1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
/*
Copyright 2021,2025 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2025 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE OPM_test_partitionCells
#define BOOST_TEST_NO_MAIN
#include <boost/test/unit_test.hpp>
#include <dune/grid/common/gridview.hh>
#include <opm/grid/common/WellConnections.hpp>
#include <opm/grid/CpGrid.hpp>
#include <opm/grid/utility/OpmWellType.hpp>
#include <opm/input/eclipse/Schedule/Well/Connection.hpp>
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <opm/input/eclipse/Schedule/Well/WellConnections.hpp>
#include <opm/input/eclipse/Parser/Parser.hpp>
#include <opm/input/eclipse/Deck/Deck.hpp>
#include <opm/input/eclipse/EclipseState/Grid/EclipseGrid.hpp>
#include <opm/simulators/flow/partitionCells.hpp>
// Helper functions
namespace {
Opm::Connection createConnection(int i, int j, int k, int global_index) {
return Opm::Connection(i, j, k, // i,j,k
global_index, // global_index
0, // complnum
Opm::Connection::State::OPEN, // state
Opm::Connection::Direction::Z, // direction
Opm::Connection::CTFKind::DeckValue, // kind
0, // satTableId
0.0, // depth
Opm::Connection::CTFProperties(), // properties
0, // sort_value
false); // defaultSatTabId
}
Dune::cpgrid::OpmWellType createWell(const std::string& name) {
using namespace Opm;
return Dune::cpgrid::OpmWellType(name, name, 0, 0, 0, 0, 0.0, WellType(),
Well::ProducerCMode(), Connection::Order::TRACK,
UnitSystem::newMETRIC(),
0.0, 0.0, false, false, 0, Well::GasInflowEquation());
}
std::vector<Dune::cpgrid::OpmWellType> createWellsWithConnections(
const std::vector<std::pair<std::string, std::vector<int>>>& well_specs) {
std::vector<Dune::cpgrid::OpmWellType> wells;
for (const auto& [well_name, cell_indices] : well_specs) {
auto well_conn = std::make_shared<Opm::WellConnections>();
for (int idx : cell_indices) {
well_conn->add(createConnection(idx, 0, 0, idx));
}
auto well = createWell(well_name);
well.updateConnections(well_conn, true);
wells.push_back(well);
}
return wells;
}
Dune::CpGrid createTestGrid(const std::array<int, 3>& dims,
const std::array<double, 3>& size) {
Dune::CpGrid grid;
grid.createCartesian(dims, size);
return grid;
}
template<typename Entity>
Opm::ZoltanPartitioningControl<Entity> createZoltanControl(const Dune::CpGrid& grid) {
Opm::ZoltanPartitioningControl<Entity> zoltan_ctrl;
zoltan_ctrl.domain_imbalance = 1.1;
zoltan_ctrl.index = [](const auto& element) {
return element.index();
};
zoltan_ctrl.local_to_global = [&grid](const int local_idx) {
return grid.globalCell()[local_idx];
};
return zoltan_ctrl;
}
}
BOOST_AUTO_TEST_CASE(FileBased)
{
auto [part, num_part] = Opm::partitionCellsFromFile("test10.partition", 10);
BOOST_CHECK_EQUAL(num_part, 3);
std::vector<int> expected = { 0, 0, 1, 1, 2, 2, 1, 1, 0, 0 };
BOOST_CHECK_EQUAL_COLLECTIONS(expected.begin(), expected.end(), part.begin(), part.end());
}
BOOST_AUTO_TEST_CASE(FileBasedWrongNumberOfCells)
{
auto func = []() { auto [part, num_part] = Opm::partitionCellsFromFile("test10.partition", 11); };
BOOST_CHECK_THROW(func(), std::runtime_error);
}
BOOST_AUTO_TEST_CASE(Simple1)
{
auto [part, num_part] = Opm::partitionCellsSimple(10, 3);
BOOST_CHECK_EQUAL(num_part, 3);
