1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
// SPDX-License-Identifier: BSD-2-Clause
/*
* Copyright 2015-2019 Linaro Limited
* Copyright 2013-2014 Andrew Turner.
* Copyright 2013-2014 Ian Lepore.
* Copyright 2013-2014 Rui Paulo.
* Copyright 2013 Eitan Adler.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <trace.h>
#include <types_ext.h>
#include <unw/unwind.h>
#include <util.h>
/* The register names */
#define FP 11
#define SP 13
#define LR 14
#define PC 15
/*
* Definitions for the instruction interpreter.
*
* The ARM EABI specifies how to perform the frame unwinding in the
* Exception Handling ABI for the ARM Architecture document. To perform
* the unwind we need to know the initial frame pointer, stack pointer,
* link register and program counter. We then find the entry within the
* index table that points to the function the program counter is within.
* This gives us either a list of three instructions to process, a 31-bit
* relative offset to a table of instructions, or a value telling us
* we can't unwind any further.
*
* When we have the instructions to process we need to decode them
* following table 4 in section 9.3. This describes a collection of bit
* patterns to encode that steps to take to update the stack pointer and
* link register to the correct values at the start of the function.
*/
/* A special case when we are unable to unwind past this function */
#define EXIDX_CANTUNWIND 1
/*
* Entry types.
* These are the only entry types that have been seen in the kernel.
*/
#define ENTRY_MASK 0xff000000
#define ENTRY_ARM_SU16 0x80000000
#define ENTRY_ARM_LU16 0x81000000
/* Instruction masks. */
#define INSN_VSP_MASK 0xc0
#define INSN_VSP_SIZE_MASK 0x3f
#define INSN_STD_MASK 0xf0
#define INSN_STD_DATA_MASK 0x0f
#define INSN_POP_TYPE_MASK 0x08
#define INSN_POP_COUNT_MASK 0x07
#define INSN_VSP_LARGE_INC_MASK 0xff
/* Instruction definitions */
#define INSN_VSP_INC 0x00
#define INSN_VSP_DEC 0x40
#define INSN_POP_MASKED 0x80
#define INSN_VSP_REG 0x90
#define INSN_POP_COUNT 0xa0
#define INSN_FINISH 0xb0
#define INSN_POP_REGS 0xb1
#define INSN_VSP_LARGE_INC 0xb2
/* An item in the exception index table */
struct unwind_idx {
uint32_t offset;
uint32_t insn;
};
static bool copy_in(void *dst, const void *src, size_t n)
{
memcpy(dst, src, n);
return true;
}
/* Expand a 31-bit signed value to a 32-bit signed value */
static int32_t expand_prel31(uint32_t prel31)
{
return prel31 | SHIFT_U32(prel31 & BIT32(30), 1);
}
/*
* Perform a binary search of the index table to find the function
* with the largest address that does not exceed addr.
*/
static struct unwind_idx *find_index(uint32_t addr)
{
vaddr_t idx_start = 0;
vaddr_t idx_end = 0;
unsigned int min = 0;
unsigned int mid = 0;
unsigned int max = 0;
struct unwind_idx *start = NULL;
struct unwind_idx *item = NULL;
int32_t prel31_addr = 0;
vaddr_t func_addr = 0;
if (!find_exidx(addr, &idx_start, &idx_end))
return NULL;
start = (struct unwind_idx *)idx_start;
min = 0;
max = (idx_end - idx_start) / sizeof(struct unwind_idx);
while (min != max) {
mid = min + (max - min + 1) / 2;
item = &start[mid];
prel31_addr = expand_prel31(item->offset);
func_addr = (vaddr_t)&item->offset + prel31_addr;
if (func_addr <= addr)
min = mid;
else
max = mid - 1;
}
return &start[min];
}
/* Reads the next byte from the instruction list */
static bool unwind_exec_read_byte(struct unwind_state_arm32 *state,
uint32_t *ret_insn)
{
uint32_t insn;
if (!copy_in(&insn, (void *)state->insn, sizeof(insn)))
return false;
/* Read the unwind instruction */
*ret_insn = (insn >> (state->byte * 8)) & 0xff;
/* Update the location of the next instruction */
if (state->byte == 0) {
state->byte = 3;
state->insn += sizeof(uint32_t);
state->entries--;
} else {
state->byte--;
}
return true;
}
static bool pop_vsp(uint32_t *reg, vaddr_t *vsp, vaddr_t stack,
size_t stack_size)
{
if (*vsp < stack)
return false;
if (*vsp + sizeof(*reg) > stack + stack_size)
return false;
if (!copy_in(reg, (void *)*vsp, sizeof(*reg)))
return false;
(*vsp) += sizeof(*reg);
return true;
}
/* Executes the next instruction on the list */
static bool unwind_exec_insn(struct unwind_state_arm32 *state, vaddr_t stack,
size_t stack_size)
{
uint32_t insn;
vaddr_t vsp = state->registers[SP];
int update_vsp = 0;
/* Read the next instruction */
if (!unwind_exec_read_byte(state, &insn))
return false;
if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
} else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
} else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
uint32_t mask;
unsigned int reg;
/* Load the mask */
