File: mempool.c

package info (click to toggle)
optee-os 4.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 31,560 kB
  • sloc: ansic: 441,914; asm: 12,903; python: 3,719; makefile: 1,676; sh: 238
file content (188 lines) | stat: -rw-r--r-- 4,923 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// SPDX-License-Identifier: BSD-2-Clause
/*
 * Copyright (c) 2014, STMicroelectronics International N.V.
 * Copyright (c) 2018-2019, Linaro Limited
 */


#include <assert.h>
#include <compiler.h>
#include <malloc.h>
#include <mempool.h>
#include <pta_stats.h>
#include <string.h>
#include <util.h>

#if defined(__KERNEL__)
#include <kernel/mutex.h>
#include <kernel/panic.h>
#endif

/*
 * Allocation of temporary memory buffers which are used in a stack like
 * fashion. One exmaple is when a Big Number is needed for a temporary
 * variable in a Big Number computation: Big Number operations (add,...),
 * crypto algorithms (rsa, ecc,,...).
 *
 *  The allocation algorithm takes memory buffers from a pool,
 *  characterized by (cf. struct mempool):
 * - the total size (in bytes) of the pool
 * - the offset of the last item allocated in the pool (struct
 *   mempool_item). This offset is -1 is nothing is allocated yet.
 *
 * Each item consists of (struct mempool_item)
 * - the size of the item
 * - the offsets, in the pool, of the previous and next items
 *
 * The allocation allocates an item for a given size.
 * The allocation is performed in the pool after the last
 * allocated items. This means:
 * - the heap is never used.
 * - there is no assumption on the size of the allocated memory buffers. Only
 *   the size of the pool will limit the allocation.
 * - a constant time allocation and free as there is no list scan
 * - but a potentially fragmented memory as the allocation does not take into
 *   account "holes" in the pool (allocation is performed after the last
 *   allocated variable). Indeed, this interface is supposed to be used
 *   with stack like allocations to avoid this issue. This means that
 *   allocated items:
 *   - should have a short life cycle
 *   - if an item A is allocated before another item B, then A should be
 *     released after B.
 *   So the potential fragmentation is mitigated.
 */


struct mempool {
	size_t size;  /* size of the memory pool, in bytes */
	vaddr_t data;
	struct malloc_ctx *mctx;
#ifdef CFG_MEMPOOL_REPORT_LAST_OFFSET
	size_t max_allocated;
#endif
#if defined(__KERNEL__)
	void (*release_mem)(void *ptr, size_t size);
	struct recursive_mutex mu;
#endif
};

#if defined(__KERNEL__)
struct mempool *mempool_default;
#endif

static void init_mpool(struct mempool *pool)
{
	size_t sz = pool->size - raw_malloc_get_ctx_size();
	vaddr_t v = ROUNDDOWN(pool->data + sz, sizeof(long) * 2);

	/*
	 * v is the placed as close to the end of the data pool as possible
	 * where the struct malloc_ctx can be placed. This location is selected
	 * as an optimization for the pager case to get better data
	 * locality since raw_malloc() starts to allocate from the end of
	 * the supplied data pool.
	 */
	assert(v > pool->data);
	pool->mctx = (struct malloc_ctx *)v;
	raw_malloc_init_ctx(pool->mctx);
	raw_malloc_add_pool(pool->mctx, (void *)pool->data, v - pool->data);
}

static void get_pool(struct mempool *pool __maybe_unused)
{
#if defined(__KERNEL__)
	mutex_lock_recursive(&pool->mu);
	if (!pool->mctx)
		init_mpool(pool);

#endif
}

static void put_pool(struct mempool *pool __maybe_unused)
{
#if defined(__KERNEL__)
	if (mutex_get_recursive_lock_depth(&pool->mu) == 1) {
		/*
		 * As the refcount is about to become 0 there should be no items
		 * left
		 */
		if (pool->release_mem) {
			pool->mctx = NULL;
			pool->release_mem((void *)pool->data, pool->size);
		}
	}
	mutex_unlock_recursive(&pool->mu);
#endif
}

struct mempool *
mempool_alloc_pool(void *data, size_t size,
		   void (*release_mem)(void *ptr, size_t size) __maybe_unused)
{
	struct mempool *pool = calloc(1, sizeof(*pool));

	COMPILE_TIME_ASSERT(MEMPOOL_ALIGN >= __alignof__(struct mempool_item));
	assert(!((vaddr_t)data & (MEMPOOL_ALIGN - 1)));

	if (pool) {
		pool->size = size;
		pool->data = (vaddr_t)data;
#if defined(__KERNEL__)
		pool->release_mem = release_mem;
		mutex_init_recursive(&pool->mu);
#else
		init_mpool(pool);
#endif
	}

	return pool;
}

void *mempool_alloc(struct mempool *pool, size_t size)
{
	void *p = NULL;

	get_pool(pool);

	p = raw_malloc(0, 0, size, pool->mctx);
	if (p) {
#ifdef CFG_MEMPOOL_REPORT_LAST_OFFSET
		struct pta_stats_alloc stats = { };

		raw_malloc_get_stats(pool->mctx, &stats);
		if (stats.max_allocated > pool->max_allocated) {
			pool->max_allocated = stats.max_allocated;
			DMSG("Max memory usage increased to %zu",
			     pool->max_allocated);
		}
#endif
		return p;
	}

	EMSG("Failed to allocate %zu bytes, please tune the pool size", size);
	put_pool(pool);
	return NULL;
}

void *mempool_calloc(struct mempool *pool, size_t nmemb, size_t size)
{
	size_t sz;
	void *p;

	if (MUL_OVERFLOW(nmemb, size, &sz))
		return NULL;

	p = mempool_alloc(pool, sz);
	if (p)
		memset(p, 0, sz);

	return p;
}

void mempool_free(struct mempool *pool, void *ptr)
{
	if (ptr) {
		raw_free(ptr, pool->mctx, false /*!wipe*/);
		put_pool(pool);
	}
}