1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
|
from __future__ import annotations
from concurrent.futures import as_completed
from concurrent.futures import ThreadPoolExecutor
import copy
import multiprocessing
import pickle
import platform
import threading
import time
from typing import Any
from typing import Callable
from unittest.mock import Mock
from unittest.mock import patch
import uuid
import warnings
import _pytest.capture
import pytest
from optuna import copy_study
from optuna import create_study
from optuna import create_trial
from optuna import delete_study
from optuna import distributions
from optuna import get_all_study_names
from optuna import get_all_study_summaries
from optuna import load_study
from optuna import logging
from optuna import Study
from optuna import Trial
from optuna import TrialPruned
from optuna.exceptions import DuplicatedStudyError
from optuna.exceptions import ExperimentalWarning
from optuna.study import StudyDirection
from optuna.study._constrained_optimization import _CONSTRAINTS_KEY
from optuna.study.study import _SYSTEM_ATTR_METRIC_NAMES
from optuna.testing.objectives import fail_objective
from optuna.testing.storages import STORAGE_MODES
from optuna.testing.storages import StorageSupplier
from optuna.trial import FrozenTrial
from optuna.trial import TrialState
CallbackFuncType = Callable[[Study, FrozenTrial], None]
def func(trial: Trial) -> float:
x = trial.suggest_float("x", -10.0, 10.0)
y = trial.suggest_float("y", 20, 30, log=True)
z = trial.suggest_categorical("z", (-1.0, 1.0))
return (x - 2) ** 2 + (y - 25) ** 2 + z
class Func:
def __init__(self, sleep_sec: float | None = None) -> None:
self.n_calls = 0
self.sleep_sec = sleep_sec
self.lock = threading.Lock()
def __call__(self, trial: Trial) -> float:
with self.lock:
self.n_calls += 1
# Sleep for testing parallelism.
if self.sleep_sec is not None:
time.sleep(self.sleep_sec)
value = func(trial)
check_params(trial.params)
return value
def check_params(params: dict[str, Any]) -> None:
assert sorted(params.keys()) == ["x", "y", "z"]
def check_value(value: float | None) -> None:
assert isinstance(value, float)
assert -1.0 <= value <= 12.0**2 + 5.0**2 + 1.0
def check_frozen_trial(frozen_trial: FrozenTrial) -> None:
if frozen_trial.state == TrialState.COMPLETE:
check_params(frozen_trial.params)
check_value(frozen_trial.value)
def check_study(study: Study) -> None:
for trial in study.trials:
check_frozen_trial(trial)
assert not study._is_multi_objective()
complete_trials = study.get_trials(deepcopy=False, states=(TrialState.COMPLETE,))
if len(complete_trials) == 0:
with pytest.raises(ValueError):
study.best_params
with pytest.raises(ValueError):
study.best_value
with pytest.raises(ValueError):
study.best_trial
else:
check_params(study.best_params)
check_value(study.best_value)
check_frozen_trial(study.best_trial)
def stop_objective(threshold_number: int) -> Callable[[Trial], float]:
def objective(trial: Trial) -> float:
if trial.number >= threshold_number:
trial.study.stop()
return trial.number
return objective
def test_optimize_trivial_in_memory_new() -> None:
study = create_study()
study.optimize(func, n_trials=10)
check_study(study)
def test_optimize_trivial_in_memory_resume() -> None:
study = create_study()
study.optimize(func, n_trials=10)
study.optimize(func, n_trials=10)
check_study(study)
def test_optimize_trivial_rdb_resume_study() -> None:
study = create_study(storage="sqlite:///:memory:")
study.optimize(func, n_trials=10)
check_study(study)
def test_optimize_with_direction() -> None:
study = create_study(direction="minimize")
study.optimize(func, n_trials=10)
assert study.direction == StudyDirection.MINIMIZE
check_study(study)
study = create_study(direction="maximize")
study.optimize(func, n_trials=10)
assert study.direction == StudyDirection.MAXIMIZE
check_study(study)
with pytest.raises(ValueError):
create_study(direction="test")
@pytest.mark.parametrize("n_trials", (0, 1, 20))
@pytest.mark.parametrize("n_jobs", (1, 2, -1))
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_optimize_parallel(n_trials: int, n_jobs: int, storage_mode: str) -> None:
f = Func()
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
study.optimize(f, n_trials=n_trials, n_jobs=n_jobs)
assert f.n_calls == len(study.trials) == n_trials
check_study(study)
def test_optimize_with_thread_pool_executor() -> None:
def objective(t: Trial) -> float:
return t.suggest_float("x", -10, 10)
study = create_study()
with ThreadPoolExecutor(max_workers=5) as pool:
for _ in range(10):
pool.submit(study.optimize, objective, n_trials=10)
assert len(study.trials) == 100
@pytest.mark.parametrize("n_trials", (0, 1, 20, None))
@pytest.mark.parametrize("n_jobs", (1, 2, -1))
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_optimize_parallel_timeout(n_trials: int, n_jobs: int, storage_mode: str) -> None:
sleep_sec = 0.1
timeout_sec = 1.0
f = Func(sleep_sec=sleep_sec)
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
study.optimize(f, n_trials=n_trials, n_jobs=n_jobs, timeout=timeout_sec)
assert f.n_calls == len(study.trials)
if n_trials is not None:
assert f.n_calls <= n_trials
# A thread can process at most (timeout_sec / sleep_sec + 1) trials.
n_jobs_actual = n_jobs if n_jobs != -1 else multiprocessing.cpu_count()
max_calls = (timeout_sec / sleep_sec + 1) * n_jobs_actual
assert f.n_calls <= max_calls
check_study(study)
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_optimize_with_catch(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
# Test default exceptions.
with pytest.raises(ValueError):
study.optimize(fail_objective, n_trials=20)
assert len(study.trials) == 1
assert all(trial.state == TrialState.FAIL for trial in study.trials)
# Test acceptable exception.
study.optimize(fail_objective, n_trials=20, catch=(ValueError,))
assert len(study.trials) == 21
assert all(trial.state == TrialState.FAIL for trial in study.trials)
