File: ActionHandler.cpp

package info (click to toggle)
opm-simulators 2025.10%2Bds-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 21,460 kB
  • sloc: cpp: 193,029; sh: 1,807; python: 1,704; lisp: 1,108; makefile: 31; awk: 10
file content (314 lines) | stat: -rw-r--r-- 11,482 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 2 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.

  Consult the COPYING file in the top-level source directory of this
  module for the precise wording of the license and the list of
  copyright holders.
*/

#include <config.h>

#include <opm/simulators/flow/ActionHandler.hpp>

#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/TimeService.hpp>
#include <opm/common/TimingMacros.hpp>

#include <opm/input/eclipse/EclipseState/EclipseState.hpp>

#include <opm/input/eclipse/Schedule/Action/ActionContext.hpp>
#include <opm/input/eclipse/Schedule/Action/Actions.hpp>
#include <opm/input/eclipse/Schedule/Action/ActionX.hpp>
#include <opm/input/eclipse/Schedule/Action/SimulatorUpdate.hpp>
#include <opm/input/eclipse/Schedule/Action/State.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQConfig.hpp>
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <opm/input/eclipse/Schedule/Well/WellMatcher.hpp>

#include <opm/material/fluidsystems/BlackOilDefaultFluidSystemIndices.hpp>

#include <opm/simulators/wells/BlackoilWellModelGeneric.hpp>

#include <opm/simulators/utils/ParallelCommunication.hpp>
#include <opm/simulators/utils/ParallelSerialization.hpp>

#include <chrono>
#include <cstddef>
#include <ctime>
#include <string>
#include <unordered_map>
#include <vector>

#include <fmt/chrono.h>
#include <fmt/format.h>
#include <fmt/ranges.h>

namespace {
    std::string formatActionDate(const Opm::TimeStampUTC& timePoint,
                                 const int                reportStep)
    {
        auto time_point = std::tm{};

        time_point.tm_year = timePoint.year()  - 1900;
        time_point.tm_mon  = timePoint.month() -    1;
        time_point.tm_mday = timePoint.day();

        time_point.tm_hour = timePoint.hour();
        time_point.tm_min  = timePoint.minutes();
        time_point.tm_sec  = timePoint.seconds();

        return fmt::format("{:%d-%b-%Y %H:%M:%S} (report interval {} to {})",
                           time_point, reportStep, reportStep + 1);
    }

    void logActivePyAction(const std::string& actionName,
                           const std::string& timeString)
    {
        const auto message =
            fmt::format("Action {} (Python) triggered at {}",
                        actionName, timeString);

        Opm::OpmLog::info("ACTION_TRIGGERED", message);
    }

    template <typename WellNameRange>
    void logActiveAction(const std::string&   actionName,
                         const WellNameRange& matchingWells,
                         const std::string&   timeString)
    {
        const auto wellString = matchingWells.empty()
            ? std::string{}
            : fmt::format(" Well{}: {}",
                          matchingWells.size() != 1 ? "s" : "",
                          fmt::join(matchingWells, ", "));

        const auto message =
            fmt::format("Action {} triggered at {}.{}",
                        actionName, timeString, wellString);

        Opm::OpmLog::info("ACTION_TRIGGERED", message);
    }

    void logInactivePyAction(const std::string& actionName,
                             const std::string& timeString)
    {
        const auto message =
            fmt::format("Action {} (Python) NOT triggered at {}.",
                        actionName, timeString);

        Opm::OpmLog::debug("NAMED_ACTION_NOT_TRIGGERED", message);
    }

    void logInactiveAction(const std::string& actionName,
                           const std::string& timeString)
    {
        const auto message =
            fmt::format("Action {} NOT triggered at {}.",
                        actionName, timeString);

        Opm::OpmLog::debug("NAMED_ACTION_NOT_TRIGGERED", message);
    }

    void logInactiveActions(const int          numInactive,
                            const std::string& timeString)
    {
        const auto message =
            fmt::format("{} action{} NOT triggered at {}.",
                        numInactive,
                        (numInactive != 1) ? "s" : "",
                        timeString);

        Opm::OpmLog::debug("ACTION_NOT_TRIGGERED", message);
    }

    template <typename Scalar, class WellModel>
    std::unordered_map<std::string, Scalar>
    fetchWellPI(const WellModel&                             wellModel,
                const std::vector<std::string>&              wellpi_wells,
                const Opm::Parallel::Communication           comm)
    {
        auto wellpi = std::unordered_map<std::string, Scalar> {};

        if (wellpi_wells.empty()) {
            return wellpi;
        }

        auto wellPI = std::vector<Scalar>(wellpi_wells.size());
        for (auto i = 0*wellpi_wells.size(); i < wellpi_wells.size(); ++i) {
            if (wellModel.hasLocalWell(wellpi_wells[i])) {
                wellPI[i] = wellModel.wellPI(wellpi_wells[i]);
            }
        }

        comm.max(wellPI.data(), wellPI.size());

        for (auto i = 0*wellpi_wells.size(); i < wellpi_wells.size(); ++i) {
            wellpi.emplace(wellpi_wells[i], wellPI[i]);
        }

