1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
from __future__ import annotations
import pandas as pd
import pytest
from optuna import create_study
from optuna import create_trial
from optuna import Trial
from optuna.testing.storages import STORAGE_MODES
from optuna.testing.storages import StorageSupplier
from optuna.trial import TrialState
def test_study_trials_dataframe_with_no_trials() -> None:
study_with_no_trials = create_study()
trials_df = study_with_no_trials.trials_dataframe()
assert trials_df.empty
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
@pytest.mark.parametrize(
"attrs",
[
(
"number",
"value",
"datetime_start",
"datetime_complete",
"params",
"user_attrs",
"system_attrs",
"state",
),
(
"number",
"value",
"datetime_start",
"datetime_complete",
"duration",
"params",
"user_attrs",
"system_attrs",
"state",
"intermediate_values",
"_trial_id",
"distributions",
),
],
)
@pytest.mark.parametrize("multi_index", [True, False])
def test_trials_dataframe(storage_mode: str, attrs: tuple[str, ...], multi_index: bool) -> None:
def f(trial: Trial) -> float:
x = trial.suggest_int("x", 1, 1)
y = trial.suggest_categorical("y", (2.5,))
trial.set_user_attr("train_loss", 3)
trial.storage.set_trial_system_attr(trial._trial_id, "foo", "bar")
value = x + y # 3.5
# Test reported intermediate values, although it in practice is not "intermediate".
trial.report(value, step=0)
return value
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
study.optimize(f, n_trials=3)
df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)
# Change index to access rows via trial number.
if multi_index:
df.set_index(("number", ""), inplace=True, drop=False)
else:
df.set_index("number", inplace=True, drop=False)
assert len(df) == 3
# Number columns are as follows (total of 13):
# non-nested: 6 (number, value, state, datetime_start, datetime_complete, duration)
# params: 2
# distributions: 2
# user_attrs: 1
# system_attrs: 1
# intermediate_values: 1
expected_n_columns = len(attrs)
if "params" in attrs:
expected_n_columns += 1
if "distributions" in attrs:
expected_n_columns += 1
assert len(df.columns) == expected_n_columns
for i in range(3):
assert df.number[i] == i
assert df.state[i] == "COMPLETE"
assert df.value[i] == 3.5
assert isinstance(df.datetime_start[i], pd.Timestamp)
assert isinstance(df.datetime_complete[i], pd.Timestamp)
if multi_index:
if "distributions" in attrs:
assert ("distributions", "x") in df.columns
assert ("distributions", "y") in df.columns
if "_trial_id" in attrs:
assert ("trial_id", "") in df.columns # trial_id depends on other tests.
if "duration" in attrs:
assert ("duration", "") in df.columns
assert df.params.x[i] == 1
assert df.params.y[i] == 2.5
assert df.user_attrs.train_loss[i] == 3
assert df.system_attrs.foo[i] == "bar"
else:
if "distributions" in attrs:
assert "distributions_x" in df.columns
assert "distributions_y" in df.columns
if "_trial_id" in attrs:
assert "trial_id" in df.columns # trial_id depends on other tests.
if "duration" in attrs:
assert "duration" in df.columns
assert df.params_x[i] == 1
assert df.params_y[i] == 2.5
assert df.user_attrs_train_loss[i] == 3
assert df.system_attrs_foo[i] == "bar"
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_trials_dataframe_with_failure(storage_mode: str) -> None:
def f(trial: Trial) -> float:
x = trial.suggest_int("x", 1, 1)
y = trial.suggest_categorical("y", (2.5,))
trial.set_user_attr("train_loss", 3)
raise ValueError()
return x + y # 3.5
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
study.optimize(f, n_trials=3, catch=(ValueError,))
df = study.trials_dataframe()
# Change index to access rows via trial number.
df.set_index("number", inplace=True, drop=False)
assert len(df) == 3
# non-nested: 6, params: 2, user_attrs: 1 system_attrs: 0
assert len(df.columns) == 9
for i in range(3):
assert df.number[i] == i
assert df.state[i] == "FAIL"
assert df.value[i] is None
assert isinstance(df.datetime_start[i], pd.Timestamp)
assert isinstance(df.datetime_complete[i], pd.Timestamp)
assert isinstance(df.duration[i], pd.Timedelta)
assert df.params_x[i] == 1
assert df.params_y[i] == 2.5
assert df.user_attrs_train_loss[i] == 3
@pytest.mark.parametrize("attrs", [("value",), ("values",)])
@pytest.mark.parametrize("multi_index", [True, False])
def test_trials_dataframe_with_multi_objective_optimization(
attrs: tuple[str, ...], multi_index: bool
) -> None:
def f(trial: Trial) -> tuple[float, float]:
x = trial.suggest_float("x", 1, 1)
y = trial.suggest_float("y", 2, 2)
return x + y, x**2 + y**2 # 3, 5
# without set_metric_names()
study = create_study(directions=["minimize", "maximize"])
study.optimize(f, n_trials=1)
df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)
if multi_index:
assert df.get("values")[0][0] == 3
assert df.get("values")[1][0] == 5
else:
assert df.values_0[0] == 3
assert df.values_1[0] == 5
# with set_metric_names()
study.set_metric_names(["v0", "v1"])
df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)
if multi_index:
assert df.get("values")["v0"][0] == 3
assert df.get("values")["v1"][0] == 5
else:
assert df.get("values_v0")[0] == 3
assert df.get("values_v1")[0] == 5
@pytest.mark.parametrize("attrs", [("value",), ("values",)])
@pytest.mark.parametrize("multi_index", [True, False])
def test_trials_dataframe_with_multi_objective_optimization_with_fail_and_pruned(
attrs: tuple[str, ...], multi_index: bool
) -> None:
study = create_study(directions=["minimize", "maximize"])
study.add_trial(create_trial(state=TrialState.FAIL))
study.add_trial(create_trial(state=TrialState.PRUNED))
df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)
# without set_metric_names()
if multi_index:
for i in range(2):
assert df.get("values")[0][i] is None
assert df.get("values")[1][i] is None
else:
for i in range(2):
assert df.values_0[i] is None
assert df.values_1[i] is None
# with set_metric_names()
study.set_metric_names(["v0", "v1"])
df = study.trials_dataframe(attrs=attrs, multi_index=multi_index)
if multi_index:
assert df.get("values")["v0"][0] is None
assert df.get("values")["v1"][0] is None
else:
assert df.get("values_v0")[0] is None
assert df.get("values_v1")[0] is None
|