1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
"""
plot_intermediate_values
========================
.. autofunction:: optuna.visualization.plot_intermediate_values
The following code snippet shows how to plot intermediate values.
"""
import optuna
from plotly.io import show
def f(x):
return (x - 2) ** 2
def df(x):
return 2 * x - 4
def objective(trial):
lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True)
x = 3
for step in range(128):
y = f(x)
trial.report(y, step=step)
if trial.should_prune():
raise optuna.TrialPruned()
gy = df(x)
x -= gy * lr
return y
sampler = optuna.samplers.TPESampler(seed=10)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=16)
fig = optuna.visualization.plot_intermediate_values(study)
show(fig)
|