1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276
|
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE rfc SYSTEM 'rfc2629.dtd'>
<?rfc toc="yes" symrefs="yes" ?>
<rfc ipr="trust200902" category="std" docName="draft-ietf-codec-opus-14">
<front>
<title abbrev="Interactive Audio Codec">Definition of the Opus Audio Codec</title>
<author initials="JM" surname="Valin" fullname="Jean-Marc Valin">
<organization>Mozilla Corporation</organization>
<address>
<postal>
<street>650 Castro Street</street>
<city>Mountain View</city>
<region>CA</region>
<code>94041</code>
<country>USA</country>
</postal>
<phone>+1 650 903-0800</phone>
<email>jmvalin@jmvalin.ca</email>
</address>
</author>
<author initials="K." surname="Vos" fullname="Koen Vos">
<organization>Skype Technologies S.A.</organization>
<address>
<postal>
<street>Soder Malarstrand 43</street>
<city>Stockholm</city>
<region></region>
<code>11825</code>
<country>SE</country>
</postal>
<phone>+46 73 085 7619</phone>
<email>koen.vos@skype.net</email>
</address>
</author>
<author initials="T." surname="Terriberry" fullname="Timothy B. Terriberry">
<organization>Mozilla Corporation</organization>
<address>
<postal>
<street>650 Castro Street</street>
<city>Mountain View</city>
<region>CA</region>
<code>94041</code>
<country>USA</country>
</postal>
<phone>+1 650 903-0800</phone>
<email>tterriberry@mozilla.com</email>
</address>
</author>
<date day="17" month="May" year="2012" />
<area>General</area>
<workgroup></workgroup>
<abstract>
<t>
This document defines the Opus interactive speech and audio codec.
Opus is designed to handle a wide range of interactive audio applications,
including Voice over IP, videoconferencing, in-game chat, and even live,
distributed music performances.
It scales from low bitrate narrowband speech at 6 kb/s to very high quality
stereo music at 510 kb/s.
Opus uses both linear prediction (LP) and the Modified Discrete Cosine
Transform (MDCT) to achieve good compression of both speech and music.
</t>
</abstract>
</front>
<middle>
<section anchor="introduction" title="Introduction">
<t>
The Opus codec is a real-time interactive audio codec designed to meet the requirements
described in <xref target="requirements"></xref>.
It is composed of a linear
prediction (LP)-based <xref target="LPC"/> layer and a Modified Discrete Cosine Transform
(MDCT)-based <xref target="MDCT"/> layer.
The main idea behind using two layers is that in speech, linear prediction
techniques (such as Code-Excited Linear Prediction, or CELP) code low frequencies more efficiently than transform
(e.g., MDCT) domain techniques, while the situation is reversed for music and
higher speech frequencies.
Thus a codec with both layers available can operate over a wider range than
either one alone and, by combining them, achieve better quality than either
one individually.
</t>
<t>
The primary normative part of this specification is provided by the source code
in <xref target="ref-implementation"></xref>.
Only the decoder portion of this software is normative, though a
significant amount of code is shared by both the encoder and decoder.
<xref target="conformance"/> provides a decoder conformance test.
The decoder contains a great deal of integer and fixed-point arithmetic which
needs to be performed exactly, including all rounding considerations, so any
useful specification requires domain-specific symbolic language to adequately
define these operations.
Additionally, any
conflict between the symbolic representation and the included reference
implementation must be resolved. For the practical reasons of compatibility and
testability it would be advantageous to give the reference implementation
priority in any disagreement. The C language is also one of the most
widely understood human-readable symbolic representations for machine
behavior.
For these reasons this RFC uses the reference implementation as the sole
symbolic representation of the codec.
</t>
<t>While the symbolic representation is unambiguous and complete it is not
always the easiest way to understand the codec's operation. For this reason
this document also describes significant parts of the codec in English and
takes the opportunity to explain the rationale behind many of the more
surprising elements of the design. These descriptions are intended to be
accurate and informative, but the limitations of common English sometimes
result in ambiguity, so it is expected that the reader will always read
them alongside the symbolic representation. Numerous references to the
implementation are provided for this purpose. The descriptions sometimes
differ from the reference in ordering or through mathematical simplification
wherever such deviation makes an explanation easier to understand.
For example, the right shift and left shift operations in the reference
implementation are often described using division and multiplication in the text.
