1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
"""
.. _visualization:
Quick Visualization for Hyperparameter Optimization Analysis
============================================================
Optuna provides various visualization features in :mod:`optuna.visualization` to analyze optimization results visually.
Note that this tutorial requires `Plotly <https://plotly.com/python>`__ to be installed:
.. code-block:: console
$ pip install plotly
# Required if you are running this tutorial in Jupyter Notebook.
$ pip install nbformat
If you prefer to use `Matplotlib <https://matplotlib.org/>`__ instead of Plotly, please run the following command:
.. code-block:: console
$ pip install matplotlib
This tutorial walks you through this module by visualizing the optimization results of PyTorch model for FashionMNIST dataset.
For visualizing multi-objective optimization (i.e., the usage of :func:`optuna.visualization.plot_pareto_front`),
please refer to the tutorial of :ref:`multi_objective`.
.. note::
By using `Optuna Dashboard <https://github.com/optuna/optuna-dashboard>`__, you can also check the optimization history,
hyperparameter importances, hyperparameter relationships, etc. in graphs and tables.
Please make your study persistent using :ref:`RDB backend <rdb>` and execute following commands to run Optuna Dashboard.
.. code-block:: console
$ pip install optuna-dashboard
$ optuna-dashboard sqlite:///example-study.db
Please check out `the GitHub repository <https://github.com/optuna/optuna-dashboard>`__ for more details.
.. list-table::
:header-rows: 1
* - Manage Studies
- Visualize with Interactive Graphs
* - .. image:: https://user-images.githubusercontent.com/5564044/205545958-305f2354-c7cd-4687-be2f-9e46e7401838.gif
- .. image:: https://user-images.githubusercontent.com/5564044/205545965-278cd7f4-da7d-4e2e-ac31-6d81b106cada.gif
"""
###################################################################################################
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import optuna
# You can use Matplotlib instead of Plotly for visualization by simply replacing `optuna.visualization` with
# `optuna.visualization.matplotlib` in the following examples.
from optuna.visualization import plot_contour
from optuna.visualization import plot_edf
from optuna.visualization import plot_intermediate_values
from optuna.visualization import plot_optimization_history
from optuna.visualization import plot_parallel_coordinate
from optuna.visualization import plot_param_importances
from optuna.visualization import plot_rank
from optuna.visualization import plot_slice
from optuna.visualization import plot_timeline
SEED = 13
torch.manual_seed(SEED)
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
DIR = ".."
BATCHSIZE = 128
N_TRAIN_EXAMPLES = BATCHSIZE * 30
N_VALID_EXAMPLES = BATCHSIZE * 10
def define_model(trial):
n_layers = trial.suggest_int("n_layers", 1, 2)
layers = []
in_features = 28 * 28
for i in range(n_layers):
out_features = trial.suggest_int("n_units_l{}".format(i), 64, 512)
layers.append(nn.Linear(in_features, out_features))
layers.append(nn.ReLU())
in_features = out_features
layers.append(nn.Linear(in_features, 10))
layers.append(nn.LogSoftmax(dim=1))
return nn.Sequential(*layers)
# Defines training and evaluation.
def train_model(model, optimizer, train_loader):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE)
optimizer.zero_grad()
F.nll_loss(model(data), target).backward()
optimizer.step()
def eval_model(model, valid_loader):
model.eval()
correct = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(valid_loader):
data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE)
pred = model(data).argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
accuracy = correct / N_VALID_EXAMPLES
return accuracy
###################################################################################################
# Define the objective function.
def objective(trial):
train_dataset = torchvision.datasets.FashionMNIST(
DIR, train=True, download=True, transform=torchvision.transforms.ToTensor()
)
train_loader = torch.utils.data.DataLoader(
torch.utils.data.Subset(train_dataset, list(range(N_TRAIN_EXAMPLES))),
batch_size=BATCHSIZE,
shuffle=True,
)
val_dataset = torchvision.datasets.FashionMNIST(
DIR, train=False, transform=torchvision.transforms.ToTensor()
)
val_loader = torch.utils.data.DataLoader(
torch.utils.data.Subset(val_dataset, list(range(N_VALID_EXAMPLES))),
batch_size=BATCHSIZE,
shuffle=True,
)
model = define_model(trial).to(DEVICE)
optimizer = torch.optim.Adam(
model.parameters(), trial.suggest_float("lr", 1e-5, 1e-1, log=True)
)
for epoch in range(10):
train_model(model, optimizer, train_loader)
val_accuracy = eval_model(model, val_loader)
trial.report(val_accuracy, epoch)
if trial.should_prune():
raise optuna.exceptions.TrialPruned()
return val_accuracy
###################################################################################################
study = optuna.create_study(
direction="maximize",
sampler=optuna.samplers.TPESampler(seed=SEED),
pruner=optuna.pruners.MedianPruner(),
)
study.optimize(objective, n_trials=30, timeout=300)
###################################################################################################
# Plot functions
# --------------
# Visualize the optimization history. See :func:`~optuna.visualization.plot_optimization_history` for the details.
plot_optimization_history(study)
###################################################################################################
# Visualize the learning curves of the trials. See :func:`~optuna.visualization.plot_intermediate_values` for the details.
plot_intermediate_values(study)
###################################################################################################
# Visualize high-dimensional parameter relationships. See :func:`~optuna.visualization.plot_parallel_coordinate` for the details.
plot_parallel_coordinate(study)
###################################################################################################
# Select parameters to visualize.
plot_parallel_coordinate(study, params=["lr", "n_layers"])
###################################################################################################
# Visualize hyperparameter relationships. See :func:`~optuna.visualization.plot_contour` for the details.
plot_contour(study)
###################################################################################################
# Select parameters to visualize.
plot_contour(study, params=["lr", "n_layers"])
###################################################################################################
# Visualize individual hyperparameters as slice plot. See :func:`~optuna.visualization.plot_slice` for the details.
plot_slice(study)
###################################################################################################
# Select parameters to visualize.
plot_slice(study, params=["lr", "n_layers"])
###################################################################################################
# Visualize parameter importances. See :func:`~optuna.visualization.plot_param_importances` for the details.
plot_param_importances(study)
###################################################################################################
# Learn which hyperparameters are affecting the trial duration with hyperparameter importance.
optuna.visualization.plot_param_importances(
study, target=lambda t: t.duration.total_seconds(), target_name="duration"
)
###################################################################################################
# Visualize empirical distribution function. See :func:`~optuna.visualization.plot_edf` for the details.
plot_edf(study)
###################################################################################################
# Visualize parameter relations with scatter plots colored by objective values. See :func:`~optuna.visualization.plot_rank` for the details.
plot_rank(study)
###################################################################################################
# Visualize the optimization timeline of performed trials. See :func:`~optuna.visualization.plot_timeline` for the details.
plot_timeline(study)
###################################################################################################
# Customize generated figures
# ---------------------------
# In :mod:`optuna.visualization` and :mod:`optuna.visualization.matplotlib`, a function returns an editable figure object:
# :class:`plotly.graph_objects.Figure` or :class:`matplotlib.axes.Axes` depending on the module.
# This allows users to modify the generated figure for their demand by using API of the visualization library.
# The following example replaces figure titles drawn by Plotly-based :func:`~optuna.visualization.plot_intermediate_values` manually.
fig = plot_intermediate_values(study)
fig.update_layout(
title="Hyperparameter optimization for FashionMNIST classification",
xaxis_title="Epoch",
yaxis_title="Validation Accuracy",
)
|