1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (c) 2014, STMicroelectronics International N.V.
*/
#ifndef UTIL_H
#define UTIL_H
#include <compiler.h>
#include <inttypes.h>
#ifndef __ASSEMBLER__
#include <assert.h>
#include <stddef.h>
#endif
#define SIZE_4K UINTPTR_C(0x1000)
#define SIZE_1M UINTPTR_C(0x100000)
#define SIZE_2M UINTPTR_C(0x200000)
#define SIZE_4M UINTPTR_C(0x400000)
#define SIZE_8M UINTPTR_C(0x800000)
#define SIZE_2G UINTPTR_C(0x80000000)
#ifndef MAX
#ifndef __ASSEMBLER__
#define MAX(a, b) \
(__extension__({ __typeof__(a) _a = (a); \
__typeof__(b) _b = (b); \
_a > _b ? _a : _b; }))
#define MIN(a, b) \
(__extension__({ __typeof__(a) _a = (a); \
__typeof__(b) _b = (b); \
_a < _b ? _a : _b; }))
#else
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#endif
#endif
/*
* In some particular conditions MAX and MIN macros fail to
* build from C source file implmentation. In such case one
* need to use MAX_UNSAFE/MIN_UNSAFE instead.
*/
#define MAX_UNSAFE(a, b) (((a) > (b)) ? (a) : (b))
#define MIN_UNSAFE(a, b) (((a) < (b)) ? (a) : (b))
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif
#ifndef __ASSEMBLER__
/* Round up the even multiple of size */
#define ROUNDUP(x, y) \
((((x) + (__typeof__(x))(y) - 1) / (__typeof__(x))(y)) * \
(__typeof__(x))(y))
/* Round up the even multiple of size, size has to be a power of 2 */
#define ROUNDUP2(v, size) \
(__extension__({ \
assert(IS_POWER_OF_TWO(size)); \
(((v) + ((__typeof__(v))(size) - 1)) & \
~((__typeof__(v))(size) - 1)); \
}))
/*
* ROUNDUP_OVERFLOW(v, size, res)
*
* @v: Input value to round
* @size: Rounding operand
* @res: Pointer where boolean overflow status (0/false or 1/true) is stored
* @return: boolean overflow status of the resulting rounded value
*
* Round up value @v to the even multiple of @size and return if result
* overflows the output value range pointed by @res. The rounded value is
* stored in the memory address pointed by @res.
*/
#define ROUNDUP_OVERFLOW(v, size, res) \
(__extension__({ \
typeof(v) __roundup_mod = 0; \
typeof(v) __roundup_add = 0; \
\
__roundup_mod = (v) % (typeof(v))(size); \
if (__roundup_mod) \
__roundup_add = (typeof(v))(size) - __roundup_mod; \
ADD_OVERFLOW((v), __roundup_add, (res)); \
}))
/*
* ROUNDUP2_OVERFLOW(v, size, res)
*
* @v: Input value to round
* @size: Rounding operand, must be a power of 2
* @res: Pointer where boolean overflow status (0/false or 1/true) is stored
* @return: boolean overflow status of the resulting rounded value
*
* Round up value @v to the even multiple of @size and return if result
* overflows the output value range pointed by @res. The rounded value is
* stored in the memory address pointed by @res.
*/
#define ROUNDUP2_OVERFLOW(v, size, res) \
(__extension__({ \
typeof(*(res)) __roundup_tmp = 0; \
typeof(v) __roundup_mask = (typeof(v))(size) - 1; \
\
assert(IS_POWER_OF_TWO(size)); \
ADD_OVERFLOW((v), __roundup_mask, &__roundup_tmp) ? 1 : \
((void)(*(res) = __roundup_tmp & ~__roundup_mask), 0); \
}))
/*
* ROUNDUP2_DIV(x, y)
*
* Rounds up to the nearest multiple of y and then divides by y. Safe
* against overflow, y has to be a power of 2.