In general, the text is focused on the "what" and "why" while the symbolic
representation most clearly provides the "how".
</t>
<section anchor="notation" title="Notation and Conventions">
<t>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 <xref target="rfc2119"></xref>.
</t>
<t>
Various operations in the codec require bit-exact fixed-point behavior, even
when writing a floating point implementation.
The notation "Q<n>", where n is an integer, denotes the number of binary
digits to the right of the decimal point in a fixed-point number.
For example, a signed Q14 value in a 16-bit word can represent values from
-2.0 to 1.99993896484375, inclusive.
This notation is for informational purposes only.
Arithmetic, when described, always operates on the underlying integer.
E.g., the text will explicitly indicate any shifts required after a
multiplication.
</t>
<t>
Expressions, where included in the text, follow C operator rules and
precedence, with the exception that the syntax "x**y" indicates x raised to
the power y.
The text also makes use of the following functions:
</t>
<section anchor="min" toc="exclude" title="min(x,y)">
<t>
The smallest of two values x and y.
</t>
</section>
<section anchor="max" toc="exclude" title="max(x,y)">
<t>
The largest of two values x and y.
</t>
</section>
<section anchor="clamp" toc="exclude" title="clamp(lo,x,hi)">
<figure align="center">
<artwork align="center"><![CDATA[
clamp(lo,x,hi) = max(lo,min(x,hi))
]]></artwork>
</figure>
<t>
With this definition, if lo > hi, the lower bound is the one that
is enforced.
</t>
</section>
<section anchor="sign" toc="exclude" title="sign(x)">
<t>
The sign of x, i.e.,
<figure align="center">
<artwork align="center"><![CDATA[
( -1, x < 0 ,
sign(x) = < 0, x == 0 ,
( 1, x > 0 .
]]></artwork>
</figure>
</t>
</section>
<section anchor="abs" toc="exclude" title="abs(x)">
<t>
The absolute value of x, i.e.,
<figure align="center">
<artwork align="center"><![CDATA[
abs(x) = sign(x)*x .
]]></artwork>
</figure>
</t>
</section>
<section anchor="floor" toc="exclude" title="floor(f)">
<t>
The largest integer z such that z <= f.
</t>
</section>
<section anchor="ceil" toc="exclude" title="ceil(f)">
<t>
The smallest integer z such that z >= f.
</t>
</section>
<section anchor="round" toc="exclude" title="round(f)">
<t>
The integer z nearest to f, with ties rounded towards negative infinity,
i.e.,
<figure align="center">
<artwork align="center"><![CDATA[
round(f) = ceil(f - 0.5) .
]]></artwork>
</figure>
</t>
</section>
<section anchor="log2" toc="exclude" title="log2(f)">
<t>
The base-two logarithm of f.
</t>
</section>
<section anchor="ilog" toc="exclude" title="ilog(n)">
<t>
The minimum number of bits required to store a positive integer n in two's
complement notation, or 0 for a non-positive integer n.
<figure align="center">
<artwork align="center"><![CDATA[
( 0, n <= 0,
ilog(n) = <
( floor(log2(n))+1, n > 0
]]></artwork>
</figure>
Examples:
<list style="symbols">
<t>ilog(-1) = 0</t>
<t>ilog(0) = 0</t>
<t>ilog(1) = 1</t>
<t>ilog(2) = 2</t>
<t>ilog(3) = 2</t>
<t>ilog(4) = 3</t>
<t>ilog(7) = 3</t>
</list>
</t>
</section>
</section>
</section>
<section anchor="overview" title="Opus Codec Overview">
<t>
The Opus codec scales from 6 kb/s narrowband mono speech to 510 kb/s
fullband stereo music, with algorithmic delays ranging from 5 ms to
65.2 ms.
At any given time, either the LP layer, the MDCT layer, or both, may be active.
It can seamlessly switch between all of its various operating modes, giving it
a great deal of flexibility to adapt to varying content and network
conditions without renegotiating the current session.