# Test trial with unacceptable exception.
with pytest.raises(ValueError):
study.optimize(fail_objective, n_trials=20, catch=(ArithmeticError,))
assert len(study.trials) == 22
assert all(trial.state == TrialState.FAIL for trial in study.trials)
@pytest.mark.parametrize("catch", [ValueError, (ValueError,), [ValueError], {ValueError}])
def test_optimize_with_catch_valid_type(catch: Any) -> None:
study = create_study()
study.optimize(fail_objective, n_trials=20, catch=catch)
@pytest.mark.parametrize("catch", [None, 1])
def test_optimize_with_catch_invalid_type(catch: Any) -> None:
study = create_study()
with pytest.raises(TypeError):
study.optimize(fail_objective, n_trials=20, catch=catch)
@pytest.mark.parametrize("n_jobs", (2, -1))
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_optimize_with_reseeding(n_jobs: int, storage_mode: str) -> None:
f = Func()
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
sampler = study.sampler
with patch.object(sampler, "reseed_rng", wraps=sampler.reseed_rng) as mock_object:
study.optimize(f, n_trials=1, n_jobs=2)
assert mock_object.call_count == 1
def test_call_another_study_optimize_in_optimize() -> None:
def inner_objective(t: Trial) -> float:
return t.suggest_float("x", -10, 10)
def objective(t: Trial) -> float:
inner_study = create_study()
inner_study.enqueue_trial({"x": t.suggest_int("initial_point", -10, 10)})
inner_study.optimize(inner_objective, n_trials=10)
return inner_study.best_value
study = create_study()
study.optimize(objective, n_trials=10)
assert len(study.trials) == 10
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_study_set_and_get_user_attrs(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
study.set_user_attr("dataset", "MNIST")
assert study.user_attrs["dataset"] == "MNIST"
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_trial_set_and_get_user_attrs(storage_mode: str) -> None:
def f(trial: Trial) -> float:
trial.set_user_attr("train_accuracy", 1)
assert trial.user_attrs["train_accuracy"] == 1
return 0.0
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
study.optimize(f, n_trials=1)
frozen_trial = study.trials[0]
assert frozen_trial.user_attrs["train_accuracy"] == 1
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
@pytest.mark.parametrize("include_best_trial", [True, False])
def test_get_all_study_summaries(storage_mode: str, include_best_trial: bool) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
study.optimize(func, n_trials=5)
summaries = get_all_study_summaries(study._storage, include_best_trial)
summary = [s for s in summaries if s._study_id == study._study_id][0]
assert summary.study_name == study.study_name
assert summary.n_trials == 5
if include_best_trial:
assert summary.best_trial is not None
else:
assert summary.best_trial is None
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_get_all_study_summaries_with_no_trials(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
summaries = get_all_study_summaries(study._storage)
summary = [s for s in summaries if s._study_id == study._study_id][0]
assert summary.study_name == study.study_name
assert summary.n_trials == 0
assert summary.datetime_start is None
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_get_all_study_names(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
n_studies = 5
studies = [create_study(storage=storage) for _ in range(n_studies)]
study_names = get_all_study_names(storage)
assert len(study_names) == n_studies
for study, study_name in zip(studies, study_names):
assert study_name == study.study_name
def test_study_pickle() -> None:
study_1 = create_study()
study_1.optimize(func, n_trials=10)
check_study(study_1)
assert len(study_1.trials) == 10
dumped_bytes = pickle.dumps(study_1)
study_2 = pickle.loads(dumped_bytes)
check_study(study_2)
assert len(study_2.trials) == 10
study_2.optimize(func, n_trials=10)
check_study(study_2)
assert len(study_2.trials) == 20
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_create_study(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
# Test creating a new study.
study = create_study(storage=storage, load_if_exists=False)
# Test `load_if_exists=True` with existing study.
create_study(study_name=study.study_name, storage=storage, load_if_exists=True)
with pytest.raises(DuplicatedStudyError):
create_study(study_name=study.study_name, storage=storage, load_if_exists=False)
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_load_study(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
if storage is None:
# :class:`~optuna.storages.InMemoryStorage` can not be used with `load_study` function.
return
study_name = str(uuid.uuid4())
with pytest.raises(KeyError):
# Test loading an unexisting study.
load_study(study_name=study_name, storage=storage)
# Create a new study.
created_study = create_study(study_name=study_name, storage=storage)
# Test loading an existing study.
loaded_study = load_study(study_name=study_name, storage=storage)
assert created_study._study_id == loaded_study._study_id
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_load_study_study_name_none(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
if storage is None:
# :class:`~optuna.storages.InMemoryStorage` can not be used with `load_study` function.
return
study_name = str(uuid.uuid4())
_ = create_study(study_name=study_name, storage=storage)
loaded_study = load_study(study_name=None, storage=storage)
assert loaded_study.study_name == study_name
study_name = str(uuid.uuid4())
_ = create_study(study_name=study_name, storage=storage)
# Ambiguous study.
with pytest.raises(ValueError):
load_study(study_name=None, storage=storage)
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_delete_study(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
# Test deleting a non-existing study.
with pytest.raises(KeyError):
delete_study(study_name="invalid-study-name", storage=storage)
# Test deleting an existing study.
study = create_study(storage=storage, load_if_exists=False)
delete_study(study_name=study.study_name, storage=storage)