*
* This macro is intended to be used to convert from "number of bytes" to
* "number of pages" or similar units. Example:
* num_pages = ROUNDUP2_DIV(num_bytes, SMALL_PAGE_SIZE);
*/
#define ROUNDUP2_DIV(x, y) \
(__extension__({ \
typeof(x) __roundup_x = (x); \
typeof(y) __roundup_mask = (typeof(x))(y) - 1; \
\
assert(IS_POWER_OF_TWO(y)); \
(__roundup_x / (y)) + (__roundup_x & __roundup_mask ? 1 : 0); \
}))
/*
* ROUNDUP_DIV(x, y)
*
* Rounds up to the nearest multiple of y and then divides by y. Safe
* against overflow.
*/
#define ROUNDUP_DIV(x, y) (ROUNDUP((x), (y)) / (__typeof__(x))(y))
/* Round down the even multiple of size */
#define ROUNDDOWN(x, y) (((x) / (__typeof__(x))(y)) * (__typeof__(x))(y))
/* Round down the even multiple of size, size has to be a power of 2 */
#define ROUNDDOWN2(v, size) \
(__extension__({ \
assert(IS_POWER_OF_TWO(size)); \
((v) & ~((__typeof__(v))(size) - 1)); \
}))
/*
* Round up the result of x / y to the nearest upper integer if result is not
* already an integer.
*/
#define DIV_ROUND_UP(x, y) (((x) + (y) - 1) / (y))
/* Unsigned integer division with nearest rounding variant */
#define UDIV_ROUND_NEAREST(x, y) \
(__extension__ ({ __typeof__(x) _x = (x); \
__typeof__(y) _y = (y); \
(_x + (_y / 2)) / _y; }))
#else /* __ASSEMBLER__ */
#define ROUNDUP(x, y) ((((x) + (y) - 1) / (y)) * (y))
#define ROUNDDOWN(x, y) (((x) / (y)) * (y))
#define UDIV_ROUND_NEAREST(x, y) (((x) + ((y) / 2)) / (y))
#endif /* __ASSEMBLER__ */
/* x has to be of an unsigned type */
#define IS_POWER_OF_TWO(x) (((x) != 0) && (((x) & (~(x) + 1)) == (x)))
#define IS_ALIGNED(x, a) (((x) & ((a) - 1)) == 0)
#define IS_ALIGNED_WITH_TYPE(x, type) \
(__extension__({ \
type __is_aligned_y; \
IS_ALIGNED((uintptr_t)(x), __alignof__(__is_aligned_y)); \
}))
#define TO_STR(x) _TO_STR(x)
#define _TO_STR(x) #x
#define CONCAT(x, y) _CONCAT(x, y)
#define _CONCAT(x, y) x##y
#define container_of(ptr, type, member) \
(__extension__({ \
const typeof(((type *)0)->member) *__ptr = (ptr); \
(type *)((unsigned long)(__ptr) - offsetof(type, member)); \
}))
#define MEMBER_SIZE(type, member) sizeof(((type *)0)->member)
#ifdef __ASSEMBLER__
#define BIT32(nr) (1 << (nr))
#define BIT64(nr) (1 << (nr))
#define SHIFT_U32(v, shift) ((v) << (shift))
#define SHIFT_U64(v, shift) ((v) << (shift))
#else
#define BIT32(nr) (UINT32_C(1) << (nr))
#define BIT64(nr) (UINT64_C(1) << (nr))
#define SHIFT_U32(v, shift) ((uint32_t)(v) << (shift))
#define SHIFT_U64(v, shift) ((uint64_t)(v) << (shift))
#endif
#define BIT(nr) BIT32(nr)
/*
* Create a contiguous bitmask starting at bit position @l and ending at
* position @h. For example
* GENMASK_64(39, 21) gives us the 64bit vector 0x000000ffffe00000.
*/
#define GENMASK_32(h, l) \
((UINT32_C(0xffffffff) << (l)) & \
(UINT32_C(0xffffffff) >> (32 - 1 - (h))))
#define GENMASK_64(h, l) \
(((~UINT64_C(0)) << (l)) & (~UINT64_C(0) >> (64 - 1 - (h))))
/*
* Checking overflow for addition, subtraction and multiplication. Result
* of operation is stored in res which is a pointer to some kind of
* integer.
*
* The macros return true if an overflow occurred and *res is undefined.