The codec allows input and output of various audio bandwidths, defined as
follows:
</t>
<texttable anchor="audio-bandwidth">
<ttcol>Abbreviation</ttcol>
<ttcol align="right">Audio Bandwidth</ttcol>
<ttcol align="right">Sample Rate (Effective)</ttcol>
<c>NB (narrowband)</c> <c>4 kHz</c> <c>8 kHz</c>
<c>MB (medium-band)</c> <c>6 kHz</c> <c>12 kHz</c>
<c>WB (wideband)</c> <c>8 kHz</c> <c>16 kHz</c>
<c>SWB (super-wideband)</c> <c>12 kHz</c> <c>24 kHz</c>
<c>FB (fullband)</c> <c>20 kHz (*)</c> <c>48 kHz</c>
</texttable>
<t>
(*) Although the sampling theorem allows a bandwidth as large as half the
sampling rate, Opus never codes audio above 20 kHz, as that is the
generally accepted upper limit of human hearing.
</t>
<t>
Opus defines super-wideband (SWB) with an effective sample rate of 24 kHz,
unlike some other audio coding standards that use 32 kHz.
This was chosen for a number of reasons.
The band layout in the MDCT layer naturally allows skipping coefficients for
frequencies over 12 kHz, but does not allow cleanly dropping just those
frequencies over 16 kHz.
A sample rate of 24 kHz also makes resampling in the MDCT layer easier,
as 24 evenly divides 48, and when 24 kHz is sufficient, it can save
computation in other processing, such as Acoustic Echo Cancellation (AEC).
Experimental changes to the band layout to allow a 16 kHz cutoff
(32 kHz effective sample rate) showed potential quality degradations at
other sample rates, and at typical bitrates the number of bits saved by using
such a cutoff instead of coding in fullband (FB) mode is very small.
Therefore, if an application wishes to process a signal sampled at 32 kHz,
it should just use FB.
</t>
<t>
The LP layer is based on the SILK codec
<xref target="SILK"></xref>.
It supports NB, MB, or WB audio and frame sizes from 10 ms to 60 ms,
and requires an additional 5 ms look-ahead for noise shaping estimation.
A small additional delay (up to 1.5 ms) may be required for sampling rate
conversion.
Like Vorbis <xref target='Vorbis-website'/> and many other modern codecs, SILK is inherently designed for
variable-bitrate (VBR) coding, though the encoder can also produce
constant-bitrate (CBR) streams.
The version of SILK used in Opus is substantially modified from, and not
compatible with, the stand-alone SILK codec previously deployed by Skype.
This document does not serve to define that format, but those interested in the
original SILK codec should see <xref target="SILK"/> instead.
</t>
<t>
The MDCT layer is based on the CELT codec <xref target="CELT"></xref>.
It supports NB, WB, SWB, or FB audio and frame sizes from 2.5 ms to
20 ms, and requires an additional 2.5 ms look-ahead due to the
overlapping MDCT windows.
The CELT codec is inherently designed for CBR coding, but unlike many CBR
codecs it is not limited to a set of predetermined rates.
It internally allocates bits to exactly fill any given target budget, and an
encoder can produce a VBR stream by varying the target on a per-frame basis.
The MDCT layer is not used for speech when the audio bandwidth is WB or less,
as it is not useful there.
On the other hand, non-speech signals are not always adequately coded using
linear prediction, so for music only the MDCT layer should be used.
</t>
<t>
A "Hybrid" mode allows the use of both layers simultaneously with a frame size
of 10 or 20 ms and a SWB or FB audio bandwidth.
The LP layer codes the low frequencies by resampling the signal down to WB.
The MDCT layer follows, coding the high frequency portion of the signal.
The cutoff between the two lies at 8 kHz, the maximum WB audio bandwidth.
In the MDCT layer, all bands below 8 kHz are discarded, so there is no
coding redundancy between the two layers.
</t>
<t>
The sample rate (in contrast to the actual audio bandwidth) can be chosen
independently on the encoder and decoder side, e.g., a fullband signal can be
decoded as wideband, or vice versa.
This approach ensures a sender and receiver can always interoperate, regardless
of the capabilities of their actual audio hardware.
Internally, the LP layer always operates at a sample rate of twice the audio
bandwidth, up to a maximum of 16 kHz, which it continues to use for SWB
and FB.
The decoder simply resamples its output to support different sample rates.
The MDCT layer always operates internally at a sample rate of 48 kHz.
Since all the supported sample rates evenly divide this rate, and since the
the decoder may easily zero out the high frequency portion of the spectrum in
the frequency domain, it can simply decimate the MDCT layer output to achieve
the other supported sample rates very cheaply.