# Test failed to delete the study which is already deleted.
with pytest.raises(KeyError):
delete_study(study_name=study.study_name, storage=storage)
@pytest.mark.parametrize("from_storage_mode", STORAGE_MODES)
@pytest.mark.parametrize("to_storage_mode", STORAGE_MODES)
def test_copy_study(from_storage_mode: str, to_storage_mode: str) -> None:
with StorageSupplier(from_storage_mode) as from_storage, StorageSupplier(
to_storage_mode
) as to_storage:
from_study = create_study(storage=from_storage, directions=["maximize", "minimize"])
from_study._storage.set_study_system_attr(from_study._study_id, "foo", "bar")
from_study.set_user_attr("baz", "qux")
from_study.optimize(
lambda t: (t.suggest_float("x0", 0, 1), t.suggest_float("x1", 0, 1)), n_trials=3
)
copy_study(
from_study_name=from_study.study_name,
from_storage=from_storage,
to_storage=to_storage,
)
to_study = load_study(study_name=from_study.study_name, storage=to_storage)
assert to_study.study_name == from_study.study_name
assert to_study.directions == from_study.directions
to_study_system_attrs = to_study._storage.get_study_system_attrs(to_study._study_id)
from_study_system_attrs = from_study._storage.get_study_system_attrs(from_study._study_id)
assert to_study_system_attrs == from_study_system_attrs
assert to_study.user_attrs == from_study.user_attrs
assert len(to_study.trials) == len(from_study.trials)
@pytest.mark.parametrize("from_storage_mode", STORAGE_MODES)
@pytest.mark.parametrize("to_storage_mode", STORAGE_MODES)
def test_copy_study_to_study_name(from_storage_mode: str, to_storage_mode: str) -> None:
with StorageSupplier(from_storage_mode) as from_storage, StorageSupplier(
to_storage_mode
) as to_storage:
from_study = create_study(study_name="foo", storage=from_storage)
_ = create_study(study_name="foo", storage=to_storage)
with pytest.raises(DuplicatedStudyError):
copy_study(
from_study_name=from_study.study_name,
from_storage=from_storage,
to_storage=to_storage,
)
copy_study(
from_study_name=from_study.study_name,
from_storage=from_storage,
to_storage=to_storage,
to_study_name="bar",
)
_ = load_study(study_name="bar", storage=to_storage)
def test_nested_optimization() -> None:
def objective(trial: Trial) -> float:
with pytest.raises(RuntimeError):
trial.study.optimize(lambda _: 0.0, n_trials=1)
return 1.0
study = create_study()
study.optimize(objective, n_trials=10, catch=())
def test_stop_in_objective() -> None:
# Test stopping the optimization: it should stop once the trial number reaches 4.
study = create_study()
study.optimize(stop_objective(4), n_trials=10)
assert len(study.trials) == 5
# Test calling `optimize` again: it should stop once the trial number reaches 11.
study.optimize(stop_objective(11), n_trials=10)
assert len(study.trials) == 12
def test_stop_in_callback() -> None:
def callback(study: Study, trial: FrozenTrial) -> None:
if trial.number >= 4:
study.stop()
# Test stopping the optimization inside a callback.
study = create_study()
study.optimize(lambda _: 1.0, n_trials=10, callbacks=[callback])
assert len(study.trials) == 5
def test_stop_n_jobs() -> None:
def callback(study: Study, trial: FrozenTrial) -> None:
if trial.number >= 4:
study.stop()
study = create_study()
study.optimize(lambda _: 1.0, n_trials=None, callbacks=[callback], n_jobs=2)
assert 5 <= len(study.trials) <= 6
def test_stop_outside_optimize() -> None:
# Test stopping outside the optimization: it should raise `RuntimeError`.
study = create_study()
with pytest.raises(RuntimeError):
study.stop()
# Test calling `optimize` after the `RuntimeError` is caught.
study.optimize(lambda _: 1.0, n_trials=1)
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_add_trial(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
trial = create_trial(value=0.8)
study.add_trial(trial)
assert len(study.trials) == 1
assert study.trials[0].number == 0
assert study.best_value == 0.8
def test_add_trial_invalid_values_length() -> None:
study = create_study()
trial = create_trial(values=[0, 0])
with pytest.raises(ValueError):
study.add_trial(trial)
study = create_study(directions=["minimize", "minimize"])
trial = create_trial(value=0)
with pytest.raises(ValueError):
study.add_trial(trial)
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_add_trials(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
study.add_trials([])
assert len(study.trials) == 0
trials = [create_trial(value=i) for i in range(3)]
study.add_trials(trials)
assert len(study.trials) == 3
for i, trial in enumerate(study.trials):
assert trial.number == i
assert trial.value == i
other_study = create_study(storage=storage)
other_study.add_trials(study.trials)
assert len(other_study.trials) == 3
for i, trial in enumerate(other_study.trials):
assert trial.number == i
assert trial.value == i
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_enqueue_trial_properly_sets_param_values(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
study.enqueue_trial(params={"x": -5, "y": 5})
study.enqueue_trial(params={"x": -1, "y": 0})
def objective(trial: Trial) -> float:
x = trial.suggest_int("x", -10, 10)
y = trial.suggest_int("y", -10, 10)
return x**2 + y**2
study.optimize(objective, n_trials=2)
t0 = study.trials[0]
assert t0.params["x"] == -5
assert t0.params["y"] == 5
t1 = study.trials[1]
assert t1.params["x"] == -1
assert t1.params["y"] == 0
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_enqueue_trial_with_unfixed_parameters(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
study.enqueue_trial(params={"x": -5})
def objective(trial: Trial) -> float:
x = trial.suggest_int("x", -10, 10)
y = trial.suggest_int("y", -10, 10)
return x**2 + y**2
study.optimize(objective, n_trials=1)
t = study.trials[0]
assert t.params["x"] == -5
assert -10 <= t.params["y"] <= 10
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_enqueue_trial_properly_sets_user_attr(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
study.enqueue_trial(params={"x": -5, "y": 5}, user_attrs={"is_optimal": False})
study.enqueue_trial(params={"x": 0, "y": 0}, user_attrs={"is_optimal": True})
def objective(trial: Trial) -> float:
x = trial.suggest_int("x", -10, 10)
y = trial.suggest_int("y", -10, 10)
return x**2 + y**2
study.optimize(objective, n_trials=2)
t0 = study.trials[0]
assert t0.user_attrs == {"is_optimal": False}
t1 = study.trials[1]
assert t1.user_attrs == {"is_optimal": True}
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_enqueue_trial_with_non_dict_parameters(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
with pytest.raises(TypeError):
study.enqueue_trial(params=[17, 12]) # type: ignore[arg-type]
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_enqueue_trial_with_out_of_range_parameters(storage_mode: str) -> None:
fixed_value = 11
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
study.enqueue_trial(params={"x": fixed_value})
def objective(trial: Trial) -> float:
return trial.suggest_int("x", -10, 10)
with pytest.warns(UserWarning):
study.optimize(objective, n_trials=1)
t = study.trials[0]
assert t.params["x"] == fixed_value
# Internal logic might differ when distribution contains a single element.
# Test it explicitly.
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
study.enqueue_trial(params={"x": fixed_value})
def objective(trial: Trial) -> float:
return trial.suggest_int("x", 1, 1) # Single element.