*/
#define ADD_OVERFLOW(a, b, res) __compiler_add_overflow((a), (b), (res))
#define SUB_OVERFLOW(a, b, res) __compiler_sub_overflow((a), (b), (res))
#define MUL_OVERFLOW(a, b, res) __compiler_mul_overflow((a), (b), (res))
/* Return a signed +1, 0 or -1 value based on data comparison */
#define CMP_TRILEAN(a, b) \
(__extension__({ \
__typeof__(a) _a = (a); \
__typeof__(b) _b = (b); \
\
_a > _b ? 1 : _a < _b ? -1 : 0; \
}))
#ifndef __ASSEMBLER__
static inline uint64_t reg_pair_to_64(uint32_t reg0, uint32_t reg1)
{
return (uint64_t)reg0 << 32 | reg1;
}
static inline uint32_t high32_from_64(uint64_t val)
{
return val >> 32;
}
static inline uint32_t low32_from_64(uint64_t val)
{
return val;
}
static inline void reg_pair_from_64(uint64_t val, uint32_t *reg0,
uint32_t *reg1)
{
*reg0 = high32_from_64(val);
*reg1 = low32_from_64(val);
}
/*
* Functions to get and set bit fields in a 32/64-bit bitfield.
*
* These helper functions allow setting and extracting specific bits in
* a bitfield @reg according to a given mask @mask. The mask
* specifies which bits in the bitfield should be updated or extracted.
* These functions exist in both 32-bit and 64-bit versions.
*
* set_field_u32()
* set_field_u64() - Modifies specific bits in a bitfield by clearing
* the bits specified by the mask and then setting
* these bits to the new value @val.
* @reg: The original 32-bit or 64-bit bitfield value.
* @mask: A bitmask indicating which bits in the bitfield should be
* updated.
* @val: The new value to be loaded into the bitfield, left shifted
* according to @mask rightmost non-zero bit position.
* Returns the updated bitfield value with the specified bits set to
* the new value.
*
* E.g. set_bitfield_u32(0x123456, 0xf0ff00, 0xabcd) returns 0xa2cd56.
*
* get_field_u32()
* get_field_u64() - Extracts the value of specific bits in a bitfield
* by isolating the bits specified by the mask and
* then shifting them to the rightmost position.
* @reg: The original 32-bit or 64-bit bitfield value.
* @mask: A bitmask indicating which bits in the bitfield should be
* extracted.
* Returns the value of the bits specified by the mask, shifted to the
* @mask rightmost non-zero bit position.
*
* E.g. get_bitfield_u32(0x123456, 0xf0ff00) returns 0x1034.
*/
static inline uint32_t get_field_u32(uint32_t reg, uint32_t mask)
{
return (reg & mask) / (mask & ~(mask - 1));
}
static inline uint32_t set_field_u32(uint32_t reg, uint32_t mask, uint32_t val)
{
return (reg & ~mask) | (val * (mask & ~(mask - 1)));
}
static inline uint64_t get_field_u64(uint64_t reg, uint64_t mask)
{
return (reg & mask) / (mask & ~(mask - 1));
}
static inline uint64_t set_field_u64(uint64_t reg, uint64_t mask, uint64_t val)
{
return (reg & ~mask) | (val * (mask & ~(mask - 1)));
}
/* Helper function for qsort with standard types */
void qsort_int(int *aa, size_t n);
void qsort_uint(unsigned int *aa, size_t n);
void qsort_long(long int *aa, size_t n);
void qsort_ul(unsigned long int *aa, size_t n);
void qsort_ll(long long int *aa, size_t n);
void qsort_ull(unsigned long long int *aa, size_t n);
void qsort_s8(int8_t *aa, size_t n);
void qsort_u8(uint8_t *aa, size_t n);
void qsort_s16(int16_t *aa, size_t n);
void qsort_u16(uint16_t *aa, size_t n);
void qsort_s32(int32_t *aa, size_t n);
void qsort_u32(uint32_t *aa, size_t n);
void qsort_s64(int64_t *aa, size_t n);
void qsort_u64(uint64_t *aa, size_t n);
#endif
#endif /*UTIL_H*/
|