</t>
<t>
After conversion to the common, desired output sample rate, the decoder simply
adds the output from the two layers together.
To compensate for the different look-ahead required by each layer, the CELT
encoder input is delayed by an additional 2.7 ms.
This ensures that low frequencies and high frequencies arrive at the same time.
This extra delay may be reduced by an encoder by using less look-ahead for noise
shaping or using a simpler resampler in the LP layer, but this will reduce
quality.
However, the base 2.5 ms look-ahead in the CELT layer cannot be reduced in
the encoder because it is needed for the MDCT overlap, whose size is fixed by
the decoder.
</t>
<t>
Both layers use the same entropy coder, avoiding any waste from "padding bits"
between them.
The hybrid approach makes it easy to support both CBR and VBR coding.
Although the LP layer is VBR, the bit allocation of the MDCT layer can produce
a final stream that is CBR by using all the bits left unused by the LP layer.
</t>
<section title="Control Parameters">
<t>
The Opus codec includes a number of control parameters which can be changed dynamically during
regular operation of the codec, without interrupting the audio stream from the encoder to the decoder.
These parameters only affect the encoder since any impact they have on the bit-stream is signaled
in-band such that a decoder can decode any Opus stream without any out-of-band signaling. Any Opus
implementation can add or modify these control parameters without affecting interoperability. The most
important encoder control parameters in the reference encoder are listed below.
</t>
<section title="Bitrate" toc="exlcude">
<t>
Opus supports all bitrates from 6 kb/s to 510 kb/s. All other parameters being
equal, higher bitrate results in higher quality. For a frame size of 20 ms, these
are the bitrate "sweet spots" for Opus in various configurations:
<list style="symbols">
<t>8-12 kb/s for NB speech,</t>
<t>16-20 kb/s for WB speech,</t>
<t>28-40 kb/s for FB speech,</t>
<t>48-64 kb/s for FB mono music, and</t>
<t>64-128 kb/s for FB stereo music.</t>
</list>
</t>
</section>
<section title="Number of Channels (Mono/Stereo)" toc="exlcude">
<t>
Opus can transmit either mono or stereo frames within a single stream.
When decoding a mono frame in a stereo decoder, the left and right channels are
identical, and when decoding a stereo frame in a mono decoder, the mono output
is the average of the left and right channels.
In some cases, it is desirable to encode a stereo input stream in mono (e.g.,
because the bitrate is too low to encode stereo with sufficient quality).
The number of channels encoded can be selected in real-time, but by default the
reference encoder attempts to make the best decision possible given the
current bitrate.
</t>
</section>
<section title="Audio Bandwidth" toc="exlcude">
<t>
The audio bandwidths supported by Opus are listed in
<xref target="audio-bandwidth"/>.
Just like for the number of channels, any decoder can decode audio encoded at
any bandwidth.
For example, any Opus decoder operating at 8 kHz can decode a FB Opus
frame, and any Opus decoder operating at 48 kHz can decode a NB frame.
Similarly, the reference encoder can take a 48 kHz input signal and
encode it as NB.
The higher the audio bandwidth, the higher the required bitrate to achieve
acceptable quality.
The audio bandwidth can be explicitly specified in real-time, but by default
the reference encoder attempts to make the best bandwidth decision possible
given the current bitrate.
</t>
</section>
<section title="Frame Duration" toc="exlcude">
<t>
Opus can encode frames of 2.5, 5, 10, 20, 40 or 60 ms.
It can also combine multiple frames into packets of up to 120 ms.
For real-time applications, sending fewer packets per second reduces the
bitrate, since it reduces the overhead from IP, UDP, and RTP headers.
However, it increases latency and sensitivity to packet losses, as losing one
packet constitutes a loss of a bigger chunk of audio.
Increasing the frame duration also slightly improves coding efficiency, but the
gain becomes small for frame sizes above 20 ms.
For this reason, 20 ms frames are a good choice for most applications.