std::vector<int> expected = { 0, 0, 0, 0, 1, 1, 1, 2, 2, 2 };
BOOST_CHECK_EQUAL_COLLECTIONS(expected.begin(), expected.end(), part.begin(), part.end());
}
BOOST_AUTO_TEST_CASE(Simple2)
{
auto [part, num_part] = Opm::partitionCellsSimple(10, 7);
BOOST_CHECK_EQUAL(num_part, 7);
std::vector<int> expected = { 0, 0, 1, 1, 2, 2, 3, 4, 5, 6 };
BOOST_CHECK_EQUAL_COLLECTIONS(expected.begin(), expected.end(), part.begin(), part.end());
}
BOOST_AUTO_TEST_CASE(PartitionCellsTest)
{
auto grid = createTestGrid({3, 4, 1}, {3.0, 4.0, 1.0});
using Entity = typename Dune::CpGrid::LeafGridView::template Codim<0>::Entity;
auto zoltan_ctrl = createZoltanControl<Entity>(grid);
// Test simple partitioning
{
auto [part, num_part] = Opm::partitionCells("simple", 3, grid.leafGridView(),
std::vector<Opm::Well>{},
std::unordered_map<std::string, std::set<int>>{},
zoltan_ctrl,
0);
BOOST_CHECK_EQUAL(num_part, 3);
BOOST_CHECK_EQUAL(part.size(), 12);
// Check that all partition numbers are valid
for (const auto& p : part) {
BOOST_CHECK(p >= 0 && p < 3);
}
}
#if HAVE_MPI && HAVE_ZOLTAN
// Test Zoltan partitioning
{
auto [part, num_part] = Opm::partitionCells("zoltan", 3, grid.leafGridView(),
std::vector<Opm::Well>{},
std::unordered_map<std::string, std::set<int>>{},
zoltan_ctrl,
0);
BOOST_CHECK_EQUAL(num_part, 3);
BOOST_CHECK_EQUAL(part.size(), 12);
// Check that all partition numbers are valid
for (const auto& p : part) {
BOOST_CHECK(p >= 0 && p < 3);
}
}
#endif
}
BOOST_AUTO_TEST_CASE(PartitionCellsWithWellMergeTest)
{
// Create a 1D grid with 7 cells
// Visual representation of the grid and wells:
// Cell indices: 0 1 2 3 4 5 6
// Well layout: W1---W1 | W2---W2 | |
// Expected: Cell 0 and 1 should be merged
// Cell 3 and 4 should be merged
// Cells 2, 5, and 6 can be in any partition
auto grid = createTestGrid({7, 1, 1}, {7.0, 1.0, 1.0});
// Setup Zoltan control parameters
using Entity = typename Dune::CpGrid::LeafGridView::template Codim<0>::Entity;
auto zoltan_ctrl = createZoltanControl<Entity>(grid);
auto wells = createWellsWithConnections({
{"TESTW1", {0, 1}}, // Well 1 connects cells 0,1
{"TESTW2", {3, 4}} // Well 2 connects cells 3,4
});
// Create well connections object
Dune::cpgrid::WellConnections wellConnections(wells, std::unordered_map<std::string, std::set<int>>{}, grid);
#if HAVE_MPI && HAVE_ZOLTAN
// Test Zoltan partitioning with well cells
auto [part, num_part] = Opm::partitionCells("zoltan", 4, grid.leafGridView(),
wells,
std::unordered_map<std::string, std::set<int>>{},
zoltan_ctrl,
0);
// Verify number of partitions
BOOST_CHECK_EQUAL(num_part, 4);
BOOST_CHECK_EQUAL(part.size(), 7);
// The key tests:
// 1. Cells 0 and 1 (well1) should be in the same partition
BOOST_CHECK_EQUAL(part[0], part[1]);
// 2. Cells 3 and 4 (well2) should be in the same partition
BOOST_CHECK_EQUAL(part[3], part[4]);
// 3. Cells 2, 5, and 6 can be in any partition, but well1 and well2 cells
// don't need to be in the same partition
#endif
}
BOOST_AUTO_TEST_CASE(PartitionCellsWithOverlappingWellsTest)
{
// Create a 1D grid with 7 cells
// Visual representation of the grid and wells:
// Cell indices: 0 1 2 3 4 5 6
// Well layout: W1---W1---W1 | | |
// W2---W2
// Expected: Cells 1,2,3 should be in same partition (Well 1)
