File: fingerproblem.hh

package info (click to toggle)
opm-simulators 2025.10%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 21,552 kB
  • sloc: cpp: 193,037; sh: 1,807; python: 1,704; lisp: 1,108; makefile: 31; awk: 10
file content (562 lines) | stat: -rw-r--r-- 18,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/
/*!
 * \file
 *
 * \copydoc Opm::FingerProblem
 */
#ifndef EWOMS_FINGER_PROBLEM_HH
#define EWOMS_FINGER_PROBLEM_HH

#if HAVE_DUNE_ALUGRID
#include <dune/alugrid/grid.hh>
#endif

#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/version.hh>

#include <dune/grid/utility/persistentcontainer.hh>

#include <opm/material/components/Air.hpp>
#include <opm/material/components/SimpleH2O.hpp>

#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidmatrixinteractions/ParkerLenhard.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>

#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>

#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>

#include <opm/models/common/multiphasebaseparameters.hh>

#include <opm/models/discretization/common/fvbasefdlocallinearizer.hh>
#include <opm/models/discretization/common/restrictprolong.hh>

#include <opm/models/immiscible/immiscibleproperties.hh>

#include <opm/models/io/structuredgridvanguard.hh>

#include <string>

namespace Opm {
template <class TypeTag>
class FingerProblem;

} // namespace Opm

namespace Opm::Properties {

// Create new type tags
namespace TTag {
struct FingerBaseProblem { using InheritsFrom = std::tuple<StructuredGridVanguard>; };
} // end namespace TTag

#if HAVE_DUNE_ALUGRID
// use dune-alugrid if available
template<class TypeTag>
struct Grid<TypeTag, TTag::FingerBaseProblem>
{ using type = Dune::ALUGrid</*dim=*/2,
                             /*dimWorld=*/2,
                             Dune::cube,
                             Dune::nonconforming>; };
#endif

// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::FingerBaseProblem> { using type = Opm::FingerProblem<TypeTag>; };

// Set the wetting phase
template<class TypeTag>
struct WettingPhase<TypeTag, TTag::FingerBaseProblem>
{
private:
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;

public:
    using type = Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> >;
};

// Set the non-wetting phase
template<class TypeTag>
struct NonwettingPhase<TypeTag, TTag::FingerBaseProblem>
{
private:
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;

public:
    using type = Opm::GasPhase<Scalar, Opm::Air<Scalar> >;
};

// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::FingerBaseProblem>
{
    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
                                               /*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
                                               /*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>;

    // use the parker-lenhard hysteresis law
    using ParkerLenhard = Opm::ParkerLenhard<Traits>;
    using type = ParkerLenhard;
};

// Enable constraints
template<class TypeTag>
struct EnableConstraints<TypeTag, TTag::FingerBaseProblem> { static constexpr int value = true; };

} // namespace Opm::Properties

namespace Opm::Parameters {

template<class Scalar>
struct InitialWaterSaturation { static constexpr Scalar value = 0.01;  };

} // namespace Opm::Parameters

namespace Opm {

/*!
 * \ingroup TestProblems
 *
 * \brief Two-phase problem featuring some gravity-driven saturation
 *        fingers.
 *
 * The domain of this problem is sized 10cm times 1m and is initially
 * dry. Water is then injected at three locations on the top of the
 * domain which leads to gravity fingering. The boundary conditions
 * used are no-flow for the left and right and top of the domain and
 * free-flow at the bottom. This problem uses the Parker-Lenhard
 * hystersis model which might lead to non-monotonic saturation in the
 * fingers if the right material parameters is chosen and the spatial
 * discretization is fine enough.
 */
template <class TypeTag>
class FingerProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
    //!\cond SKIP_THIS
    using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;

    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
    using GridView = GetPropType<TypeTag, Properties::GridView>;
    using Indices = GetPropType<TypeTag, Properties::Indices>;
    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
    using WettingPhase = GetPropType<TypeTag, Properties::WettingPhase>;
    using NonwettingPhase = GetPropType<TypeTag, Properties::NonwettingPhase>;
    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
    using Simulator = GetPropType<TypeTag, Properties::Simulator>;
    using Constraints = GetPropType<TypeTag, Properties::Constraints>;
    using Model = GetPropType<TypeTag, Properties::Model>;

    enum {
        // number of phases
        numPhases = FluidSystem::numPhases,

        // phase indices
        wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
        nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,

        // equation indices
        contiWettingEqIdx = Indices::conti0EqIdx + wettingPhaseIdx,

        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };

    using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
    using Stencil = GetPropType<TypeTag, Properties::Stencil> ;
    enum { codim = Stencil::Entity::codimension };
    using EqVector = GetPropType<TypeTag, Properties::EqVector>;
    using RateVector = GetPropType<TypeTag, Properties::RateVector>;
    using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;

    using ParkerLenhard = typename GetProp<TypeTag, Properties::MaterialLaw>::ParkerLenhard;
    using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
    using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;

    using CoordScalar = typename GridView::ctype;
    using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
    using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;

    using Grid = typename GridView :: Grid;

    using MaterialLawParamsContainer = Dune::PersistentContainer< Grid, std::shared_ptr< MaterialLawParams > >  ;
    //!\endcond

public:
    using RestrictProlongOperator = CopyRestrictProlong< Grid, MaterialLawParamsContainer >;