</t>
</section>
<section title="Complexity" toc="exlcude">
<t>
There are various aspects of the Opus encoding process where trade-offs
can be made between CPU complexity and quality/bitrate. In the reference
encoder, the complexity is selected using an integer from 0 to 10, where
0 is the lowest complexity and 10 is the highest. Examples of
computations for which such trade-offs may occur are:
<list style="symbols">
<t>The order of the pitch analysis whitening filter <xref target="Whitening"/>,</t>
<t>The order of the short-term noise shaping filter,</t>
<t>The number of states in delayed decision quantization of the
residual signal, and</t>
<t>The use of certain bit-stream features such as variable time-frequency
resolution and the pitch post-filter.</t>
</list>
</t>
</section>
<section title="Packet Loss Resilience" toc="exlcude">
<t>
Audio codecs often exploit inter-frame correlations to reduce the
bitrate at a cost in error propagation: after losing one packet
several packets need to be received before the decoder is able to
accurately reconstruct the speech signal. The extent to which Opus
exploits inter-frame dependencies can be adjusted on the fly to
choose a trade-off between bitrate and amount of error propagation.
</t>
</section>
<section title="Forward Error Correction (FEC)" toc="exlcude">
<t>
Another mechanism providing robustness against packet loss is the in-band
Forward Error Correction (FEC). Packets that are determined to
contain perceptually important speech information, such as onsets or
transients, are encoded again at a lower bitrate and this re-encoded
information is added to a subsequent packet.
</t>
</section>
<section title="Constant/Variable Bitrate" toc="exlcude">
<t>
Opus is more efficient when operating with variable bitrate (VBR), which is
the default. However, in some (rare) applications, constant bitrate (CBR)
is required. There are two main reasons to operate in CBR mode:
<list style="symbols">
<t>When the transport only supports a fixed size for each compressed frame</t>
<t>When encryption is used for an audio stream that is either highly constrained
(e.g. yes/no, recorded prompts) or highly sensitive <xref target="SRTP-VBR"></xref> </t>
</list>
When low-latency transmission is required over a relatively slow connection, then
constrained VBR can also be used. This uses VBR in a way that simulates a
"bit reservoir" and is equivalent to what MP3 (MPEG 1, Layer 3) and
AAC (Advanced Audio Coding) call CBR (i.e., not true
CBR due to the bit reservoir).
</t>
</section>
<section title="Discontinuous Transmission (DTX)" toc="exlcude">
<t>
Discontinuous Transmission (DTX) reduces the bitrate during silence
or background noise. When DTX is enabled, only one frame is encoded
every 400 milliseconds.
</t>
</section>
</section>
</section>
<section anchor="modes" title="Internal Framing">
<t>
The Opus encoder produces "packets", which are each a contiguous set of bytes
meant to be transmitted as a single unit.
The packets described here do not include such things as IP, UDP, or RTP
headers which are normally found in a transport-layer packet.
A single packet may contain multiple audio frames, so long as they share a
common set of parameters, including the operating mode, audio bandwidth, frame
size, and channel count (mono vs. stereo).
This section describes the possible combinations of these parameters and the
internal framing used to pack multiple frames into a single packet.
This framing is not self-delimiting.
Instead, it assumes that a higher layer (such as UDP or RTP <xref target='RFC3550'/>
or Ogg <xref target='RFC3533'/> or Matroska <xref target='Matroska-website'/>)
will communicate the length, in bytes, of the packet, and it uses this
information to reduce the framing overhead in the packet itself.
A decoder implementation MUST support the framing described in this section.
An alternative, self-delimiting variant of the framing is described in
<xref target="self-delimiting-framing"/>.
Support for that variant is OPTIONAL.
</t>
<t>
All bit diagrams in this document number the bits so that bit 0 is the most
significant bit of the first byte, and bit 7 is the least significant.
Bit 8 is thus the most significant bit of the second byte, etc.
Well-formed Opus packets obey certain requirements, marked [R1] through [R7]
below.
These are summarized in <xref target="malformed-packets"/> along with
appropriate means of handling malformed packets.
</t>
<section anchor="toc_byte" title="The TOC Byte">
<t anchor="R1">
A well-formed Opus packet MUST contain at least one byte [R1].
This byte forms a table-of-contents (TOC) header that signals which of the
various modes and configurations a given packet uses.
It is composed of a configuration number, "config", a stereo flag, "s", and a
frame count code, "c", arranged as illustrated in
<xref target="toc_byte_fig"/>.
A description of each of these fields follows.
</t>
<figure anchor="toc_byte_fig" title="The TOC Byte">
<artwork align="center"><![CDATA[
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| config |s| c |
+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
The top five bits of the TOC byte, labeled "config", encode one of 32 possible
configurations of operating mode, audio bandwidth, and frame size.
