1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
#!/usr/bin/env python3
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2023, STMicroelectronics
#
try:
from elftools.elf.elffile import ELFFile
from elftools.elf.sections import SymbolTableSection
from elftools.elf.enums import ENUM_P_TYPE_ARM
from elftools.elf.enums import *
except ImportError:
print("""
***
ERROR: "pyelftools" python module is not installed or version < 0.25.
***
""")
raise
try:
from Cryptodome.Hash import SHA256
from Cryptodome.Signature import pkcs1_15
from Cryptodome.PublicKey import RSA
from Cryptodome.Signature import DSS
from Cryptodome.PublicKey import ECC
except ImportError:
print("""
***
ERROR: "pycryptodomex" python module should be installed.
***
""")
raise
import os
import sys
import struct
import logging
import binascii
# Generated file structure:
#
# -----+-------------+
# / | Magic | 32-bit word, magic value equal to
# / +-------------+ 0x3543A468
# / +-------------+
# / | version | 32-bit word, version of the format
# / +-------------+
# +-----------+ +-------------+
# | Header | | TLV size | 32-bit word, size of the TLV
# +-----------+ +-------------+ (aligned on 64-bit), in bytes.
# \ +-------------+
# \ | sign size | 32-bit word, size of the signature
# \ +-------------+ (aligned on 64-bit), in bytes.
# \ +-------------+
# \ | images size | 32-bit word, size of the images to
# -----+-------------+ load (aligned on 64-bit), in bytes.
#
# +-------------+ Information used to authenticate the
# | TLV | images and boot the remote processor,
# | | stored in Type-Length-Value format.
# +-------------+ 'Type' and 'Length' are 32-bit words.
#
# +-------------+
# | Signature | Signature of the header and the TLV.
# +-------------+
#
# +-------------+
# | Firmware |
# | image 1 |
# +-------------+
# ...
# +-------------+
# | Firmware |
# | image n |
# +-------------+
# Generic type definitions
TLV_TYPES = {
'SIGNTYPE': 0x00000001, # algorithm used for signature
'HASHTYPE': 0x00000002, # algorithm used for computing segment's hash
'NUM_IMG': 0x00000003, # number of images to load
'IMGTYPE': 0x00000004, # array of type of images to load
'IMGSIZE': 0x00000005, # array of the size of the images to load
'HASHTABLE': 0x000000010, # segment hash table for authentication
'PKEYINFO': 0x0000000011, # information to retrieve signature key
}
GENERIC_TLV_TYPE_RANGE = range(0x00000000, 0x00010000)
PLATFORM_TLV_TYPE_RANGE = range(0x00010000, 0x00020000)
HEADER_MAGIC = 0x3543A468
logging.basicConfig(stream=sys.stderr, level=logging.INFO)
ENUM_HASH_TYPE = dict(
SHA256=1,
)
ENUM_SIGNATURE_TYPE = dict(
RSA=1,
ECC=2,
)
ENUM_BINARY_TYPE = dict(
ELF=1,
)
def dump_buffer(buf, step=16, name="", logger=logging.debug, indent=""):
logger("%s%s:" % (indent, name))
for i in range(0, len(buf), step):
logger("%s " % (indent) + " ".
join(["%02X" % c for c in buf[i:i+step]]))
logger("\n")
class TLV():
def __init__(self):
self.buf = bytearray()
self.tlvs = {}
def add(self, kind, payload):
"""
Add a TLV record. Argument type is either the type scalar ID or a
matching string defined in TLV_TYPES.
"""
if isinstance(kind, int):
buf = struct.pack('II', kind, len(payload))
else:
buf = struct.pack('II', TLV_TYPES[kind], len(payload))
# Ensure that each TLV is 64-bit aligned
align_64b = (len(payload) + len(buf)) % 8
self.buf += buf
self.buf += payload
if align_64b:
self.buf += bytearray(8 - align_64b)
def add_plat_tlv(self, cust_tlv):
# Get list of custom protected TLVs from the command-line
for tlv in cust_tlv:
type_id = int(tlv[0], 0)
if type_id not in PLATFORM_TLV_TYPE_RANGE:
raise Exception('TLV %s not in range' % hex(type_id))
value = tlv[1]
if value.startswith('0x'):
int_val = int(value[2:], 16)
self.tlvs[type_id] = int_val.to_bytes(4, 'little')
else:
self.tlvs[type_id] = value.encode('utf-8')
if self.tlvs is not None:
for type_id, value in self.tlvs.items():
self.add(type_id, value)
def get(self):
"""
Get a byte-array that concatenates all the TLV added.