// Cells 3,4 should be in same partition (Well 2)
// Therefore cells 1,2,3,4 should all end up in same partition
auto grid = createTestGrid({7, 1, 1}, {7.0, 1.0, 1.0});
using Entity = typename Dune::CpGrid::LeafGridView::template Codim<0>::Entity;
auto zoltan_ctrl = createZoltanControl<Entity>(grid);
auto wells = createWellsWithConnections({
{"TESTW1", {1, 2, 3}}, // Well 1 connects cells 1,2,3
{"TESTW2", {3, 4}} // Well 2 connects cells 3,4
});
#if HAVE_MPI && HAVE_ZOLTAN
// Test Zoltan partitioning with overlapping well cells
auto [part, num_part] = Opm::partitionCells("zoltan", 4, grid.leafGridView(),
wells,
std::unordered_map<std::string, std::set<int>>{},
zoltan_ctrl,
0);
// Verify number of partitions
BOOST_CHECK_EQUAL(num_part, 4);
BOOST_CHECK_EQUAL(part.size(), 7);
// The key tests:
// 1. All cells connected by Well 1 should be in the same partition
BOOST_CHECK_EQUAL(part[1], part[2]);
BOOST_CHECK_EQUAL(part[2], part[3]);
// 2. All cells connected by Well 2 should be in the same partition
BOOST_CHECK_EQUAL(part[3], part[4]);
// 3. Due to the overlap at cell 3, all well-connected cells should be in the same partition
BOOST_CHECK_EQUAL(part[1], part[4]);
// 4. Cells 0, 5, and 6 can be in any partition
#endif
}
BOOST_AUTO_TEST_CASE(PartitionCellsWithOverlappingWells3DTest)
{
// Create a 3x3x3 grid with three wells:
// - Well1: Vertical well through (1,1,0) -> (1,1,1) -> (1,1,2)
// - Well2: Diagonal well through (0,0,0) -> (1,1,1) -> (2,2,2) [overlaps with Well1 at (1,1,1)]
// - Well3: Horizontal well through (0,2,0) -> (1,2,0) -> (2,2,0) [no overlap]
auto grid = createTestGrid({3, 3, 3}, {3.0, 3.0, 3.0});
using Entity = typename Dune::CpGrid::LeafGridView::template Codim<0>::Entity;
auto zoltan_ctrl = createZoltanControl<Entity>(grid);
// Helper to convert i,j,k coordinates to global index for 3x3x3 grid
auto ijkToGlobal = [](int i, int j, int k) { return i + (3 * j) + (9 * k); };
// Create wells with proper 3D connections
auto wells = std::vector<Dune::cpgrid::OpmWellType>();
// Well 1 - vertical well
{
auto well_conn = std::make_shared<Opm::WellConnections>();
well_conn->add(createConnection(1, 1, 0, ijkToGlobal(1, 1, 0))); // Global index: 4
well_conn->add(createConnection(1, 1, 1, ijkToGlobal(1, 1, 1))); // Global index: 13
well_conn->add(createConnection(1, 1, 2, ijkToGlobal(1, 1, 2))); // Global index: 22
auto well = createWell("VERTICAL");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
// Well 2 - diagonal well (overlaps with Well 1 at (1,1,1))
{
auto well_conn = std::make_shared<Opm::WellConnections>();
well_conn->add(createConnection(0, 0, 0, ijkToGlobal(0, 0, 0))); // Global index: 0
well_conn->add(createConnection(1, 1, 1, ijkToGlobal(1, 1, 1))); // Global index: 13
well_conn->add(createConnection(2, 2, 2, ijkToGlobal(2, 2, 2))); // Global index: 26
auto well = createWell("DIAGONAL");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
// Well 3 - horizontal well (no overlap)
{
auto well_conn = std::make_shared<Opm::WellConnections>();
well_conn->add(createConnection(0, 2, 0, ijkToGlobal(0, 2, 0))); // Global index: 6
well_conn->add(createConnection(1, 2, 0, ijkToGlobal(1, 2, 0))); // Global index: 7