As described, the LP (SILK) layer and MDCT (CELT) layer can be combined in three possible
operating modes:
<list style="numbers">
<t>A SILK-only mode for use in low bitrate connections with an audio bandwidth
of WB or less,</t>
<t>A Hybrid (SILK+CELT) mode for SWB or FB speech at medium bitrates, and</t>
<t>A CELT-only mode for very low delay speech transmission as well as music
transmission (NB to FB).</t>
</list>
The 32 possible configurations each identify which one of these operating modes
the packet uses, as well as the audio bandwidth and the frame size.
<xref target="config_bits"/> lists the parameters for each configuration.
</t>
<texttable anchor="config_bits" title="TOC Byte Configuration Parameters">
<ttcol>Configuration Number(s)</ttcol>
<ttcol>Mode</ttcol>
<ttcol>Bandwidth</ttcol>
<ttcol>Frame Sizes</ttcol>
<c>0...3</c> <c>SILK-only</c> <c>NB</c> <c>10, 20, 40, 60 ms</c>
<c>4...7</c> <c>SILK-only</c> <c>MB</c> <c>10, 20, 40, 60 ms</c>
<c>8...11</c> <c>SILK-only</c> <c>WB</c> <c>10, 20, 40, 60 ms</c>
<c>12...13</c> <c>Hybrid</c> <c>SWB</c> <c>10, 20 ms</c>
<c>14...15</c> <c>Hybrid</c> <c>FB</c> <c>10, 20 ms</c>
<c>16...19</c> <c>CELT-only</c> <c>NB</c> <c>2.5, 5, 10, 20 ms</c>
<c>20...23</c> <c>CELT-only</c> <c>WB</c> <c>2.5, 5, 10, 20 ms</c>
<c>24...27</c> <c>CELT-only</c> <c>SWB</c> <c>2.5, 5, 10, 20 ms</c>
<c>28...31</c> <c>CELT-only</c> <c>FB</c> <c>2.5, 5, 10, 20 ms</c>
</texttable>
<t>
The configuration numbers in each range (e.g., 0...3 for NB SILK-only)
correspond to the various choices of frame size, in the same order.
For example, configuration 0 has a 10 ms frame size and configuration 3
has a 60 ms frame size.
</t>
<t>
One additional bit, labeled "s", signals mono vs. stereo, with 0 indicating
mono and 1 indicating stereo.
</t>
<t>
The remaining two bits of the TOC byte, labeled "c", code the number of frames
per packet (codes 0 to 3) as follows:
<list style="symbols">
<t>0: 1 frame in the packet</t>
<t>1: 2 frames in the packet, each with equal compressed size</t>
<t>2: 2 frames in the packet, with different compressed sizes</t>
<t>3: an arbitrary number of frames in the packet</t>
</list>
This draft refers to a packet as a code 0 packet, code 1 packet, etc., based on
the value of "c".
</t>
</section>
<section title="Frame Packing">
<t>
This section describes how frames are packed according to each possible value
of "c" in the TOC byte.
</t>
<section anchor="frame-length-coding" title="Frame Length Coding">
<t>
When a packet contains multiple VBR frames (i.e., code 2 or 3), the compressed
length of one or more of these frames is indicated with a one- or two-byte
sequence, with the meaning of the first byte as follows:
<list style="symbols">
<t>0: No frame (discontinuous transmission (DTX) or lost packet)</t>
<t>1...251: Length of the frame in bytes</t>
<t>252...255: A second byte is needed. The total length is (second_byte*4)+first_byte</t>
</list>
</t>
<t>
The special length 0 indicates that no frame is available, either because it
was dropped during transmission by some intermediary or because the encoder
chose not to transmit it.
Any Opus frame in any mode MAY have a length of 0.
</t>
<t>
The maximum representable length is 255*4+255=1275 bytes.
For 20 ms frames, this represents a bitrate of 510 kb/s, which is
approximately the highest useful rate for lossily compressed fullband stereo
music.
Beyond this point, lossless codecs are more appropriate.
It is also roughly the maximum useful rate of the MDCT layer, as shortly
thereafter quality no longer improves with additional bits due to limitations
on the codebook sizes.