"""
if len(self.buf) == 0:
return bytes()
return bytes(self.buf)
class RSA_Signature(object):
def __init__(self, key):
self._hasher = SHA256.new()
self.signer = pkcs1_15.new(key)
def hash_compute(self, segment):
self._hasher.update(segment)
def sign(self):
return self.signer.sign(self._hasher)
class ECC_Signature(object):
def __init__(self, key):
self._hasher = SHA256.new()
self.signer = DSS.new(key, 'fips-186-3')
def hash_compute(self, segment):
self._hasher.update(segment)
def sign(self):
return self.signer.sign(self._hasher)
Signature = {
1: RSA_Signature,
2: ECC_Signature,
}
class SegmentHashStruct:
pass
class SegmentHash(object):
'''
Hash table based on Elf program segments
'''
def __init__(self, img):
self._num_segments = img.num_segments()
self._pack_fmt = '<%dL' % 8
self.img = img
self.hashProgTable = bytes()
self._offset = 0
def get_table(self):
'''
Create a segment hash table containing for each segment:
- the segments header
- a hash of the segment
'''
h = SHA256.new()
seg = SegmentHashStruct()
self.size = (h.digest_size + 32) * self._num_segments
logging.debug("hash section size %d" % self.size)
del h
self.buf = bytearray(self.size)
self._bufview_ = memoryview(self.buf)
for i in range(self._num_segments):
h = SHA256.new()
segment = self.img.get_segment(i)
seg.header = self.img.get_segment(i).header
logging.debug("compute hash for segment offset %s" % seg.header)
h.update(segment.data())
seg.hash = h.digest()
logging.debug("hash computed: %s" % seg.hash)
del h
struct.pack_into('<I', self._bufview_, self._offset,
ENUM_P_TYPE_ARM[seg.header.p_type])
self._offset += 4
struct.pack_into('<7I', self._bufview_, self._offset,
seg.header.p_offset, seg.header.p_vaddr,
seg.header.p_paddr, seg.header.p_filesz,
seg.header.p_memsz, seg.header.p_flags,
seg.header.p_align)
self._offset += 28
struct.pack_into('<32B', self._bufview_, self._offset, *seg.hash)
self._offset += 32
dump_buffer(self.buf, name='hash table', indent="\t")
return self.buf
class ImageHeader(object):
'''
Image header
'''
magic = 'HELF' # SHDR_MAGIC
version = 1
MAGIC_OFFSET = 0
VERSION_OFFSET = 4
SIGN_LEN_OFFSET = 8
IMG_LEN_OFFSET = 12
TLV_LEN_OFFSET = 16
PTLV_LEN_OFFSET = 20
def __init__(self):
self.size = 56
self.magic = HEADER_MAGIC
self.version = 1
self.tlv_length = 0
self.sign_length = 0
self.img_length = 0
self.shdr = struct.pack('<IIIII',
self.magic, self.version,
self.tlv_length, self.sign_length,
self.img_length)
def dump(self):
logging.debug("\tMAGIC\t\t= %08X" % (self.magic))
logging.debug("\tHEADER_VERSION\t= %08X" % (self.version))
logging.debug("\tTLV_LENGTH\t= %08X" % (self.tlv_length))
logging.debug("\tSIGN_LENGTH\t= %08X" % (self.sign_length))
logging.debug("\tIMAGE_LENGTH\t= %08X" % (self.img_length))
def get_packed(self):
return struct.pack('<IIIII',
self.magic, self.version,
self.tlv_length, self.sign_length, self.img_length)
def get_args(logger):
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import textwrap
parser = ArgumentParser(
description='Sign a remote processor firmware loadable by OP-TEE.',
usage='\n %(prog)s [ arguments ]\n\n'
' Generate signed loadable binary \n' +
' Takes arguments --in, --out --key\n' +
' %(prog)s --help show available arguments\n\n')
parser.add_argument('--in', required=True, dest='in_file',
help='Name of firmware input file ' +
'(can be used multiple times)', action='append')
parser.add_argument('--out', required=True, dest='out_file',
help='Name of the signed firmware output file')
parser.add_argument('--key', required=True,
help='Name of signing key file',
dest='key_file')
parser.add_argument('--key_info', required=False,
help='Name file containing extra key information',
dest='key_info')
parser.add_argument('--key_type', required=False,
help='Type of signing key: should be RSA or ECC',
default='RSA',
dest='key_type')
parser.add_argument('--key_pwd', required=False,
help='passphrase for the private key decryption',
dest='key_pwd')
parser.add_argument('--plat-tlv', required=False, nargs=2,
metavar=("ID", "value"), action='append',
help='Platform TLV that will be placed into image '
'plat_tlv area. Add "0x" prefix to interpret '
'the value as an integer, otherwise it will be '
'interpreted as a string. Option can be used '
'multiple times to add multiple TLVs.',
default=[], dest='plat_tlv')
parsed = parser.parse_args()
# Set defaults for optional arguments.
if parsed.out_file is None:
parsed.out_file = str(parsed.in_file)+'.sig'
return parsed
def rsa_key(key_file, key_pwd):
return RSA.importKey(open(key_file).read(), key_pwd)
def ecc_key(key_file, key_pwd):
return ECC.import_key(open(key_file).read(), key_pwd)
key_type = {
1: rsa_key,
2: ecc_key,
}
def rsa_sig_size(key):
return key.size_in_bytes()
def ecc_sig_size(key):
