10 = Opm::C10<Scalar>;
FluidSystem::addComponent(CompParm {CO2::name(), CO2::molarMass(), CO2::criticalTemperature(),
CO2::criticalPressure(), CO2::criticalVolume(), CO2::acentricFactor()});
FluidSystem::addComponent(CompParm {C1::name(), C1::molarMass(), C1::criticalTemperature(),
C1::criticalPressure(), C1::criticalVolume(), C1::acentricFactor()});
FluidSystem::addComponent(CompParm{C10::name(), C10::molarMass(), C10::criticalTemperature(),
C10::criticalPressure(), C10::criticalVolume(), C10::acentricFactor()});
// FluidSystem::add
}
void initPetrophysics()
{
temperature_ = Parameters::Get<Parameters::Temperature<Scalar>>();
K_ = this->toDimMatrix_(9.869232667160131e-14);
porosity_ = 0.1;
}
void initWaterPVT()
{
using WaterPvt = typename FluidSystem::WaterPvt;
std::shared_ptr<WaterPvt> waterPvt = std::make_shared<WaterPvt>();
waterPvt->setApproach(WaterPvtApproach::ConstantCompressibilityWater);
auto& ccWaterPvt = waterPvt->template getRealPvt<WaterPvtApproach::ConstantCompressibilityWater>();
ccWaterPvt.setNumRegions(/*numPvtRegions=*/1);
Scalar rhoRefW = 1037.0; // [kg]
ccWaterPvt.setReferenceDensities(/*regionIdx=*/0, /*rhoRefO=*/Scalar(0.0), /*rhoRefG=*/Scalar(0.0), rhoRefW);
ccWaterPvt.setViscosity(/*regionIdx=*/0, 9.6e-4);
ccWaterPvt.setCompressibility(/*regionIdx=*/0, 1.450377e-10);
waterPvt->initEnd();
FluidSystem::setWaterPvt(waterPvt);
}
template <class Context>
const DimVector&
gravity([[maybe_unused]]const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{
return gravity();
}
const DimVector& gravity() const
{
return gravity_;
}
Opm::CompositionalConfig::EOSType getEosType() const
{
return Opm::CompositionalConfig::EOSType::PR;
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
// initialize fixed parameters; temperature, permeability, porosity
initPetrophysics();
// Initialize water pvt
initWaterPVT();
}
/*!
* \copydoc co2ptflashproblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
Parameters::Register<Parameters::Temperature<Scalar>>
("The temperature [K] in the reservoir");
Parameters::Register<Parameters::Initialpressure<Scalar>>
("The initial pressure [Pa s] in the reservoir");
Parameters::Register<Parameters::SimulationName>
("The name of the simulation used for the output files");
Parameters::Register<Parameters::EpisodeLength<Scalar>>
("Time interval [s] for episode length");
Parameters::SetDefault<Parameters::CellsX>(30);
Parameters::SetDefault<Parameters::DomainSizeX<Scalar>>(300.0);
if constexpr (dim > 1) {
Parameters::SetDefault<Parameters::CellsY>(1);
Parameters::SetDefault<Parameters::DomainSizeY<Scalar>>(1.0);
}
if constexpr (dim == 3) {
Parameters::SetDefault<Parameters::CellsZ>(1);
Parameters::SetDefault<Parameters::DomainSizeZ<Scalar>>(1.0);
}
Parameters::SetDefault<Parameters::EndTime<Scalar>>(60. * 60.);
Parameters::SetDefault<Parameters::InitialTimeStepSize<Scalar>>(0.1 * 60. * 60.);
Parameters::SetDefault<Parameters::NewtonMaxIterations>(30);
Parameters::SetDefault<Parameters::NewtonTargetIterations>(6);
Parameters::SetDefault<Parameters::NewtonTolerance<Scalar>>(1e-3);
Parameters::SetDefault<Parameters::VtkWriteFilterVelocities>(true);
Parameters::SetDefault<Parameters::VtkWriteFugacityCoeffs>(true);
Parameters::SetDefault<Parameters::VtkWritePotentialGradients>(true);
Parameters::SetDefault<Parameters::VtkWriteTotalMassFractions>(true);
Parameters::SetDefault<Parameters::VtkWriteTotalMoleFractions>(true);
Parameters::SetDefault<Parameters::VtkWriteEquilibriumConstants>(true);
Parameters::SetDefault<Parameters::VtkWriteLiquidMoleFractions>(true);
Parameters::SetDefault<Parameters::LinearSolverAbsTolerance<Scalar>>(0.0);
Parameters::SetDefault<Parameters::LinearSolverTolerance<Scalar>>(1e-3);
}
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << Parameters::Get<Parameters::SimulationName>();
return oss.str();
}
// This method must be overridden for the simulator to continue with
// a new episode. We just start a new episode with the same length as
// the old one.