with pytest.warns(UserWarning):
study.optimize(objective, n_trials=1)
t = study.trials[0]
assert t.params["x"] == fixed_value
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_enqueue_trial_skips_existing_finished(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
def objective(trial: Trial) -> float:
x = trial.suggest_int("x", -10, 10)
y = trial.suggest_int("y", -10, 10)
return x**2 + y**2
study.enqueue_trial({"x": -5, "y": 5})
study.optimize(objective, n_trials=1)
t0 = study.trials[0]
assert t0.params["x"] == -5
assert t0.params["y"] == 5
before_enqueue = len(study.trials)
study.enqueue_trial({"x": -5, "y": 5}, skip_if_exists=True)
after_enqueue = len(study.trials)
assert before_enqueue == after_enqueue
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_enqueue_trial_skips_existing_waiting(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
def objective(trial: Trial) -> float:
x = trial.suggest_int("x", -10, 10)
y = trial.suggest_int("y", -10, 10)
return x**2 + y**2
study.enqueue_trial({"x": -5, "y": 5})
before_enqueue = len(study.trials)
study.enqueue_trial({"x": -5, "y": 5}, skip_if_exists=True)
after_enqueue = len(study.trials)
assert before_enqueue == after_enqueue
study.optimize(objective, n_trials=1)
t0 = study.trials[0]
assert t0.params["x"] == -5
assert t0.params["y"] == 5
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
@pytest.mark.parametrize(
"new_params", [{"x": -5, "y": 5, "z": 5}, {"x": -5}, {"x": -5, "z": 5}, {"x": -5, "y": 6}]
)
def test_enqueue_trial_skip_existing_allows_unfixed(
storage_mode: str, new_params: dict[str, int]
) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
assert len(study.trials) == 0
def objective(trial: Trial) -> float:
x = trial.suggest_int("x", -10, 10)
y = trial.suggest_int("y", -10, 10)
if trial.number == 1:
z = trial.suggest_int("z", -10, 10)
return x**2 + y**2 + z**2
return x**2 + y**2
study.enqueue_trial({"x": -5, "y": 5})
study.optimize(objective, n_trials=1)
t0 = study.trials[0]
assert t0.params["x"] == -5
assert t0.params["y"] == 5
study.enqueue_trial(new_params, skip_if_exists=True)
study.optimize(objective, n_trials=1)
unfixed_params = {"x", "y", "z"} - set(new_params)
t1 = study.trials[1]
assert all(t1.params[k] == new_params[k] for k in new_params)
assert all(-10 <= t1.params[k] <= 10 for k in unfixed_params)
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
@pytest.mark.parametrize(
"param", ["foo", 1, 1.1, 1e17, 1e-17, float("inf"), float("-inf"), float("nan"), None]
)
def test_enqueue_trial_skip_existing_handles_common_types(storage_mode: str, param: Any) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
study.enqueue_trial({"x": param})
before_enqueue = len(study.trials)
study.enqueue_trial({"x": param}, skip_if_exists=True)
after_enqueue = len(study.trials)
assert before_enqueue == after_enqueue
@patch("optuna.study._optimize.gc.collect")
def test_optimize_with_gc(collect_mock: Mock) -> None:
study = create_study()
study.optimize(func, n_trials=10, gc_after_trial=True)
check_study(study)
assert collect_mock.call_count == 10
@patch("optuna.study._optimize.gc.collect")
def test_optimize_without_gc(collect_mock: Mock) -> None:
study = create_study()
study.optimize(func, n_trials=10, gc_after_trial=False)
check_study(study)
assert collect_mock.call_count == 0
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_optimize_with_progbar(n_jobs: int, capsys: _pytest.capture.CaptureFixture) -> None:
study = create_study()
study.optimize(lambda _: 1.0, n_trials=10, n_jobs=n_jobs, show_progress_bar=True)
_, err = capsys.readouterr()
# Search for progress bar elements in stderr.
assert "Best trial: 0" in err
assert "Best value: 1" in err
assert "10/10" in err
if platform.system() != "Windows":
# Skip this assertion because the progress bar sometimes stops at 99% on Windows.
assert "100%" in err
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_optimize_without_progbar(n_jobs: int, capsys: _pytest.capture.CaptureFixture) -> None:
study = create_study()
study.optimize(lambda _: 1.0, n_trials=10, n_jobs=n_jobs)
_, err = capsys.readouterr()
assert "Best trial: 0" not in err
assert "Best value: 1" not in err
assert "10/10" not in err
if platform.system() != "Windows":
# Skip this assertion because the progress bar sometimes stops at 99% on Windows.
assert "100%" not in err
def test_optimize_with_progbar_timeout(capsys: _pytest.capture.CaptureFixture) -> None:
study = create_study()
study.optimize(lambda _: 1.0, timeout=2.0, show_progress_bar=True)
_, err = capsys.readouterr()
assert "Best trial: 0" in err
assert "Best value: 1" in err
assert "00:02/00:02" in err
if platform.system() != "Windows":
# Skip this assertion because the progress bar sometimes stops at 99% on Windows.
assert "100%" in err
def test_optimize_with_progbar_parallel_timeout(capsys: _pytest.capture.CaptureFixture) -> None:
study = create_study()
with pytest.warns(
UserWarning, match="The timeout-based progress bar is not supported with n_jobs != 1."
):
study.optimize(lambda _: 1.0, timeout=2.0, show_progress_bar=True, n_jobs=2)
_, err = capsys.readouterr()
# Testing for a character that forms progress bar borders.
assert "|" not in err
@pytest.mark.parametrize(
"timeout,expected",
[
(59.0, "/00:59"),
(60.0, "/01:00"),
(60.0 * 60, "/1:00:00"),
(60.0 * 60 * 24, "/24:00:00"),
(60.0 * 60 * 24 * 10, "/240:00:00"),
],
)
def test_optimize_with_progbar_timeout_formats(
timeout: float, expected: str, capsys: _pytest.capture.CaptureFixture
) -> None:
study = create_study()
study.optimize(stop_objective(5), timeout=timeout, show_progress_bar=True)
_, err = capsys.readouterr()
assert expected in err
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_optimize_without_progbar_timeout(
n_jobs: int, capsys: _pytest.capture.CaptureFixture
) -> None:
study = create_study()
study.optimize(lambda _: 1.0, timeout=2.0, n_jobs=n_jobs)
_, err = capsys.readouterr()
assert "Best trial: 0" not in err
assert "Best value: 1.0" not in err
assert "00:02/00:02" not in err
if platform.system() != "Windows":
