File: test_dataframe.py

package info (click to toggle)
optuna 4.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,784 kB
  • sloc: python: 40,634; sh: 97; makefile: 30
file content (215 lines) | stat: -rw-r--r-- 7,814 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from __future__ import annotations

import pandas as pd
import pytest

from optuna import create_study
from optuna import create_trial
from optuna import Trial
from optuna.testing.storages import STORAGE_MODES
from optuna.testing.storages import StorageSupplier
from optuna.trial import TrialState


def test_study_trials_dataframe_with_no_trials() -> None:
    study_with_no_trials = create_study()
    trials_df = study_with_no_trials.trials_dataframe()
    assert trials_df.empty


@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
@pytest.mark.parametrize(
    "attrs",
    [
        (
            "number",
            "value",
            "datetime_start",
            "datetime_complete",
            "params",
            "user_attrs",
            "system_attrs",
            "state",
        ),
        (
            "number",
            "value",
            "datetime_start",
            "datetime_complete",
            "duration",
            "params",
            "user_attrs",
            "system_attrs",
            "state",
            "intermediate_values",
            "_trial_id",
            "distributions",
        ),
    ],
)
@pytest.mark.parametrize("multi_index", [True, False])
def test_trials_dataframe(storage_mode: str, attrs: tuple[str, ...], multi_index: bool) -> None:
    def f(trial: Trial) -> float:
        x = trial.suggest_int("x", 1, 1)
        y = trial.suggest_categorical("y", (2.5,))
        trial.set_user_attr("train_loss", 3)
        trial.storage.set_trial_system_attr(trial._trial_id, "foo", "bar")
        value = x + y  # 3.5

        # Test reported intermediate values, although it in practice is not "intermediate".
        trial.report(value, step=0)

        return value

    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)
        study.optimize(f, n_trials=3)
        df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)
        # Change index to access rows via trial number.
        if multi_index:
            df.set_index(("number", ""), inplace=True, drop=False)
        else:
            df.set_index("number", inplace=True, drop=False)
        assert len(df) == 3

        # Number columns are as follows (total of 13):
        #   non-nested: 6 (number, value, state, datetime_start, datetime_complete, duration)
        #   params: 2
        #   distributions: 2
        #   user_attrs: 1
        #   system_attrs: 1
        #   intermediate_values: 1
        expected_n_columns = len(attrs)
        if "params" in attrs:
            expected_n_columns += 1
        if "distributions" in attrs:
            expected_n_columns += 1
        assert len(df.columns) == expected_n_columns

        for i in range(3):
            assert df.number[i] == i
            assert df.state[i] == "COMPLETE"
            assert df.value[i] == 3.5
            assert isinstance(df.datetime_start[i], pd.Timestamp)
            assert isinstance(df.datetime_complete[i], pd.Timestamp)

            if multi_index:
                if "distributions" in attrs:
                    assert ("distributions", "x") in df.columns
                    assert ("distributions", "y") in df.columns
                if "_trial_id" in attrs:
                    assert ("trial_id", "") in df.columns  # trial_id depends on other tests.
                if "duration" in attrs:
                    assert ("duration", "") in df.columns

                assert df.params.x[i] == 1
                assert df.params.y[i] == 2.5
                assert df.user_attrs.train_loss[i] == 3
                assert df.system_attrs.foo[i] == "bar"
            else:
                if "distributions" in attrs:
                    assert "distributions_x" in df.columns
                    assert "distributions_y" in df.columns
                if "_trial_id" in attrs:
                    assert "trial_id" in df.columns  # trial_id depends on other tests.
                if "duration" in attrs:
                    assert "duration" in df.columns

                assert df.params_x[i] == 1
                assert df.params_y[i] == 2.5
                assert df.user_attrs_train_loss[i] == 3
                assert df.system_attrs_foo[i] == "bar"


@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_trials_dataframe_with_failure(storage_mode: str) -> None:
    def f(trial: Trial) -> float:
        x = trial.suggest_int("x", 1, 1)
        y = trial.suggest_categorical("y", (2.5,))
        trial.set_user_attr("train_loss", 3)
        raise ValueError()
        return x + y  # 3.5

    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)
        study.optimize(f, n_trials=3, catch=(ValueError,))
        df = study.trials_dataframe()
        # Change index to access rows via trial number.
        df.set_index("number", inplace=True, drop=False)
        assert len(df) == 3
        # non-nested: 6, params: 2, user_attrs: 1 system_attrs: 0
        assert len(df.columns) == 9
        for i in range(3):
            assert df.number[i] == i
            assert df.state[i] == "FAIL"
            assert df.value[i] is None
            assert isinstance(df.datetime_start[i], pd.Timestamp)
            assert isinstance(df.datetime_complete[i], pd.Timestamp)
            assert isinstance(df.duration[i], pd.Timedelta)
            assert df.params_x[i] == 1
            assert df.params_y[i] == 2.5
            assert df.user_attrs_train_loss[i] == 3


@pytest.mark.parametrize("attrs", [("value",), ("values",)])
@pytest.mark.parametrize("multi_index", [True, False])
def test_trials_dataframe_with_multi_objective_optimization(
    attrs: tuple[str, ...], multi_index: bool
) -> None:
    def f(trial: Trial) -> tuple[float, float]:
        x = trial.suggest_float("x", 1, 1)
        y = trial.suggest_float("y", 2, 2)

        return x + y, x**2 + y**2  # 3, 5

    # without set_metric_names()
    study = create_study(directions=["minimize", "maximize"])
    study.optimize(f, n_trials=1)
    df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)
    if multi_index:
        assert df.get("values")[0][0] == 3
        assert df.get("values")[1][0] == 5
    else:
        assert df.values_0[0] == 3
        assert df.values_1[0] == 5

    # with set_metric_names()
    study.set_metric_names(["v0", "v1"])
    df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)
    if multi_index:
        assert df.get("values")["v0"][0] == 3
        assert df.get("values")["v1"][0] == 5
    else:
        assert df.get("values_v0")[0] == 3
        assert df.get("values_v1")[0] == 5


@pytest.mark.parametrize("attrs", [("value",), ("values",)])
@pytest.mark.parametrize("multi_index", [True, False])
def test_trials_dataframe_with_multi_objective_optimization_with_fail_and_pruned(
    attrs: tuple[str, ...], multi_index: bool
) -> None:
    study = create_study(directions=["minimize", "maximize"])
    study.add_trial(create_trial(state=TrialState.FAIL))
    study.add_trial(create_trial(state=TrialState.PRUNED))
    df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)

    # without set_metric_names()
    if multi_index:
        for i in range(2):
            assert df.get("values")[0][i] is None
            assert df.get("values")[1][i] is None
    else:
        for i in range(2):
            assert df.values_0[i] is None
            assert df.values_1[i] is None

    # with set_metric_names()
    study.set_metric_names(["v0", "v1"])
    df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)
    if multi_index:
        assert df.get("values")["v0"][0] is None
        assert df.get("values")["v1"][0] is None
    else:
        assert df.get("values_v0")[0] is None
        assert df.get("values_v1")[0] is None