1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
import datetime
import logging
from textwrap import dedent
from typing import cast
import numpy as np
import pytest
from pytest import LogCaptureFixture
import optuna
from optuna.distributions import FloatDistribution
from optuna.study import create_study
from optuna.testing.visualization import prepare_study_with_trials
from optuna.trial import create_trial
from optuna.trial import FrozenTrial
from optuna.trial import TrialState
from optuna.visualization import is_available
from optuna.visualization._utils import _check_plot_args
from optuna.visualization._utils import _filter_nonfinite
from optuna.visualization._utils import _is_log_scale
from optuna.visualization._utils import _make_hovertext
def test_is_log_scale() -> None:
study = create_study()
study.add_trial(
create_trial(
value=0.0,
params={"param_linear": 1.0},
distributions={"param_linear": FloatDistribution(0.0, 3.0)},
)
)
study.add_trial(
create_trial(
value=2.0,
params={"param_linear": 2.0, "param_log": 1e-3},
distributions={
"param_linear": FloatDistribution(0.0, 3.0),
"param_log": FloatDistribution(1e-5, 1.0, log=True),
},
)
)
assert _is_log_scale(study.trials, "param_log")
assert not _is_log_scale(study.trials, "param_linear")
def _is_plotly_available() -> bool:
try:
import plotly # NOQA
available = True
except Exception:
available = False
return available
def test_visualization_is_available() -> None:
assert is_available() == _is_plotly_available()
def test_check_plot_args() -> None:
study = create_study(directions=["minimize", "minimize"])
with pytest.raises(ValueError):
_check_plot_args(study, None, "Objective Value")
with pytest.warns(UserWarning):
_check_plot_args(study, lambda t: cast(float, t.value), "Objective Value")
@pytest.mark.parametrize("value, expected", [(float("inf"), 1), (-float("inf"), 1), (0.0, 2)])
def test_filter_inf_trials(value: float, expected: int) -> None:
study = create_study()
study.add_trial(
create_trial(
value=0.0,
params={"x": 1.0},
distributions={"x": FloatDistribution(0.0, 1.0)},
)
)
study.add_trial(
create_trial(
value=value,
params={"x": 0.0},
distributions={"x": FloatDistribution(0.0, 1.0)},
)
)
trials = _filter_nonfinite(study.get_trials(states=(TrialState.COMPLETE,)))
assert len(trials) == expected
assert all([t.number == num for t, num in zip(trials, range(expected))])
@pytest.mark.parametrize(
"value,objective_selected,expected",
[
(float("inf"), 0, 2),
(-float("inf"), 0, 2),
(0.0, 0, 3),
(float("inf"), 1, 1),
(-float("inf"), 1, 1),
(0.0, 1, 3),
],
)
def test_filter_inf_trials_multiobjective(
value: float, objective_selected: int, expected: int
) -> None:
study = create_study(directions=["minimize", "maximize"])
study.add_trial(
create_trial(
values=[0.0, 1.0],
params={"x": 1.0},
distributions={"x": FloatDistribution(0.0, 1.0)},
)
)
study.add_trial(
create_trial(
values=[0.0, value],
params={"x": 0.0},
distributions={"x": FloatDistribution(0.0, 1.0)},
)
)
study.add_trial(
create_trial(
values=[value, value],
params={"x": 0.0},
distributions={"x": FloatDistribution(0.0, 1.0)},
)
)
def _target(t: FrozenTrial) -> float:
return t.values[objective_selected]
trials = _filter_nonfinite(study.get_trials(states=(TrialState.COMPLETE,)), target=_target)
assert len(trials) == expected
assert all([t.number == num for t, num in zip(trials, range(expected))])
@pytest.mark.parametrize("with_message", [True, False])
def test_filter_inf_trials_message(caplog: LogCaptureFixture, with_message: bool) -> None:
study = create_study()
study.add_trial(
create_trial(
value=0.0,
params={"x": 1.0},
distributions={"x": FloatDistribution(0.0, 1.0)},
)
)
study.add_trial(
create_trial(
value=float("inf"),
params={"x": 0.0},
distributions={"x": FloatDistribution(0.0, 1.0)},
)
)
optuna.logging.enable_propagation()
_filter_nonfinite(study.get_trials(states=(TrialState.COMPLETE,)), with_message=with_message)
msg = "Trial 1 is omitted in visualization because its objective value is inf or nan."
if with_message:
assert msg in caplog.text
n_filtered_as_inf = 0
for record in caplog.records:
if record.msg == msg:
assert record.levelno == logging.WARNING
n_filtered_as_inf += 1
assert n_filtered_as_inf == 1
else:
assert msg not in caplog.text
@pytest.mark.filterwarnings("ignore::UserWarning")
def test_filter_nonfinite_with_invalid_target() -> None:
study = prepare_study_with_trials()
trials = study.get_trials(states=(TrialState.COMPLETE,))
with pytest.raises(ValueError):
_filter_nonfinite(trials, target=lambda t: "invalid target") # type: ignore
def test_make_hovertext() -> None:
trial_no_user_attrs = FrozenTrial(
number=0,
trial_id=0,
state=TrialState.COMPLETE,
value=0.2,
datetime_start=datetime.datetime.now(),
datetime_complete=datetime.datetime.now(),
params={"x": 10},
distributions={"x": FloatDistribution(5, 12)},
user_attrs={},
system_attrs={},
intermediate_values={},
)
assert (
_make_hovertext(trial_no_user_attrs)
== dedent(
"""
{
"number": 0,
"values": [
0.2
],
"params": {
"x": 10
}
}
"""
)
.strip()
.replace("\n", "<br>")
)
trial_user_attrs_valid_json = FrozenTrial(
number=0,
trial_id=0,
state=TrialState.COMPLETE,
value=0.2,
datetime_start=datetime.datetime.now(),
datetime_complete=datetime.datetime.now(),
params={"x": 10},
distributions={"x": FloatDistribution(5, 12)},
user_attrs={"a": 42, "b": 3.14},
system_attrs={},
intermediate_values={},
)
assert (
_make_hovertext(trial_user_attrs_valid_json)
== dedent(
"""
{
"number": 0,
"values": [
0.2
],
"params": {
"x": 10
},
"user_attrs": {
"a": 42,
"b": 3.14
}
}
"""
)
.strip()
.replace("\n", "<br>")
)
trial_user_attrs_invalid_json = FrozenTrial(
number=0,
trial_id=0,
state=TrialState.COMPLETE,
value=0.2,
datetime_start=datetime.datetime.now(),
datetime_complete=datetime.datetime.now(),
params={"x": 10},
distributions={"x": FloatDistribution(5, 12)},
user_attrs={"a": 42, "b": 3.14, "c": np.zeros(1), "d": np.nan},
system_attrs={},
intermediate_values={},
)
assert (
_make_hovertext(trial_user_attrs_invalid_json)
== dedent(
"""
{
"number": 0,
"values": [
0.2
],
"params": {
"x": 10
},
"user_attrs": {
"a": 42,
"b": 3.14,
"c": "[0.]",
"d": NaN
}
}
"""
)
.strip()
.replace("\n", "<br>")
)
|