    /*!
     * \copydoc Doxygen::defaultProblemConstructor
     */
    explicit FingerProblem(Simulator& simulator)
        : ParentType(simulator),
          materialParams_( simulator.vanguard().grid(), codim )
    {
    }

    /*!
     * \name Auxiliary methods
     */
    //! \{

    /*!
     * \brief \copydoc FvBaseProblem::restrictProlongOperator
     */
    RestrictProlongOperator restrictProlongOperator()
    {
        return RestrictProlongOperator( materialParams_ );
    }

    /*!
     * \copydoc FvBaseProblem::name
     */
    std::string name() const
    { return
            std::string("finger") +
            "_" + Model::name() +
            "_" + Model::discretizationName() +
            (this->model().enableGridAdaptation()?"_adaptive":"");
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::registerParameters
     */
    static void registerParameters()
    {
        ParentType::registerParameters();

        Parameters::Register<Parameters::InitialWaterSaturation<Scalar>>
            ("The initial saturation in the domain [] of the wetting phase");

        Parameters::SetDefault<Parameters::CellsX>(20);
        Parameters::SetDefault<Parameters::DomainSizeX<Scalar>>(0.1);

        if constexpr (dim > 1) {
            Parameters::SetDefault<Parameters::CellsY>(70);
            Parameters::SetDefault<Parameters::DomainSizeY<Scalar>>(0.3);
        }
        if constexpr (dim == 3) {
            Parameters::SetDefault<Parameters::CellsZ>(1);
            Parameters::SetDefault<Parameters::DomainSizeZ<Scalar>>(0.1);
        }

        // Use forward differences
        Parameters::SetDefault<Parameters::NumericDifferenceMethod>(+1);

        Parameters::SetDefault<Parameters::EndTime<Scalar>>(215);
        Parameters::SetDefault<Parameters::InitialTimeStepSize<Scalar>>(10);
        Parameters::SetDefault<Parameters::EnableGravity>(true);
    }

    /*!
     * \copydoc FvBaseProblem::finishInit()
     */
    void finishInit()
    {
        ParentType::finishInit();

        eps_ = 3e-6;

        temperature_ = 273.15 + 20; // -> 20°C

        FluidSystem::init();

        // parameters for the Van Genuchten law of the main imbibition
        // and the main drainage curves.
        micParams_.setVgAlpha(0.0037);
        micParams_.setVgN(4.7);
        micParams_.finalize();

        mdcParams_.setVgAlpha(0.0037);
        mdcParams_.setVgN(4.7);
        mdcParams_.finalize();

        // initialize the material parameter objects of the individual
        // finite volumes, resize will resize the container to the number of elements
        materialParams_.resize();

        for (auto it = materialParams_.begin(),
                 end = materialParams_.end(); it != end; ++it ) {
            std::shared_ptr< MaterialLawParams >& materialParams = *it ;
            if( ! materialParams )
            {
                materialParams.reset( new MaterialLawParams() );
                materialParams->setMicParams(&micParams_);
                materialParams->setMdcParams(&mdcParams_);
                materialParams->setSwr(0.0);
                materialParams->setSnr(0.1);
                materialParams->finalize();
                ParkerLenhard::reset(*materialParams);
            }
        }

        K_ = this->toDimMatrix_(4.6e-10);

        setupInitialFluidState_();
    }

    /*!
     * \copydoc FvBaseProblem::endTimeStep
     */
    void endTimeStep()
    {
#ifndef NDEBUG
        // checkConservativeness() does not include the effect of constraints, so we
        // disable it for this problem...
        //this->model().checkConservativeness();

        // Calculate storage terms
        EqVector storage;
        this->model().globalStorage(storage);

        // Write mass balance information for rank 0
        if (this->gridView().comm().rank() == 0) {
            std::cout << "Storage: " << storage << std::endl << std::flush;
        }
#endif // NDEBUG

        // update the history of the hysteresis law
        ElementContext elemCtx(this->simulator());

        for (const auto& elem : elements(this->gridView())) {
            elemCtx.updateAll(elem);
            size_t numDofs = elemCtx.numDof(/*timeIdx=*/0);
            for (unsigned scvIdx = 0; scvIdx < numDofs; ++scvIdx)
            {
                MaterialLawParams& materialParam = materialLawParams( elemCtx, scvIdx, /*timeIdx=*/0 );
                const auto& fs = elemCtx.intensiveQuantities(scvIdx, /*timeIdx=*/0).fluidState();
                ParkerLenhard::update(materialParam, fs);
            }
        }
    }