well_conn->add(createConnection(2, 2, 0, ijkToGlobal(2, 2, 0))); // Global index: 8
auto well = createWell("HORIZONTAL");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
// Create well connections object
Dune::cpgrid::WellConnections wellConnections(wells, std::unordered_map<std::string, std::set<int>>{}, grid);
#if HAVE_MPI && HAVE_ZOLTAN
// Test Zoltan partitioning with overlapping well cells
auto [part, num_part] = Opm::partitionCells("zoltan", 10, grid.leafGridView(),
wells,
std::unordered_map<std::string, std::set<int>>{},
zoltan_ctrl,
0);
// Verify number of partitions
BOOST_CHECK_EQUAL(num_part, 10);
BOOST_CHECK_EQUAL(part.size(), 27); // 3x3x3 grid
// The key tests:
// 1. All cells in Well 1 (vertical) should be in the same partition
BOOST_CHECK_EQUAL(part[ijkToGlobal(1,1,0)], part[ijkToGlobal(1,1,1)]);
BOOST_CHECK_EQUAL(part[ijkToGlobal(1,1,1)], part[ijkToGlobal(1,1,2)]);
// 2. All cells in Well 2 (diagonal) should be in the same partition
BOOST_CHECK_EQUAL(part[ijkToGlobal(0,0,0)], part[ijkToGlobal(1,1,1)]);
BOOST_CHECK_EQUAL(part[ijkToGlobal(1,1,1)], part[ijkToGlobal(2,2,2)]);
// 3. Due to overlap at (1,1,1), all cells from Well 1 and Well 2 should be in same partition
BOOST_CHECK_EQUAL(part[ijkToGlobal(1,1,0)], part[ijkToGlobal(0,0,0)]);
BOOST_CHECK_EQUAL(part[ijkToGlobal(1,1,2)], part[ijkToGlobal(2,2,2)]);
// 4. All cells in Well 3 (horizontal) should be in the same partition
BOOST_CHECK_EQUAL(part[ijkToGlobal(0,2,0)], part[ijkToGlobal(1,2,0)]);
BOOST_CHECK_EQUAL(part[ijkToGlobal(1,2,0)], part[ijkToGlobal(2,2,0)]);
// 5. Well 3 can be in a different partition from Well 1 and 2 since it doesn't overlap
// No test needed as it can be in any partition
#endif
}
BOOST_AUTO_TEST_CASE(PartitionCellsComplexWellNetworkTest)
{
// Create a 5x5x4 grid to accommodate a complex well network
auto grid = createTestGrid({5, 5, 4}, {5.0, 5.0, 4.0});
using Entity = typename Dune::CpGrid::LeafGridView::template Codim<0>::Entity;
auto zoltan_ctrl = createZoltanControl<Entity>(grid);
// Helper to convert i,j,k coordinates to global index for 5x5x4 grid
auto ijkToGlobal = [](int i, int j, int k) { return i + (5 * j) + (25 * k); };
// Create wells with complex connections
auto wells = std::vector<Dune::cpgrid::OpmWellType>();
// Well 1 - Main vertical producer with two branches
{
auto well_conn = std::make_shared<Opm::WellConnections>();
// Main wellbore - vertical
well_conn->add(createConnection(2, 2, 0, ijkToGlobal(2, 2, 0))); // Bottom
well_conn->add(createConnection(2, 2, 1, ijkToGlobal(2, 2, 1)));
well_conn->add(createConnection(2, 2, 2, ijkToGlobal(2, 2, 2)));
well_conn->add(createConnection(2, 2, 3, ijkToGlobal(2, 2, 3))); // Top
// Branch 1 - horizontal in x direction
well_conn->add(createConnection(3, 2, 2, ijkToGlobal(3, 2, 2)));
well_conn->add(createConnection(4, 2, 2, ijkToGlobal(4, 2, 2)));
// Branch 2 - horizontal in y direction
well_conn->add(createConnection(2, 3, 1, ijkToGlobal(2, 3, 1)));
well_conn->add(createConnection(2, 4, 1, ijkToGlobal(2, 4, 1)));
auto well = createWell("PRODUCER1");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
// Well 2 - Diagonal injector crossing the producer
{
auto well_conn = std::make_shared<Opm::WellConnections>();
well_conn->add(createConnection(0, 0, 0, ijkToGlobal(0, 0, 0)));