</t>
<t anchor="R2">
No length is transmitted for the last frame in a VBR packet, or for any of the
frames in a CBR packet, as it can be inferred from the total size of the
packet and the size of all other data in the packet.
However, the length of any individual frame MUST NOT exceed
1275 bytes [R2], to allow for repacketization by gateways,
conference bridges, or other software.
</t>
</section>
<section title="Code 0: One Frame in the Packet">
<t>
For code 0 packets, the TOC byte is immediately followed by N-1 bytes
of compressed data for a single frame (where N is the size of the packet),
as illustrated in <xref target="code0_packet"/>.
</t>
<figure anchor="code0_packet" title="A Code 0 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|0|0| |
+-+-+-+-+-+-+-+-+ |
| Compressed frame 1 (N-1 bytes)... :
: |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
<section title="Code 1: Two Frames in the Packet, Each with Equal Compressed Size">
<t anchor="R3">
For code 1 packets, the TOC byte is immediately followed by the
(N-1)/2 bytes of compressed data for the first frame, followed by
(N-1)/2 bytes of compressed data for the second frame, as illustrated in
<xref target="code1_packet"/>.
The number of payload bytes available for compressed data, N-1, MUST be even
for all code 1 packets [R3].
</t>
<figure anchor="code1_packet" title="A Code 1 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|0|1| |
+-+-+-+-+-+-+-+-+ :
| Compressed frame 1 ((N-1)/2 bytes)... |
: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 2 ((N-1)/2 bytes)... |
: +-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
<section title="Code 2: Two Frames in the Packet, with Different Compressed Sizes">
<t anchor="R4">
For code 2 packets, the TOC byte is followed by a one- or two-byte sequence
indicating the length of the first frame (marked N1 in <xref target='code2_packet'/>),
followed by N1 bytes of compressed data for the first frame.
The remaining N-N1-2 or N-N1-3 bytes are the compressed data for the
second frame.
This is illustrated in <xref target="code2_packet"/>.
A code 2 packet MUST contain enough bytes to represent a valid length.
For example, a 1-byte code 2 packet is always invalid, and a 2-byte code 2
packet whose second byte is in the range 252...255 is also invalid.
The length of the first frame, N1, MUST also be no larger than the size of the
payload remaining after decoding that length for all code 2 packets [R4].
This makes, for example, a 2-byte code 2 packet with a second byte in the range
1...251 invalid as well (the only valid 2-byte code 2 packet is one where the
length of both frames is zero).
</t>
<figure anchor="code2_packet" title="A Code 2 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|1|0| N1 (1-2 bytes): |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 1 (N1 bytes)... |
: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Compressed frame 2... :
: |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
<section title="Code 3: A Signaled Number of Frames in the Packet">
<t anchor="R5">
Code 3 packets signal the number of frames, as well as additional
padding, called "Opus padding" to indicate that this padding is added at the
Opus layer, rather than at the transport layer.
Code 3 packets MUST have at least 2 bytes [R6,R7].
The TOC byte is followed by a byte encoding the number of frames in the packet
in bits 2 to 7 (marked "M" in <xref target='frame_count_byte'/>), with bit 1 indicating whether
or not Opus padding is inserted (marked "p" in <xref target='frame_count_byte'/>), and bit 0
indicating VBR (marked "v" in <xref target='frame_count_byte'/>).
M MUST NOT be zero, and the audio duration contained within a packet MUST NOT
exceed 120 ms [R5].
This limits the maximum frame count for any frame size to 48 (for 2.5 ms
frames), with lower limits for longer frame sizes.
<xref target="frame_count_byte"/> illustrates the layout of the frame count
byte.
</t>
<figure anchor="frame_count_byte" title="The frame count byte">
<artwork align="center"><![CDATA[
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|v|p| M |
+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
When Opus padding is used, the number of bytes of padding is encoded in the
bytes following the frame count byte.
Values from 0...254 indicate that 0...254 bytes of padding are included,
in addition to the byte(s) used to indicate the size of the padding.
If the value is 255, then the size of the additional padding is 254 bytes,
plus the padding value encoded in the next byte.
There MUST be at least one more byte in the packet in this case [R6,R7].
The additional padding bytes appear at the end of the packet, and MUST be set
to zero by the encoder to avoid creating a covert channel.
The decoder MUST accept any value for the padding bytes, however.