# Skip this assertion because the progress bar sometimes stops at 99% on Windows.
assert "100%" not in err
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_optimize_progbar_n_trials_prioritized(
n_jobs: int, capsys: _pytest.capture.CaptureFixture
) -> None:
study = create_study()
study.optimize(lambda _: 1.0, n_trials=10, n_jobs=n_jobs, timeout=10.0, show_progress_bar=True)
_, err = capsys.readouterr()
assert "Best trial: 0" in err
assert "Best value: 1" in err
assert "10/10" in err
if platform.system() != "Windows":
# Skip this assertion because the progress bar sometimes stops at 99% on Windows.
assert "100%" in err
assert "it" in err
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_optimize_without_progbar_n_trials_prioritized(
n_jobs: int, capsys: _pytest.capture.CaptureFixture
) -> None:
study = create_study()
study.optimize(lambda _: 1.0, n_trials=10, n_jobs=n_jobs, timeout=10.0)
_, err = capsys.readouterr()
# Testing for a character that forms progress bar borders.
assert "|" not in err
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_optimize_progbar_no_constraints(
n_jobs: int, capsys: _pytest.capture.CaptureFixture
) -> None:
study = create_study()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
study.optimize(stop_objective(5), n_jobs=n_jobs, show_progress_bar=True)
_, err = capsys.readouterr()
# We can't simply test if stderr is empty, since we're not sure
# what else could write to it. Instead, we are testing for a character
# that forms progress bar borders.
assert "|" not in err
@pytest.mark.parametrize("n_jobs", [1, 2])
def test_optimize_without_progbar_no_constraints(
n_jobs: int, capsys: _pytest.capture.CaptureFixture
) -> None:
study = create_study()
study.optimize(stop_objective(5), n_jobs=n_jobs)
_, err = capsys.readouterr()
# Testing for a character that forms progress bar borders.
assert "|" not in err
@pytest.mark.parametrize("n_jobs", [1, 4])
def test_callbacks(n_jobs: int) -> None:
lock = threading.Lock()
def with_lock(f: CallbackFuncType) -> CallbackFuncType:
def callback(study: Study, trial: FrozenTrial) -> None:
with lock:
f(study, trial)
return callback
study = create_study()
def objective(trial: Trial) -> float:
return trial.suggest_int("x", 1, 1)
# Empty callback list.
study.optimize(objective, callbacks=[], n_trials=10, n_jobs=n_jobs)
# One callback.
values = []
callbacks = [with_lock(lambda study, trial: values.append(trial.value))]
study.optimize(objective, callbacks=callbacks, n_trials=10, n_jobs=n_jobs)
assert values == [1] * 10
# Two callbacks.
values = []
params = []
callbacks = [
with_lock(lambda study, trial: values.append(trial.value)),
with_lock(lambda study, trial: params.append(trial.params)),
]
study.optimize(objective, callbacks=callbacks, n_trials=10, n_jobs=n_jobs)
assert values == [1] * 10
assert params == [{"x": 1}] * 10
# If a trial is failed with an exception and the exception is caught by the study,
# callbacks are invoked.
states = []
callbacks = [with_lock(lambda study, trial: states.append(trial.state))]
study.optimize(
lambda t: 1 / 0,
callbacks=callbacks,
n_trials=10,
n_jobs=n_jobs,
catch=(ZeroDivisionError,),
)
assert states == [TrialState.FAIL] * 10
# If a trial is failed with an exception and the exception isn't caught by the study,
# callbacks aren't invoked.
states = []
callbacks = [with_lock(lambda study, trial: states.append(trial.state))]
with pytest.raises(ZeroDivisionError):
study.optimize(lambda t: 1 / 0, callbacks=callbacks, n_trials=10, n_jobs=n_jobs, catch=())
assert states == []
def test_optimize_infinite_budget_progbar() -> None:
def terminate_study(study: Study, trial: FrozenTrial) -> None:
study.stop()
study = create_study()
with pytest.warns(UserWarning):
study.optimize(
func, n_trials=None, timeout=None, show_progress_bar=True, callbacks=[terminate_study]
)
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_get_trials(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
study.optimize(lambda t: t.suggest_int("x", 1, 5), n_trials=5)
with patch("copy.deepcopy", wraps=copy.deepcopy) as mock_object:
trials0 = study.get_trials(deepcopy=False)
assert mock_object.call_count == 0
assert len(trials0) == 5
trials1 = study.get_trials(deepcopy=True)
assert mock_object.call_count > 0
assert trials0 == trials1
# `study.trials` is equivalent to `study.get_trials(deepcopy=True)`.
old_count = mock_object.call_count
trials2 = study.trials
assert mock_object.call_count > old_count
assert trials0 == trials2
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_get_trials_state_option(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
def objective(trial: Trial) -> float:
if trial.number == 0:
return 0.0 # TrialState.COMPLETE.
elif trial.number == 1:
return 0.0 # TrialState.COMPLETE.
elif trial.number == 2:
raise TrialPruned # TrialState.PRUNED.
else:
assert False
study.optimize(objective, n_trials=3)
trials = study.get_trials(states=None)
assert len(trials) == 3
trials = study.get_trials(states=(TrialState.COMPLETE,))
assert len(trials) == 2
assert all(t.state == TrialState.COMPLETE for t in trials)
trials = study.get_trials(states=(TrialState.COMPLETE, TrialState.PRUNED))
assert len(trials) == 3
assert all(t.state in (TrialState.COMPLETE, TrialState.PRUNED) for t in trials)
trials = study.get_trials(states=())
assert len(trials) == 0
other_states = [
s for s in list(TrialState) if s != TrialState.COMPLETE and s != TrialState.PRUNED
]
for s in other_states:
trials = study.get_trials(states=(s,))
assert len(trials) == 0
def test_log_completed_trial(capsys: _pytest.capture.CaptureFixture) -> None:
# We need to reconstruct our default handler to properly capture stderr.
logging._reset_library_root_logger()
logging.set_verbosity(logging.INFO)
study = create_study()
study.optimize(lambda _: 1.0, n_trials=1)
_, err = capsys.readouterr()
assert "Trial 0" in err
logging.set_verbosity(logging.WARNING)
study.optimize(lambda _: 1.0, n_trials=1)
_, err = capsys.readouterr()
assert "Trial 1" not in err
logging.set_verbosity(logging.DEBUG)
study.optimize(lambda _: 1.0, n_trials=1)
_, err = capsys.readouterr()
assert "Trial 2" in err
def test_log_completed_trial_skip_storage_access() -> None:
study = create_study()