# to be improve...
# DSA size is N/4 so 64 for DSA (L,N) = (2048, 256)
return 64
sig_size_type = {
1: rsa_sig_size,
2: ecc_sig_size,
}
def main():
from Cryptodome.Signature import pss
from Cryptodome.Hash import SHA256
from Cryptodome.PublicKey import RSA
import base64
import logging
import struct
logging.basicConfig()
logger = logging.getLogger(os.path.basename(__file__))
args = get_args(logger)
# Initialise the header */
s_header = ImageHeader()
tlv = TLV()
sign_type = ENUM_SIGNATURE_TYPE[args.key_type]
get_key = key_type.get(sign_type, lambda: "Invalid sign type")
key = get_key(args.key_file, args.key_pwd)
if not key.has_private():
logger.error('Provided key cannot be used for signing, ')
sys.exit(1)
tlv.add('SIGNTYPE', sign_type.to_bytes(1, 'little'))
images_type = []
hash_tlv = bytearray()
images_size = []
# Firmware image
for inputf in args.in_file:
logging.debug("image %s" % inputf)
input_file = open(inputf, 'rb')
img = ELFFile(input_file)
# Only ARM machine has been tested and well supported yet.
# Indeed this script uses of ENUM_P_TYPE_ARM dic
assert img.get_machine_arch() in ["ARM"]
# Need to reopen the file to get the raw data
with open(inputf, 'rb') as f:
bin_img = f.read()
size = len(bin_img)
align_64b = size % 8
if align_64b:
size += 8 - align_64b
images_size.extend(size.to_bytes(4, 'little'))
s_header.img_length += size
f.close()
# Store image type information
bin_type = ENUM_BINARY_TYPE['ELF']
images_type += bin_type.to_bytes(1, 'little')
# Compute the hash table and add it to TLV blob
hash_table = SegmentHash(img)
hash_tlv.extend(hash_table.get_table())
# Add image information
# The 'IMGTYPE' contains a byte array of the image type (ENUM_BINARY_TYPE).
# The 'IMGSIZE' contains a byte array of the size (32-bit) of each image.
tlv.add('NUM_IMG', len(args.in_file).to_bytes(1, 'little'))
tlv.add('IMGTYPE', bytearray(images_type))
tlv.add('IMGSIZE', bytearray(images_size))
# Add hash type information in TLV blob
# The 'HASHTYPE' TLV contains a byte associated to ENUM_HASH_TYPE.
hash_type = ENUM_HASH_TYPE['SHA256']
tlv.add('HASHTYPE', hash_type.to_bytes(1, 'little'))
# Add hash table information in TLV blob
# The HASHTABLE TLV contains a byte array containing all the ELF segment
# with associated hash.
tlv.add('HASHTABLE', hash_tlv)
# Add optional key information to TLV
if args.key_info:
with open(args.key_info, 'rb') as f:
key_info = f.read()
tlv.add('PKEYINFO', key_info)
# Compute custom TLV that will be passed to the platform PTA
# Get list of custom protected TLVs from the command-line
if args.plat_tlv:
tlv.add_plat_tlv(args.plat_tlv)
# Get the TLV area and compute its size (with 64 bit alignment)
tlvs_buff = tlv.get()
s_header.tlv_length = len(tlvs_buff)
align_64b = 8 - (s_header.tlv_length % 8)
if align_64b:
s_header.tlv_length += 8 - align_64b
tlvs_buff += bytearray(8 - align_64b)
dump_buffer(tlvs_buff, name='TLVS', indent="\t")
# Signature chunk
sign_size = sig_size_type.get(ENUM_SIGNATURE_TYPE[args.key_type],
lambda: "Invalid sign type")(key)
s_header.sign_length = sign_size
# Construct the Header
header = s_header.get_packed()
# Generate signature
signer = Signature.get(ENUM_SIGNATURE_TYPE[args.key_type])(key)
signer.hash_compute(header)
signer.hash_compute(tlvs_buff)
signature = signer.sign()
if len(signature) != sign_size:
raise Exception(("Actual signature length is not equal to ",
"the computed one: {} != {}".
format(len(signature), sign_size)))
s_header.dump()
with open(args.out_file, 'wb') as f:
f.write(header)
f.write(tlvs_buff)
f.write(signature)
align_64b = sign_size % 8
if align_64b:
f.write(bytearray(8 - align_64b))
for inputf in args.in_file:
with open(inputf, 'rb') as fin:
bin_img = fin.read()
f.write(bin_img)
fin.close()
align_64b = len(bin_img) % 8
if align_64b:
f.write(bytearray(8 - align_64b))
if __name__ == "__main__":
main()
|