1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|
"""
plot_edf
========
.. autofunction:: optuna.visualization.matplotlib.plot_edf
The following code snippet shows how to plot EDF.
"""
import math
import optuna
def ackley(x, y):
a = 20 * math.exp(-0.2 * math.sqrt(0.5 * (x**2 + y**2)))
b = math.exp(0.5 * (math.cos(2 * math.pi * x) + math.cos(2 * math.pi * y)))
return -a - b + math.e + 20
def objective(trial, low, high):
x = trial.suggest_float("x", low, high)
y = trial.suggest_float("y", low, high)
return ackley(x, y)
sampler = optuna.samplers.RandomSampler(seed=10)
# Widest search space.
study0 = optuna.create_study(study_name="x=[0,5), y=[0,5)", sampler=sampler)
study0.optimize(lambda t: objective(t, 0, 5), n_trials=500)
# Narrower search space.
study1 = optuna.create_study(study_name="x=[0,4), y=[0,4)", sampler=sampler)
study1.optimize(lambda t: objective(t, 0, 4), n_trials=500)
# Narrowest search space but it doesn't include the global optimum point.
study2 = optuna.create_study(study_name="x=[1,3), y=[1,3)", sampler=sampler)
study2.optimize(lambda t: objective(t, 1, 3), n_trials=500)
optuna.visualization.matplotlib.plot_edf([study0, study1, study2])
|