well_conn->add(createConnection(1, 1, 1, ijkToGlobal(1, 1, 1)));
well_conn->add(createConnection(2, 2, 2, ijkToGlobal(2, 2, 2))); // Intersects with Well 1
well_conn->add(createConnection(3, 3, 3, ijkToGlobal(3, 3, 3)));
auto well = createWell("INJECTOR1");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
// Well 3 - Horizontal well that crosses both previous wells
{
auto well_conn = std::make_shared<Opm::WellConnections>();
well_conn->add(createConnection(0, 2, 2, ijkToGlobal(0, 2, 2)));
well_conn->add(createConnection(1, 2, 2, ijkToGlobal(1, 2, 2)));
well_conn->add(createConnection(2, 2, 2, ijkToGlobal(2, 2, 2))); // Intersects with Well 1 and 2
well_conn->add(createConnection(3, 2, 2, ijkToGlobal(3, 2, 2))); // Intersects with Well 1's branch
well_conn->add(createConnection(4, 2, 2, ijkToGlobal(4, 2, 2)));
auto well = createWell("PRODUCER2");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
// Well 4 - L-shaped well connecting to the network
{
auto well_conn = std::make_shared<Opm::WellConnections>();
well_conn->add(createConnection(2, 4, 1, ijkToGlobal(2, 4, 1))); // Connects to Well 1's branch
well_conn->add(createConnection(2, 4, 2, ijkToGlobal(2, 4, 2)));
well_conn->add(createConnection(2, 4, 3, ijkToGlobal(2, 4, 3)));
well_conn->add(createConnection(3, 4, 3, ijkToGlobal(3, 4, 3)));
well_conn->add(createConnection(4, 4, 3, ijkToGlobal(4, 4, 3)));
auto well = createWell("PRODUCER3");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
// Well 5 - Isolated well (not connected to the network)
{
auto well_conn = std::make_shared<Opm::WellConnections>();
well_conn->add(createConnection(0, 4, 0, ijkToGlobal(0, 4, 0)));
well_conn->add(createConnection(1, 4, 0, ijkToGlobal(1, 4, 0)));
auto well = createWell("ISOLATED");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
#if HAVE_MPI && HAVE_ZOLTAN
// Test Zoltan partitioning with complex well network
auto [part, num_part] = Opm::partitionCells("zoltan", 15, grid.leafGridView(),
wells,
std::unordered_map<std::string, std::set<int>>{},
zoltan_ctrl,
0);
// Verify number of partitions and grid size
BOOST_CHECK_EQUAL(num_part, 15);
BOOST_CHECK_EQUAL(part.size(), 100); // 5x5x4 grid
// Helper to check if two cells are in the same partition
auto inSamePartition = [&ppart = part](int idx1, int idx2) {
return ppart[idx1] == ppart[idx2];
};
// Test 1: All cells in Well 1 (main bore and branches) should be in the same partition
// Main wellbore
BOOST_CHECK(inSamePartition(ijkToGlobal(2,2,0), ijkToGlobal(2,2,1)));
BOOST_CHECK(inSamePartition(ijkToGlobal(2,2,1), ijkToGlobal(2,2,2)));
BOOST_CHECK(inSamePartition(ijkToGlobal(2,2,2), ijkToGlobal(2,2,3)));
// Branch 1
BOOST_CHECK(inSamePartition(ijkToGlobal(2,2,2), ijkToGlobal(3,2,2)));
BOOST_CHECK(inSamePartition(ijkToGlobal(3,2,2), ijkToGlobal(4,2,2)));
// Branch 2
BOOST_CHECK(inSamePartition(ijkToGlobal(2,2,1), ijkToGlobal(2,3,1)));
BOOST_CHECK(inSamePartition(ijkToGlobal(2,3,1), ijkToGlobal(2,4,1)));
// Test 2: Well 2 (diagonal) should be in same partition as Well 1 due to intersection
BOOST_CHECK(inSamePartition(ijkToGlobal(0,0,0), ijkToGlobal(2,2,2)));
BOOST_CHECK(inSamePartition(ijkToGlobal(3,3,3), ijkToGlobal(2,2,2)));