void endEpisode()
{
Scalar epi_len = Parameters::Get<Parameters::EpisodeLength<Scalar>>();
this->simulator().startNextEpisode(epi_len);
}
// only write output when episodes change, aka. report steps, and
// include the initial timestep too
bool shouldWriteOutput()
{
return this->simulator().episodeWillBeOver() || (this->simulator().timeStepIndex() == -1);
}
// we don't care about doing restarts from every fifth timestep, it
// will just slow us down
bool shouldWriteRestartFile()
{
return false;
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
Scalar tol = this->model().newtonMethod().tolerance() * 1e5;
this->model().checkConservativeness(tol);
// Calculate storage terms
PrimaryVariables storageO, storageW;
this->model().globalPhaseStorage(storageO, oilPhaseIdx);
// Calculate storage terms
PrimaryVariables storageL, storageG;
this->model().globalPhaseStorage(storageL, /*phaseIdx=*/oilPhaseIdx);
this->model().globalPhaseStorage(storageG, /*phaseIdx=*/gasPhaseIdx);
// Write mass balance information for rank 0
// if (this->gridView().comm().rank() == 0) {
// std::cout << "Storage: liquid=[" << storageL << "]"
// << " gas=[" << storageG << "]\n" << std::flush;
// }
}
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
Opm::CompositionalFluidState<Evaluation, FluidSystem> fs;
initialFluidState(fs, context, spaceIdx, timeIdx);
values.assignNaive(fs);
}
// Constant temperature
template <class Context>
Scalar temperature([[maybe_unused]] const Context& context, [[maybe_unused]] unsigned spaceIdx, [[maybe_unused]] unsigned timeIdx) const
{
return temperature_;
}
// Constant permeability
template <class Context>
const DimMatrix& intrinsicPermeability([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{
return K_;
}
// Constant porosity
template <class Context>
Scalar porosity([[maybe_unused]] const Context& context, [[maybe_unused]] unsigned spaceIdx, [[maybe_unused]] unsigned timeIdx) const
{
int spatialIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
int inj = 0;
int prod = Parameters::Get<Parameters::CellsX>() - 1;
if (spatialIdx == inj || spatialIdx == prod) {
return 1.0;
} else {
return porosity_;
}
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams([[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{
return this->mat_;
}
// No flow (introduce fake wells instead)
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ values.setNoFlow(); }
// No source terms
template <class Context>
void source(RateVector& source_rate,
[[maybe_unused]] const Context& context,
[[maybe_unused]] unsigned spaceIdx,
[[maybe_unused]] unsigned timeIdx) const
{
source_rate = Scalar(0.0);
}
private:
/*!
* \copydoc FvBaseProblem::initial
*/
template <class FluidState, class Context>
void initialFluidState(FluidState& fs, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
// z0 = [0.5, 0.3, 0.2]
// zi = [0.99, 0.01-1e-3, 1e-3]
// p0 = 75e5
// T0 = 423.25
int inj = 0;
int prod = Parameters::Get<Parameters::CellsX>() - 1;
int spatialIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
ComponentVector comp;
comp[0] = Evaluation::createVariable(0.5, z0Idx);
comp[1] = Evaluation::createVariable(0.3, z0Idx + 1);
comp[2] = 1. - comp[0] - comp[1];
if (spatialIdx == inj) {
comp[0] = Evaluation::createVariable(0.99, z0Idx);
comp[1] = Evaluation::createVariable(0.01 - 1e-3, z0Idx + 1);
comp[2] = 1. - comp[0] - comp[1];
}
Scalar p0 = Parameters::Get<Parameters::Initialpressure<Scalar>>();
//\Note, for an AD variable, if we multiply it with 2, the derivative will also be scalced with 2,
//\Note, so we should not do it.
if (spatialIdx == inj) {
p0 *= 2.0;
}
if (spatialIdx == prod) {
p0 *= 0.5;
}
Evaluation p_init = Evaluation::createVariable(p0, pressure0Idx);
fs.setPressure(FluidSystem::oilPhaseIdx, p_init);
fs.setPressure(FluidSystem::gasPhaseIdx, p_init);
fs.setPressure(FluidSystem::waterPhaseIdx, p_init);
fs.setTemperature(temperature_);
for (unsigned compIdx = 0; compIdx < numComponents - 1; ++compIdx) {
fs.setMoleFraction(compIdx, comp[compIdx]);
}
// Set initial K and L
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const Evaluation Ktmp = fs.wilsonK_(compIdx);
fs.setKvalue(compIdx, Ktmp);
}
const Evaluation& Ltmp = -1.0;
fs.setLvalue(Ltmp);
}
DimMatrix K_;
Scalar porosity_;
Scalar temperature_;
MaterialLawParams mat_;
DimVector gravity_;
};
} // namespace Opm
#endif
|