    //! \}

    /*!
     * \name Soil parameters
     */
    //! \{

    /*!
     * \copydoc FvBaseMultiPhaseProblem::temperature
     */
    template <class Context>
    Scalar temperature(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
    { return temperature_; }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
     */
    template <class Context>
    const DimMatrix& intrinsicPermeability(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
    { return K_; }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::porosity
     */
    template <class Context>
    Scalar porosity(const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
    { return 0.4; }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::materialLawParams
     */
    template <class Context>
    MaterialLawParams& materialLawParams(const Context& context,
                                         unsigned spaceIdx, unsigned timeIdx)
    {
        const auto& entity = context.stencil(timeIdx).entity(spaceIdx);
        assert(materialParams_[entity]);
        return *materialParams_[entity];
    }

    /*!
     * \copydoc FvBaseMultiPhaseProblem::materialLawParams
     */
    template <class Context>
    const MaterialLawParams& materialLawParams(const Context& context,
                                               unsigned spaceIdx, unsigned timeIdx) const
    {
        const auto& entity = context.stencil(timeIdx).entity( spaceIdx );
        assert(materialParams_[entity]);
        return *materialParams_[entity];
    }

    //! \}

    /*!
     * \name Boundary conditions
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::boundary
     */
    template <class Context>
    void boundary(BoundaryRateVector& values, const Context& context,
                  unsigned spaceIdx, unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);

        if (onLeftBoundary_(pos) || onRightBoundary_(pos) || onLowerBoundary_(pos))
            values.setNoFlow();
        else {
            assert(onUpperBoundary_(pos));

            values.setFreeFlow(context, spaceIdx, timeIdx, initialFluidState_);
        }

        // override the value for the liquid phase by forced
        // imbibition of water on inlet boundary segments
        if (onInlet_(pos)) {
            values[contiWettingEqIdx] = -0.001; // [kg/(m^2 s)]
        }
    }

    //! \}

    /*!
     * \name Volumetric terms
     */
    //! \{

    /*!
     * \copydoc FvBaseProblem::initial
     */
    template <class Context>
    void initial(PrimaryVariables& values, const Context& /*context*/, unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
    {
        // assign the primary variables
        values.assignNaive(initialFluidState_);
    }

    /*!
     * \copydoc FvBaseProblem::constraints
     */
    template <class Context>
    void constraints(Constraints& constraints, const Context& context,
                     unsigned spaceIdx, unsigned timeIdx) const
    {
        const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);

        if (onUpperBoundary_(pos) && !onInlet_(pos)) {
            constraints.setActive(true);
            constraints.assignNaive(initialFluidState_);
        }
        else if (onLowerBoundary_(pos)) {
            constraints.setActive(true);
            constraints.assignNaive(initialFluidState_);
        }
    }

    /*!
     * \copydoc FvBaseProblem::source
     *
     * For this problem, the source term of all components is 0
     * everywhere.
     */
    template <class Context>
    void source(RateVector& rate, const Context& /*context*/,
                unsigned /*spaceIdx*/, unsigned /*timeIdx*/) const
    { rate = Scalar(0.0); }
    //! \}

private:
    bool onLeftBoundary_(const GlobalPosition& pos) const
    { return pos[0] < this->boundingBoxMin()[0] + eps_; }

    bool onRightBoundary_(const GlobalPosition& pos) const
    { return pos[0] > this->boundingBoxMax()[0] - eps_; }

    bool onLowerBoundary_(const GlobalPosition& pos) const
    { return pos[1] < this->boundingBoxMin()[1] + eps_; }

    bool onUpperBoundary_(const GlobalPosition& pos) const
    { return pos[1] > this->boundingBoxMax()[1] - eps_; }

    bool onInlet_(const GlobalPosition& pos) const
    {
        Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
        Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;

        if (!onUpperBoundary_(pos))
            return false;

        const Scalar xInject[] = { 0.25, 0.75 };
        const Scalar injectLen[] = { 0.1, 0.1 };
        for (unsigned i = 0; i < sizeof(xInject) / sizeof(Scalar); ++i) {
            if (xInject[i] - injectLen[i] / 2 < lambda
                && lambda < xInject[i] + injectLen[i] / 2)
                return true;
        }
        return false;
    }

    void setupInitialFluidState_()
    {
        auto& fs = initialFluidState_;
        fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);

        Scalar Sw = Parameters::Get<Parameters::InitialWaterSaturation<Scalar>>();
        fs.setSaturation(wettingPhaseIdx, Sw);
        fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);

        fs.setTemperature(temperature_);

        // set the absolute pressures
        Scalar pn = 1e5;
        fs.setPressure(nonWettingPhaseIdx, pn);
        fs.setPressure(wettingPhaseIdx, pn);

        typename FluidSystem::template ParameterCache<Scalar> paramCache;
        paramCache.updateAll(fs);
        for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
            fs.setDensity(phaseIdx, FluidSystem::density(fs, paramCache, phaseIdx));
            fs.setViscosity(phaseIdx, FluidSystem::viscosity(fs, paramCache, phaseIdx));
        }

    }

    DimMatrix K_;

    typename MaterialLawParams::VanGenuchtenParams micParams_;
    typename MaterialLawParams::VanGenuchtenParams mdcParams_;

    MaterialLawParamsContainer materialParams_;

    Opm::ImmiscibleFluidState<Scalar, FluidSystem> initialFluidState_;

    Scalar temperature_;
    Scalar eps_;
};

} // namespace Opm

#endif