        return wellpi;
    }
} // Anonymous namespace

namespace Opm {

template<typename Scalar, typename IndexTraits>
ActionHandler<Scalar, IndexTraits>::
ActionHandler(EclipseState& ecl_state,
              Schedule& schedule,
              Action::State& actionState,
              SummaryState& summaryState,
              BlackoilWellModelGeneric<Scalar, IndexTraits>& wellModel,
              Parallel::Communication comm)
    : ecl_state_(ecl_state)
    , schedule_(schedule)
    , actionState_(actionState)
    , summaryState_(summaryState)
    , wellModel_(wellModel)
    , comm_(comm)
{}

template<typename Scalar, typename IndexTraits>
void ActionHandler<Scalar, IndexTraits>::
applyActions(const int reportStep,
             const double sim_time,
             const TransFunc& transUp)
{
    OPM_TIMEBLOCK(applyActions);
    const auto& actions = schedule_[reportStep].actions();
    if (actions.empty()) {
        return;
    }

    const Action::Context context{ summaryState_, schedule_[reportStep].wlist_manager() };

    const auto now = TimeStampUTC{ schedule_.getStartTime() } + std::chrono::duration<double>(sim_time);
    const auto ts  = formatActionDate(now, reportStep);


    SimulatorUpdate sim_update;
    for (const auto& pyaction : actions.pending_python(actionState_)) {
        // The std::unordered_map<std::string, Scalar> wellpi contains the well production indices from the last
        // timestep. This map is needed for the keyword WELPI. For a PyAction, we do not know which wells are
        // affected by the PyAction, thus we get the production indices for all wells.
        const std::vector<std::string> wellpi_wells = schedule_[reportStep].well_order().names();
        const auto wellpi = fetchWellPI<Scalar>(this->wellModel_, wellpi_wells, this->comm_);
        auto sim_update_current = schedule_.runPyAction(reportStep, *pyaction, actionState_,
                                                ecl_state_, summaryState_, wellpi);

        if (const auto pyRes = this->actionState_.python_result(pyaction->name());
            !pyRes.has_value() || !*pyRes)
        {
            logInactivePyAction(pyaction->name(), ts);
            continue;
        }
        else {
            logActivePyAction(pyaction->name(), ts);
        }

        sim_update.append(sim_update_current);
    }

    auto non_triggered = 0;
    const auto simTime = asTimeT(now);
    for (const auto& action : actions.pending(this->actionState_, simTime)) {
        const auto actionResult = action->eval(context);
        if (! actionResult.conditionSatisfied()) {
            ++non_triggered;
            logInactiveAction(action->name(), ts);
            continue;
        }

        const auto& matches = actionResult.matches();

        logActiveAction(action->name(), matches.wells(), ts);

        // The std::unordered_map<std::string, Scalar> wellpi contains the well production indices from the last
        // timestep. This map is needed for the keyword WELPI. For an ActionX, we know which wells are affected by
        // the ActionX, thus fetch the well production indices only for the affected wells.
        const std::vector<std::string> wellpi_wells = action->wellpi_wells(schedule_.wellMatcher(reportStep), matches);
        const auto wellpi = fetchWellPI<Scalar>(this->wellModel_, wellpi_wells, this->comm_);

        const auto sim_update_current = this->schedule_
            .applyAction(reportStep, *action, matches, wellpi, true);

        sim_update.append(sim_update_current);
        this->actionState_.add_run(*action, simTime, actionResult);
    }

    if (non_triggered > 0) {
        logInactiveActions(non_triggered, ts);
    }

    bool commit_wellstate = false;
    this->applySimulatorUpdate(reportStep, sim_update, transUp, commit_wellstate);
    // The well state has been stored in a previous object when the time
    // step has completed successfully, the action process might have
    // modified the well state, and to be certain that is not overwritten
    // when starting the next timestep we must commit it.
    if (commit_wellstate) {
        this->wellModel_.commitWGState();
    }
}

template<typename Scalar, typename IndexTraits>
void ActionHandler<Scalar, IndexTraits>::
applySimulatorUpdate(const int report_step,
                     const SimulatorUpdate& sim_update,
                     const TransFunc& updateTrans,
                     bool& commit_wellstate)
{
    OPM_TIMEBLOCK(applySimulatorUpdate);

    this->wellModel_.updateEclWells(report_step, sim_update, this->summaryState_);

    if (!sim_update.affected_wells.empty()) {
        commit_wellstate = true;
    }

    if (sim_update.tran_update) {
        const auto& keywords = schedule_[report_step].geo_keywords();
        ecl_state_.apply_schedule_keywords( keywords );
        eclBroadcast(comm_, ecl_state_.getTransMult() );

        // re-compute transmissibility
        updateTrans(true);
    }
}

template<typename Scalar, typename IndexTraits>
void ActionHandler<Scalar, IndexTraits>::
evalUDQAssignments(const unsigned episodeIdx,
                   UDQState& udq_state)
{
    this->schedule_[episodeIdx].udq()
        .eval_assign(this->schedule_.wellMatcher(episodeIdx),
                     this->schedule_[episodeIdx].group_order(),
                     this->schedule_.segmentMatcherFactory(episodeIdx),
                     this->summaryState_,
                     udq_state);
}

template class ActionHandler<double, BlackOilDefaultFluidSystemIndices>;

#if FLOW_INSTANTIATE_FLOAT
template class ActionHandler<float, BlackOilDefaultFluidSystemIndices>;
#endif

} // namespace Opm