# Create a trial to retrieve it as the `study.best_trial`.
study.optimize(lambda _: 0.0, n_trials=1)
frozen_trial = study.best_trial
storage = study._storage
with patch.object(storage, "get_best_trial", wraps=storage.get_best_trial) as mock_object:
study._log_completed_trial(frozen_trial)
assert mock_object.call_count == 1
logging.set_verbosity(logging.WARNING)
with patch.object(storage, "get_best_trial", wraps=storage.get_best_trial) as mock_object:
study._log_completed_trial(frozen_trial)
assert mock_object.call_count == 0
logging.set_verbosity(logging.DEBUG)
with patch.object(storage, "get_best_trial", wraps=storage.get_best_trial) as mock_object:
study._log_completed_trial(frozen_trial)
assert mock_object.call_count == 1
def test_create_study_with_multi_objectives() -> None:
study = create_study(directions=["maximize"])
assert study.direction == StudyDirection.MAXIMIZE
assert not study._is_multi_objective()
study = create_study(directions=["maximize", "minimize"])
assert study.directions == [StudyDirection.MAXIMIZE, StudyDirection.MINIMIZE]
assert study._is_multi_objective()
with pytest.raises(ValueError):
# Empty `direction` isn't allowed.
_ = create_study(directions=[])
with pytest.raises(ValueError):
_ = create_study(direction="minimize", directions=["maximize"])
with pytest.raises(ValueError):
_ = create_study(direction="minimize", directions=[])
def test_create_study_with_direction_object() -> None:
study = create_study(direction=StudyDirection.MAXIMIZE)
assert study.direction == StudyDirection.MAXIMIZE
study = create_study(directions=[StudyDirection.MAXIMIZE, StudyDirection.MINIMIZE])
assert study.directions == [StudyDirection.MAXIMIZE, StudyDirection.MINIMIZE]
@pytest.mark.parametrize("n_objectives", [2, 3])
def test_optimize_with_multi_objectives(n_objectives: int) -> None:
directions = ["minimize" for _ in range(n_objectives)]
study = create_study(directions=directions)
def objective(trial: Trial) -> list[float]:
return [trial.suggest_float("v{}".format(i), 0, 5) for i in range(n_objectives)]
study.optimize(objective, n_trials=10)
assert len(study.trials) == 10
for trial in study.trials:
assert trial.values
assert len(trial.values) == n_objectives
@pytest.mark.parametrize("direction", [StudyDirection.MINIMIZE, StudyDirection.MAXIMIZE])
def test_best_trial_constrained_optimization(direction: StudyDirection) -> None:
study = create_study(direction=direction)
storage = study._storage
with pytest.raises(ValueError):
# No trials.
study.best_trial
trial = study.ask()
storage.set_trial_system_attr(trial._trial_id, _CONSTRAINTS_KEY, [1])
study.tell(trial, 0)
with pytest.raises(ValueError):
# No feasible trials.
study.best_trial
trial = study.ask()
storage.set_trial_system_attr(trial._trial_id, _CONSTRAINTS_KEY, [0])
study.tell(trial, 0)
assert study.best_trial.number == 1
trial = study.ask()
storage.set_trial_system_attr(trial._trial_id, _CONSTRAINTS_KEY, [1])
study.tell(trial, -1 if direction == StudyDirection.MINIMIZE else 1)
assert study.best_trial.number == 1
trial = study.ask()
storage.set_trial_system_attr(trial._trial_id, _CONSTRAINTS_KEY, [0])
study.tell(trial, -1 if direction == StudyDirection.MINIMIZE else 1)
assert study.best_trial.number == 3
def test_best_trials() -> None:
study = create_study(directions=["minimize", "maximize"])
study.optimize(lambda t: [2, 2], n_trials=1)
study.optimize(lambda t: [1, 1], n_trials=1)
study.optimize(lambda t: [3, 1], n_trials=1)
assert {tuple(t.values) for t in study.best_trials} == {(1, 1), (2, 2)}
def test_best_trials_constrained_optimization() -> None:
study = create_study(directions=["minimize", "maximize"])
storage = study._storage
assert study.best_trials == []
trial = study.ask()
storage.set_trial_system_attr(trial._trial_id, _CONSTRAINTS_KEY, [1])
study.tell(trial, [0, 0])
assert study.best_trials == []
trial = study.ask()
storage.set_trial_system_attr(trial._trial_id, _CONSTRAINTS_KEY, [0])
study.tell(trial, [0, 0])
assert study.best_trials == [study.trials[1]]
trial = study.ask()
storage.set_trial_system_attr(trial._trial_id, _CONSTRAINTS_KEY, [1])
study.tell(trial, [-1, 1])
assert study.best_trials == [study.trials[1]]
trial = study.ask()
storage.set_trial_system_attr(trial._trial_id, _CONSTRAINTS_KEY, [0])
study.tell(trial, [1, 1])
assert {t.number for t in study.best_trials} == {1, 3}
def test_wrong_n_objectives() -> None:
n_objectives = 2
directions = ["minimize" for _ in range(n_objectives)]
study = create_study(directions=directions)
def objective(trial: Trial) -> list[float]:
return [trial.suggest_float("v{}".format(i), 0, 5) for i in range(n_objectives + 1)]
study.optimize(objective, n_trials=10)
for trial in study.trials:
assert trial.state is TrialState.FAIL
def test_ask() -> None:
study = create_study()
trial = study.ask()
assert isinstance(trial, Trial)
def test_ask_enqueue_trial() -> None:
study = create_study()
study.enqueue_trial({"x": 0.5}, user_attrs={"memo": "this is memo"})
trial = study.ask()
assert trial.suggest_float("x", 0, 1) == 0.5
assert trial.user_attrs == {"memo": "this is memo"}
def test_ask_fixed_search_space() -> None:
fixed_distributions = {
"x": distributions.FloatDistribution(0, 1),
"y": distributions.CategoricalDistribution(["bacon", "spam"]),
}
study = create_study()
trial = study.ask(fixed_distributions=fixed_distributions)
params = trial.params
assert len(trial.params) == 2
assert 0 <= params["x"] < 1
assert params["y"] in ["bacon", "spam"]