// Test 3: Well 3 (horizontal) should be in same partition as Well 1 and 2
BOOST_CHECK(inSamePartition(ijkToGlobal(0,2,2), ijkToGlobal(2,2,2)));
BOOST_CHECK(inSamePartition(ijkToGlobal(4,2,2), ijkToGlobal(2,2,2)));
// Test 4: Well 4 (L-shaped) should be in same partition as Well 1 due to connection
BOOST_CHECK(inSamePartition(ijkToGlobal(2,4,1), ijkToGlobal(2,2,1)));
BOOST_CHECK(inSamePartition(ijkToGlobal(4,4,3), ijkToGlobal(2,2,1)));
// Test 5: Well 5 (isolated) should maintain its own cells in same partition
BOOST_CHECK(inSamePartition(ijkToGlobal(0,4,0), ijkToGlobal(1,4,0)));
// But should be in different partition from the connected network
BOOST_CHECK(part[ijkToGlobal(0,4,0)] != part[ijkToGlobal(2,2,2)]);
// Test 6: Verify the connected network (Wells 1-4) forms a single partition
std::set<int> network_partition_ids;
network_partition_ids.insert(part[ijkToGlobal(2,2,2)]); // Well 1
network_partition_ids.insert(part[ijkToGlobal(1,1,1)]); // Well 2
network_partition_ids.insert(part[ijkToGlobal(2,2,2)]); // Well 3
network_partition_ids.insert(part[ijkToGlobal(2,4,1)]); // Well 4
BOOST_CHECK_EQUAL(network_partition_ids.size(), 1);
#endif
}
BOOST_AUTO_TEST_CASE(PartitionCellsWithNonReachableCellsTest)
{
// Create a 3x3x3 grid where:
// - cell (0,0,0) is isolated (surrounded by inactive cells)
// - cell (0,2,0) is isolated (surrounded by inactive cells)
// - cells needed for wells are active
// Grid structure (top view):
// Layer k=0: Layer k=1: Layer k=2: W = well cells
// [I][X][X ] [X][ ][ ] [X][ ][ ] X = inactive cells
// [X][X][W2] [X][W1][W2] [X][W1][W2] I = isolated active cell
// [I][X][ ] [X][ ][ ] [X][ ][ ] [ ] = active cells
const std::string deckString =
R"(RUNSPEC
DIMENS
3 3 3 /
GRID
COORD
0 0 0 0 0 1
1 0 0 1 0 1
2 0 0 2 0 1
3 0 0 3 0 1
0 1 0 0 1 1
1 1 0 1 1 1
2 1 0 2 1 1
3 1 0 3 1 1
0 2 0 0 2 1
1 2 0 1 2 1
2 2 0 2 2 1
3 2 0 3 2 1
0 3 0 0 3 1
1 3 0 1 3 1
2 3 0 2 3 1
3 3 0 3 3 1
/
ZCORN
36*0
36*1
36*1
36*2
36*2
36*3
/
ACTNUM
-- First layer (3x3)
1 0 0 -- cell (0,0,0) is isolated
0 0 1
1 0 1 -- cell (1,1,1) is isolated
-- Middle layer (3x3)
0 1 1
0 1 1
0 1 1
-- Top layer (3x3)
0 1 1
0 1 1
0 1 1
/
END
)";
// Parse and create grid
Opm::Parser parser;
const auto deck = parser.parseString(deckString);
Opm::EclipseGrid ecl_grid(deck);
Dune::CpGrid grid;
grid.processEclipseFormat(&ecl_grid, nullptr, false, false, false);
// Verify grid properties
const auto& grid_view = grid.leafGridView();
const std::size_t num_active_cells = grid_view.size(0);
BOOST_CHECK_EQUAL(num_active_cells, 16); // 27 total cells - 11 inactive = 16 active
// Helper functions
using Entity = typename Dune::CpGrid::LeafGridView::template Codim<0>::Entity;
auto zoltan_ctrl = createZoltanControl<Entity>(grid);
auto ijkToGlobal = [](int i, int j, int k) { return i + (3 * j) + (9 * k); };
auto wells = std::vector<Dune::cpgrid::OpmWellType>();
// Well 1 - Middle column well
{
auto well_conn = std::make_shared<Opm::WellConnections>();
well_conn->add(createConnection(1, 1, 1, ijkToGlobal(1, 1, 1)));
well_conn->add(createConnection(1, 1, 2, ijkToGlobal(1, 1, 2)));
auto well = createWell("WELL1");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
// Well 2 - Right column well
{
auto well_conn = std::make_shared<Opm::WellConnections>();
