File: optuna.visualization.plot_pareto_front.py

package info (click to toggle)
optuna 4.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,784 kB
  • sloc: python: 40,634; sh: 97; makefile: 30
file content (61 lines) | stat: -rw-r--r-- 1,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""

plot_pareto_front
=================

.. autofunction:: optuna.visualization.plot_pareto_front

The following code snippet shows how to plot the Pareto front of a study.

"""

import optuna
from plotly.io import show


def objective(trial):
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)

    v0 = 4 * x**2 + 4 * y**2
    v1 = (x - 5) ** 2 + (y - 5) ** 2
    return v0, v1


study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize(objective, n_trials=50)

fig = optuna.visualization.plot_pareto_front(study)
show(fig)

# %%
# The following code snippet shows how to plot a 2-dimensional Pareto front
# of a 3-dimensional study.
# This example is scalable, e.g., for plotting a 2- or 3-dimensional Pareto front
# of a 4-dimensional study and so on.

import optuna
from plotly.io import show


def objective(trial):
    x = trial.suggest_float("x", 0, 5)
    y = trial.suggest_float("y", 0, 3)
    v0 = 5 * x**2 + 3 * y**2
    v1 = (x - 10) ** 2 + (y - 10) ** 2
    v2 = x + y

    return v0, v1, v2


study = optuna.create_study(directions=["minimize", "minimize", "minimize"])

study.optimize(objective, n_trials=100)

fig = optuna.visualization.plot_pareto_front(
    study,
    targets=lambda t: (t.values[0], t.values[1]),
    target_names=["Objective 0", "Objective 1"],
)

show(fig)