# Deprecated distributions are internally converted to corresponding distributions.
@pytest.mark.filterwarnings("ignore::FutureWarning")
def test_ask_distribution_conversion() -> None:
fixed_distributions = {
"ud": distributions.UniformDistribution(low=0, high=10),
"dud": distributions.DiscreteUniformDistribution(low=0, high=10, q=2),
"lud": distributions.LogUniformDistribution(low=1, high=10),
"id": distributions.IntUniformDistribution(low=0, high=10),
"idd": distributions.IntUniformDistribution(low=0, high=10, step=2),
"ild": distributions.IntLogUniformDistribution(low=1, high=10),
}
study = create_study()
with pytest.warns(
FutureWarning,
match="See https://github.com/optuna/optuna/issues/2941",
) as record:
trial = study.ask(fixed_distributions=fixed_distributions)
assert len(record) == 6
expected_distributions = {
"ud": distributions.FloatDistribution(low=0, high=10, log=False, step=None),
"dud": distributions.FloatDistribution(low=0, high=10, log=False, step=2),
"lud": distributions.FloatDistribution(low=1, high=10, log=True, step=None),
"id": distributions.IntDistribution(low=0, high=10, log=False, step=1),
"idd": distributions.IntDistribution(low=0, high=10, log=False, step=2),
"ild": distributions.IntDistribution(low=1, high=10, log=True, step=1),
}
assert trial.distributions == expected_distributions
# It confirms that ask doesn't convert non-deprecated distributions.
def test_ask_distribution_conversion_noop() -> None:
fixed_distributions = {
"ud": distributions.FloatDistribution(low=0, high=10, log=False, step=None),
"dud": distributions.FloatDistribution(low=0, high=10, log=False, step=2),
"lud": distributions.FloatDistribution(low=1, high=10, log=True, step=None),
"id": distributions.IntDistribution(low=0, high=10, log=False, step=1),
"idd": distributions.IntDistribution(low=0, high=10, log=False, step=2),
"ild": distributions.IntDistribution(low=1, high=10, log=True, step=1),
"cd": distributions.CategoricalDistribution(choices=["a", "b", "c"]),
}
study = create_study()
trial = study.ask(fixed_distributions=fixed_distributions)
# Check fixed_distributions doesn't change.
assert trial.distributions == fixed_distributions
def test_tell() -> None:
study = create_study()
assert len(study.trials) == 0
trial = study.ask()
assert len(study.trials) == 1
assert len(study.get_trials(states=(TrialState.COMPLETE,))) == 0
study.tell(trial, 1.0)
assert len(study.trials) == 1
assert len(study.get_trials(states=(TrialState.COMPLETE,))) == 1
study.tell(study.ask(), [1.0])
assert len(study.trials) == 2
assert len(study.get_trials(states=(TrialState.COMPLETE,))) == 2
# `trial` could be int.
study.tell(study.ask().number, 1.0)
assert len(study.trials) == 3
assert len(study.get_trials(states=(TrialState.COMPLETE,))) == 3
# Inf is supported as values.
study.tell(study.ask(), float("inf"))
assert len(study.trials) == 4
assert len(study.get_trials(states=(TrialState.COMPLETE,))) == 4
study.tell(study.ask(), state=TrialState.PRUNED)
assert len(study.trials) == 5
assert len(study.get_trials(states=(TrialState.PRUNED,))) == 1
study.tell(study.ask(), state=TrialState.FAIL)
assert len(study.trials) == 6
assert len(study.get_trials(states=(TrialState.FAIL,))) == 1
def test_tell_pruned() -> None:
study = create_study()
study.tell(study.ask(), state=TrialState.PRUNED)
assert study.trials[-1].value is None
assert study.trials[-1].state == TrialState.PRUNED
# Store the last intermediates as value.
trial = study.ask()
trial.report(2.0, step=1)
study.tell(trial, state=TrialState.PRUNED)
assert study.trials[-1].value == 2.0
assert study.trials[-1].state == TrialState.PRUNED
# Inf is also supported as a value.
trial = study.ask()
trial.report(float("inf"), step=1)
study.tell(trial, state=TrialState.PRUNED)
assert study.trials[-1].value == float("inf")
assert study.trials[-1].state == TrialState.PRUNED
# NaN is not supported as a value.
trial = study.ask()
trial.report(float("nan"), step=1)
study.tell(trial, state=TrialState.PRUNED)
assert study.trials[-1].value is None
assert study.trials[-1].state == TrialState.PRUNED
def test_tell_automatically_fail() -> None:
study = create_study()
# Check invalid values, e.g. str cannot be cast to float.
with pytest.warns(UserWarning):
study.tell(study.ask(), "a") # type: ignore
assert len(study.trials) == 1
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
# Check invalid values, e.g. `None` that cannot be cast to float.
with pytest.warns(UserWarning):
study.tell(study.ask(), None)
assert len(study.trials) == 2
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
# Check number of values.
with pytest.warns(UserWarning):
study.tell(study.ask(), [])
assert len(study.trials) == 3
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
# Check wrong number of values, e.g. two values for single direction.
with pytest.warns(UserWarning):
study.tell(study.ask(), [1.0, 2.0])
assert len(study.trials) == 4
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
# Both state and values are not specified.
with pytest.warns(UserWarning):
study.tell(study.ask())
assert len(study.trials) == 5
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
# Nan is not supported.
with pytest.warns(UserWarning):
study.tell(study.ask(), float("nan"))
assert len(study.trials) == 6
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
def test_tell_multi_objective() -> None:
study = create_study(directions=["minimize", "maximize"])
study.tell(study.ask(), [1.0, 2.0])
assert len(study.trials) == 1
def test_tell_multi_objective_automatically_fail() -> None:
# Number of values doesn't match the length of directions.
study = create_study(directions=["minimize", "maximize"])
with pytest.warns(UserWarning):
study.tell(study.ask(), [])
assert len(study.trials) == 1
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
with pytest.warns(UserWarning):
study.tell(study.ask(), [1.0])
assert len(study.trials) == 2
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
with pytest.warns(UserWarning):
study.tell(study.ask(), [1.0, 2.0, 3.0])
assert len(study.trials) == 3
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
with pytest.warns(UserWarning):
study.tell(study.ask(), [1.0, None]) # type: ignore
assert len(study.trials) == 4
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
with pytest.warns(UserWarning):
study.tell(study.ask(), [None, None]) # type: ignore
assert len(study.trials) == 5
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
with pytest.warns(UserWarning):
study.tell(study.ask(), 1.0)
assert len(study.trials) == 6
assert study.trials[-1].state == TrialState.FAIL
assert study.trials[-1].values is None
def test_tell_invalid() -> None:
study = create_study()