well_conn->add(createConnection(2, 1, 0, ijkToGlobal(2, 1, 0)));
well_conn->add(createConnection(2, 1, 1, ijkToGlobal(2, 1, 1)));
well_conn->add(createConnection(2, 1, 2, ijkToGlobal(2, 1, 2)));
auto well = createWell("WELL2");
well.updateConnections(well_conn, true);
wells.push_back(well);
}
#if HAVE_MPI && HAVE_ZOLTAN
auto [part, num_part] = Opm::partitionCells("zoltan", 5, grid.leafGridView(),
wells,
std::unordered_map<std::string, std::set<int>>{},
zoltan_ctrl,
0);
BOOST_CHECK_EQUAL(num_part, 5);
BOOST_CHECK_EQUAL(part.size(), 16);
// For this test global indices != local indices, so we need to
// create a map from global index to local index
std::map<int, int> g2l;
for (const auto& element : elements(grid.leafGridView(), Dune::Partitions::interior)) {
const auto globalIndex = grid.globalCell()[zoltan_ctrl.index(element)];
g2l[globalIndex] = zoltan_ctrl.index(element);
}
// Verify that the two isolated cells are assigned to the -1 partition
BOOST_CHECK_EQUAL(part[g2l[ijkToGlobal(0,0,0)]], -1);
BOOST_CHECK_EQUAL(part[g2l[ijkToGlobal(0,2,0)]], -1);
// Well 1: All cells should be in the same partition
BOOST_CHECK(part[g2l[ijkToGlobal(1,1,1)]] == part[g2l[ijkToGlobal(1,1,2)]]);
// Well 2: All cells should be in the same partition
BOOST_CHECK(part[g2l[ijkToGlobal(2,1,0)]] == part[g2l[ijkToGlobal(2,1,1)]]);
BOOST_CHECK(part[g2l[ijkToGlobal(2,1,1)]] == part[g2l[ijkToGlobal(2,1,2)]]);
// Wells can be in different partitions as they don't connect
BOOST_CHECK(part[g2l[ijkToGlobal(1,1,1)]] != part[g2l[ijkToGlobal(2,1,2)]]);
#endif
}
BOOST_AUTO_TEST_CASE(PartitionCellsWithNeighborConnectivityTest)
{
// Create a 1D grid with 7 cells and two wells that are not directly connected
// but will be connected through their neighboring cells when using neighbor_levels=1
// Visual representation:
// Cell indices: 0 1 2 3 4 5 6
// Well layout: W1 W2
// Connected: * * * * *
// The wells will be connected because cell 2 is a neighbor of W1 and W2
auto grid = createTestGrid({7, 1, 1}, {7.0, 1.0, 1.0});
using Entity = typename Dune::CpGrid::LeafGridView::template Codim<0>::Entity;
auto zoltan_ctrl = createZoltanControl<Entity>(grid);
// Create two wells that are not directly connected
auto wells = createWellsWithConnections({
{"WELL1", {1}}, // Well 1 in cell 1
{"WELL2", {3}} // Well 2 in cell 3 (not adjacent to Well 1)
});
#if HAVE_MPI && HAVE_ZOLTAN
// Test Zoltan partitioning with neighbor connectivity
auto [part, num_part] = Opm::partitionCells("zoltan", 3, grid.leafGridView(),
wells,
std::unordered_map<std::string, std::set<int>>{},
zoltan_ctrl,
1);
// Verify number of partitions
BOOST_CHECK_EQUAL(num_part, 3);
BOOST_CHECK_EQUAL(part.size(), 7); // 7x1x1 grid
// Check that the wells are connected through their neighbors
BOOST_CHECK(part[0] == part[1]);
BOOST_CHECK(part[1] == part[2]);
BOOST_CHECK(part[2] == part[3]);
BOOST_CHECK(part[3] == part[4]);
// Check that the remaining cells are in different partitions
BOOST_CHECK(part[0] != part[5]);
BOOST_CHECK(part[5] != part[6]);
#endif
}
bool
init_unit_test_func()
{
return true;
}
int main(int argc, char** argv)
{
Dune::MPIHelper::instance(argc, argv);
boost::unit_test::unit_test_main(&init_unit_test_func,
argc, argv);
}
|