if (!unwind_exec_read_byte(state, &mask))
return false;
mask |= (insn & INSN_STD_DATA_MASK) << 8;
/* We have a refuse to unwind instruction */
if (mask == 0)
return false;
/* Update SP */
update_vsp = 1;
/* Load the registers */
for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
if (mask & 1) {
if (!pop_vsp(&state->registers[reg], &vsp,
stack, stack_size))
return false;
state->update_mask |= 1 << reg;
/* If we have updated SP kep its value */
if (reg == SP)
update_vsp = 0;
}
}
} else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
((insn & INSN_STD_DATA_MASK) != 13) &&
((insn & INSN_STD_DATA_MASK) != 15)) {
/* sp = register */
state->registers[SP] =
state->registers[insn & INSN_STD_DATA_MASK];
} else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
unsigned int count, reg;
/* Read how many registers to load */
count = insn & INSN_POP_COUNT_MASK;
/* Update sp */
update_vsp = 1;
/* Pop the registers */
for (reg = 4; reg <= 4 + count; reg++) {
if (!pop_vsp(&state->registers[reg], &vsp,
stack, stack_size))
return false;
state->update_mask |= 1 << reg;
}
/* Check if we are in the pop r14 version */
if ((insn & INSN_POP_TYPE_MASK) != 0) {
if (!pop_vsp(&state->registers[14], &vsp,
stack, stack_size))
return false;
}
} else if (insn == INSN_FINISH) {
/* Stop processing */
state->entries = 0;
} else if (insn == INSN_POP_REGS) {
uint32_t mask;
unsigned int reg;
if (!unwind_exec_read_byte(state, &mask))
return false;
if (mask == 0 || (mask & 0xf0) != 0)
return false;
/* Update SP */
update_vsp = 1;
/* Load the registers */
for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
if (mask & 1) {
if (!pop_vsp(&state->registers[reg], &vsp,
stack, stack_size))
return false;
state->update_mask |= 1 << reg;
}
}
} else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
uint32_t uleb128;
/* Read the increment value */
if (!unwind_exec_read_byte(state, &uleb128))
return false;
state->registers[SP] += 0x204 + (uleb128 << 2);
} else {
/* We hit a new instruction that needs to be implemented */
DMSG("Unhandled instruction %.2x", insn);
return false;
}
if (update_vsp)
state->registers[SP] = vsp;
return true;
}
/* Performs the unwind of a function */
static bool unwind_tab(struct unwind_state_arm32 *state, vaddr_t stack,
size_t stack_size)
{
uint32_t entry;
uint32_t insn;
/* Set PC to a known value */
state->registers[PC] = 0;
if (!copy_in(&insn, (void *)state->insn, sizeof(insn))) {
DMSG("Bad insn addr %p", (void *)state->insn);
return true;
}
/* Read the personality */
entry = insn & ENTRY_MASK;
if (entry == ENTRY_ARM_SU16) {
state->byte = 2;
state->entries = 1;
} else if (entry == ENTRY_ARM_LU16) {
state->byte = 1;
state->entries = ((insn >> 16) & 0xFF) + 1;
} else {
DMSG("Unknown entry: %x", entry);
return true;
}
while (state->entries > 0) {
if (!unwind_exec_insn(state, stack, stack_size))
return true;
}
/*
* The program counter was not updated, load it from the link register.
*/
if (state->registers[PC] == 0) {
state->registers[PC] = state->registers[LR];
/*
* If the program counter changed, flag it in the update mask.
*/
if (state->start_pc != state->registers[PC])
state->update_mask |= 1 << PC;
}
return false;
}
bool unwind_stack_arm32(struct unwind_state_arm32 *state,
vaddr_t stack, size_t stack_size)
{
struct unwind_idx *index;
bool finished;
/* Reset the mask of updated registers */
state->update_mask = 0;
/* The pc value is correct and will be overwritten, save it */
state->start_pc = state->registers[PC];
/*
* Find the item to run. Subtract 2 from PC to make sure that we're
* still inside the calling function in case a __no_return function
* (typically panic()) is called unconditionally and may cause LR and
* thus this PC to point into the next and entirely unrelated function.
*/
index = find_index(state->start_pc - 2);
if (!index)
return false;
finished = false;
if (index->insn != EXIDX_CANTUNWIND) {
if (index->insn & (1U << 31)) {
/* The data is within the instruction */
state->insn = (vaddr_t)&index->insn;
} else {
/* A prel31 offset to the unwind table */
state->insn = (vaddr_t)&index->insn +
expand_prel31(index->insn);
}
/* Run the unwind function */
finished = unwind_tab(state, stack, stack_size);
}
/* This is the top of the stack, finish */
if (index->insn == EXIDX_CANTUNWIND)
finished = true;
return !finished;
}
void print_stack_arm32(struct unwind_state_arm32 *state,
vaddr_t stack, size_t stack_size)
{
trace_printf_helper_raw(TRACE_ERROR, true, "Call stack:");
do {
trace_printf_helper_raw(TRACE_ERROR, true, " 0x%08" PRIx32,
state->registers[PC]);
} while (unwind_stack_arm32(state, stack, stack_size));
}
|