File: test_wellmodel.cpp

package info (click to toggle)
opm-simulators 2025.10%2Bds-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 21,552 kB
  • sloc: cpp: 193,037; sh: 1,807; python: 1,704; lisp: 1,108; makefile: 31; awk: 10
file content (198 lines) | stat: -rw-r--r-- 7,322 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
  Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
  Copyright 2017 Statoil ASA.

  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.
*/


#include <config.h>

#define BOOST_TEST_MODULE WellModelTest

#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <boost/test/unit_test.hpp>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>

#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Tables/TableManager.hpp>

#include <opm/input/eclipse/Python/Python.hpp>

#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQConfig.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQParams.hpp>
#include <opm/input/eclipse/Schedule/Well/WellConnections.hpp>

#include <opm/grid/GridManager.hpp>

#include <opm/input/eclipse/Units/Units.hpp>
#include <opm/common/utility/TimeService.hpp>

#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/grid/GridHelpers.hpp>
#include <opm/simulators/flow/FlowMain.hpp>
#include <opm/simulators/flow/BlackoilModel.hpp>
#include <opm/simulators/flow/FlowProblemBlackoil.hpp>

#include <opm/models/utils/start.hh>

#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/BlackoilWellModel.hpp>

#include <opm/input/eclipse/Deck/Deck.hpp>
#include <opm/input/eclipse/Parser/Parser.hpp>

#if HAVE_DUNE_FEM
#include <dune/fem/misc/mpimanager.hh>
#else
#include <dune/common/parallel/mpihelper.hh>
#endif

#include <memory>
#include <stdexcept>
#include <vector>

using StandardWell = Opm::StandardWell<Opm::Properties::TTag::FlowProblem>;

struct SetupTest {

    using Grid = UnstructuredGrid;

    SetupTest()
    {
        const auto deck = Opm::Parser{}.parseFile("TESTWELLMODEL.DATA");
        this->ecl_state = std::make_unique<const Opm::EclipseState>(deck);

        const Opm::TableManager table(deck);
        const Opm::Runspec runspec(deck);

        this->schedule = std::make_unique<const Opm::Schedule>
            (deck, *this->ecl_state, std::make_shared<Opm::Python>());

        this->summaryState = std::make_unique<Opm::SummaryState>
            (Opm::TimeService::from_time_t(schedule->getStartTime()),
             this->ecl_state->runspec().udqParams().undefinedValue());

        current_timestep = 0;
    };

    std::unique_ptr<const Opm::EclipseState> ecl_state;
    std::shared_ptr<Opm::Python> python;
    std::unique_ptr<const Opm::Schedule> schedule;
    std::unique_ptr<Opm::SummaryState> summaryState;
    std::vector<std::vector<Opm::PerforationData<double>>> well_perf_data;
    int current_timestep;
};

struct GlobalFixture {
    GlobalFixture()
    {
        int argcDummy = 1;
        const char *tmp[] = {"test_wellmodel"};
        char **argvDummy = const_cast<char**>(tmp);

        // MPI setup.
#if HAVE_DUNE_FEM
        Dune::Fem::MPIManager::initialize(argcDummy, argvDummy);
#else
        Dune::MPIHelper::instance(argcDummy, argvDummy);
#endif

        Opm::FlowMain<Opm::Properties::TTag::FlowProblem>::setupParameters_(argcDummy, argvDummy, Dune::MPIHelper::getCommunication());
    }
};

BOOST_GLOBAL_FIXTURE(GlobalFixture);

BOOST_AUTO_TEST_CASE(TestStandardWellInput) {
    const SetupTest setup_test;
    const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
    BOOST_CHECK_EQUAL( wells_ecl.size(), 2);
    const Opm::Well& well = wells_ecl[1];
    const Opm::BlackoilModelParameters<double> param;

    // For the conversion between the surface volume rate and resrevoir voidage rate
    typedef Opm::BlackOilFluidSystem<double> FluidSystem;
    using RateConverterType = Opm::RateConverter::
        SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
    // Compute reservoir volumes for RESV controls.
    std::unique_ptr<RateConverterType> rateConverter;
    // Compute reservoir volumes for RESV controls.
    rateConverter.reset(new RateConverterType (std::vector<int>(10, 0)));

    Opm::PerforationData<double> dummy;
    std::vector<Opm::PerforationData<double>> pdata(well.getConnections().size(), dummy);
    for (auto c = 0*pdata.size(); c < pdata.size(); ++c) {
        pdata[c].ecl_index = c;
    }

    Opm::ParallelWellInfo<double> pinfo{well.name()};

    BOOST_CHECK_THROW( StandardWell( well, pinfo, -1, param, *rateConverter, 0, 3, 3, 0, pdata), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(TestBehavoir) {
    const SetupTest setup_test;
    const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep);
    const int current_timestep = setup_test.current_timestep;
    std::vector<std::unique_ptr<const StandardWell> >  wells;

    {
        const int nw = wells_ecl.size();
        const Opm::BlackoilModelParameters<double> param;

        for (int w = 0; w < nw; ++w) {
            // For the conversion between the surface volume rate and resrevoir voidage rate
            using FluidSystem = Opm::BlackOilFluidSystem<double>;
            using RateConverterType = Opm::RateConverter::
                SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
            // Compute reservoir volumes for RESV controls.
            // TODO: not sure why for this class the initlizer list does not work
            // otherwise we should make a meaningful const PhaseUsage here.
            std::unique_ptr<RateConverterType> rateConverter;
            // Compute reservoir volumes for RESV controls.
            rateConverter.reset(new RateConverterType (std::vector<int>(10, 0)));
            Opm::PerforationData<double> dummy;
            std::vector<Opm::PerforationData<double>> pdata(wells_ecl[w].getConnections().size(), dummy);
            for (auto c = 0*pdata.size(); c < pdata.size(); ++c) {
                pdata[c].ecl_index = c;
            }

            Opm::ParallelWellInfo<double> pinfo{wells_ecl[w].name()};
            wells.emplace_back(new StandardWell(wells_ecl[w], pinfo, current_timestep, param, *rateConverter, 0, 3, 3, w, pdata) );
        }
    }

    // first well, it is a production well from the deck
    {
        const auto& well = wells[0];
        BOOST_CHECK_EQUAL(well->name(), "PROD1");
        BOOST_CHECK(well->isProducer());
        BOOST_CHECK(StandardWell::Indices::numEq == 3);
        BOOST_CHECK(well->numStaticWellEq== 4);
    }

    // second well, it is the injection well from the deck
    {
        const auto& well = wells[1];
        BOOST_CHECK_EQUAL(well->name(), "INJE1");
        BOOST_CHECK(well->isInjector());
        BOOST_CHECK(StandardWell::Indices::numEq == 3);
        BOOST_CHECK(well->numStaticWellEq== 4);
    }
}