# Missing values for completions.
with pytest.raises(ValueError):
study.tell(study.ask(), state=TrialState.COMPLETE)
# Invalid values for completions.
with pytest.raises(ValueError):
study.tell(study.ask(), "a", state=TrialState.COMPLETE) # type: ignore
with pytest.raises(ValueError):
study.tell(study.ask(), None, state=TrialState.COMPLETE)
with pytest.raises(ValueError):
study.tell(study.ask(), [], state=TrialState.COMPLETE)
with pytest.raises(ValueError):
study.tell(study.ask(), [1.0, 2.0], state=TrialState.COMPLETE)
with pytest.raises(ValueError):
study.tell(study.ask(), float("nan"), state=TrialState.COMPLETE)
# `state` must be None or finished state.
with pytest.raises(ValueError):
study.tell(study.ask(), state=TrialState.RUNNING)
# `state` must be None or finished state.
with pytest.raises(ValueError):
study.tell(study.ask(), state=TrialState.WAITING)
# `value` must be None for `TrialState.PRUNED`.
with pytest.raises(ValueError):
study.tell(study.ask(), values=1, state=TrialState.PRUNED)
# `value` must be None for `TrialState.FAIL`.
with pytest.raises(ValueError):
study.tell(study.ask(), values=1, state=TrialState.FAIL)
# Trial that has not been asked for cannot be told.
with pytest.raises(ValueError):
study.tell(study.ask().number + 1, 1.0)
# Waiting trial cannot be told.
with pytest.raises(ValueError):
study.enqueue_trial({})
study.tell(study.trials[-1].number, 1.0)
# It must be Trial or int for trial.
with pytest.raises(TypeError):
study.tell("1", 1.0) # type: ignore
def test_tell_duplicate_tell() -> None:
study = create_study()
trial = study.ask()
study.tell(trial, 1.0)
# Should not panic when passthrough is enabled.
study.tell(trial, 1.0, skip_if_finished=True)
with pytest.raises(ValueError):
study.tell(trial, 1.0, skip_if_finished=False)
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_enqueued_trial_datetime_start(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
def objective(trial: Trial) -> float:
time.sleep(1)
x = trial.suggest_int("x", -10, 10)
return x
study.enqueue_trial(params={"x": 1})
assert study.trials[0].datetime_start is None
study.optimize(objective, n_trials=1)
assert study.trials[0].datetime_start is not None
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_study_summary_datetime_start_calculation(storage_mode: str) -> None:
with StorageSupplier(storage_mode) as storage:
def objective(trial: Trial) -> float:
x = trial.suggest_int("x", -10, 10)
return x
# StudySummary datetime_start tests.
study = create_study(storage=storage)
study.enqueue_trial(params={"x": 1})
# Study summary with only enqueued trials should have null datetime_start.
summaries = get_all_study_summaries(study._storage, include_best_trial=True)
assert summaries[0].datetime_start is None
# Study summary with completed trials should have nonnull datetime_start.
study.optimize(objective, n_trials=1)
study.enqueue_trial(params={"x": 1}, skip_if_exists=False)
summaries = get_all_study_summaries(study._storage, include_best_trial=True)
assert summaries[0].datetime_start is not None
def _process_tell(study: Study, trial: Trial | int, values: float) -> None:
study.tell(trial, values)
def test_tell_from_another_process() -> None:
pool = multiprocessing.Pool()
with StorageSupplier("sqlite") as storage:
# Create a study and ask for a new trial.
study = create_study(storage=storage)
trial0 = study.ask()
# Test normal behaviour.
pool.starmap(_process_tell, [(study, trial0, 1.2)])
assert len(study.trials) == 1
assert study.best_trial.state == TrialState.COMPLETE
assert study.best_value == 1.2
# Test study.tell using trial number.
trial = study.ask()
pool.starmap(_process_tell, [(study, trial.number, 1.5)])
assert len(study.trials) == 2
assert study.best_trial.state == TrialState.COMPLETE
assert study.best_value == 1.2
# Should fail because the trial0 is already finished.
with pytest.raises(ValueError):
pool.starmap(_process_tell, [(study, trial0, 1.2)])
@pytest.mark.parametrize("storage_mode", STORAGE_MODES)
def test_pop_waiting_trial_thread_safe(storage_mode: str) -> None:
if "sqlite" == storage_mode or "cached_sqlite" == storage_mode:
pytest.skip("study._pop_waiting_trial is not thread-safe on SQLite3")
num_enqueued = 10
with StorageSupplier(storage_mode) as storage:
study = create_study(storage=storage)
for i in range(num_enqueued):
study.enqueue_trial({"i": i})
trial_id_set = set()
with ThreadPoolExecutor(10) as pool:
futures = []
for i in range(num_enqueued):
future = pool.submit(study._pop_waiting_trial_id)
futures.append(future)
for future in as_completed(futures):
trial_id_set.add(future.result())
assert len(trial_id_set) == num_enqueued
def test_set_metric_names() -> None:
metric_names = ["v0", "v1"]
study = create_study(directions=["minimize", "minimize"])
study.set_metric_names(metric_names)
got_metric_names = study._storage.get_study_system_attrs(study._study_id).get(
_SYSTEM_ATTR_METRIC_NAMES
)
assert got_metric_names is not None
assert metric_names == got_metric_names
def test_set_metric_names_experimental_warning() -> None:
study = create_study()
with pytest.warns(ExperimentalWarning):
study.set_metric_names(["v0"])
def test_set_invalid_metric_names() -> None:
metric_names = ["v0", "v1", "v2"]
study = create_study(directions=["minimize", "minimize"])
with pytest.raises(ValueError):
study.set_metric_names(metric_names)
def test_get_metric_names() -> None:
study = create_study()
assert study.metric_names is None
study.set_metric_names(["v0"])
assert study.metric_names == ["v0"]
study.set_metric_names(["v1"])
assert study.metric_names == ["v1"]
|