</t>
<t>
Although this encoding provides multiple ways to indicate a given number of
padding bytes, each uses a different number of bytes to indicate the padding
size, and thus will increase the total packet size by a different amount.
For example, to add 255 bytes to a packet, set the padding bit, p, to 1, insert
a single byte after the frame count byte with a value of 254, and append 254
padding bytes with the value zero to the end of the packet.
To add 256 bytes to a packet, set the padding bit to 1, insert two bytes after
the frame count byte with the values 255 and 0, respectively, and append 254
padding bytes with the value zero to the end of the packet.
By using the value 255 multiple times, it is possible to create a packet of any
specific, desired size.
Let P be the number of header bytes used to indicate the padding size plus the
number of padding bytes themselves (i.e., P is the total number of bytes added
to the packet).
Then P MUST be no more than N-2 [R6,R7].
</t>
<t anchor="R6">
In the CBR case, let R=N-2-P be the number of bytes remaining in the packet
after subtracting the (optional) padding.
Then the compressed length of each frame in bytes is equal to R/M.
The value R MUST be a non-negative integer multiple of M [R6].
The compressed data for all M frames follows, each of size
R/M bytes, as illustrated in <xref target="code3cbr_packet"/>.
</t>
<figure anchor="code3cbr_packet" title="A CBR Code 3 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|1|1|0|p| M | Padding length (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 1 (R/M bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 2 (R/M bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame M (R/M bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Opus Padding (Optional)... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t anchor="R7">
In the VBR case, the (optional) padding length is followed by M-1 frame
lengths (indicated by "N1" to "N[M-1]" in <xref target='code3vbr_packet'/>), each encoded in a
one- or two-byte sequence as described above.
The packet MUST contain enough data for the M-1 lengths after removing the
(optional) padding, and the sum of these lengths MUST be no larger than the
number of bytes remaining in the packet after decoding them [R7].
The compressed data for all M frames follows, each frame consisting of the
indicated number of bytes, with the final frame consuming any remaining bytes
before the final padding, as illustrated in <xref target="code3cbr_packet"/>.
The number of header bytes (TOC byte, frame count byte, padding length bytes,
and frame length bytes), plus the signaled length of the first M-1 frames themselves,
plus the signaled length of the padding MUST be no larger than N, the total size of the
packet.
</t>
<figure anchor="code3vbr_packet" title="A VBR Code 3 Packet" align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|1|1|1|p| M | Padding length (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: N1 (1-2 bytes): N2 (1-2 bytes): ... : N[M-1] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 1 (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 2 (N2 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame M... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Opus Padding (Optional)... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
</section>
<section anchor="examples" title="Examples">
<t>
Simplest case, one NB mono 20 ms SILK frame:
</t>
<figure anchor='framing_example_1'>
<artwork><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 1 |0|0|0| compressed data... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
Two FB mono 5 ms CELT frames of the same compressed size:
</t>
<figure anchor='framing_example_2'>
<artwork><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 29 |0|0|1| compressed data... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
Two FB mono 20 ms Hybrid frames of different compressed size:
</t>
<figure anchor='framing_example_3'>
<artwork><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 15 |0|1|1|1|0| 2 | N1 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| compressed data... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
Four FB stereo 20 ms CELT frames of the same compressed size:
</t>
<figure anchor='framing_example_4'>
<artwork><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 31 |1|1|1|0|0| 4 | compressed data... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
<section anchor="malformed-packets" title="Receiving Malformed Packets">
<t>
A receiver MUST NOT process packets which violate any of the rules above as
normal Opus packets.
They are reserved for future applications, such as in-band headers (containing
metadata, etc.).
Packets which violate these constraints may cause implementations of
<spanx style="emph">this</spanx> specification to treat them as malformed, and
discard them.
</t>
<t>
These constraints are summarized here for reference:
<list style="format [R%d]">
<t>Packets are at least one byte.</t>
<t>No implicit frame length is larger than 1275 bytes.</t>
<t>Code 1 packets have an odd total length, N, so that (N-1)/2 is an
integer.</t>
<t>Code 2 packets have enough bytes after the TOC for a valid frame
length, and that length is no larger than the number of bytes remaining in the
packet.</t>
<t>Code 3 packets contain at least one frame, but no more than 120 ms
of audio total.</t>
<t>The length of a CBR code 3 packet, N, is at least two bytes, the number of
bytes added to indicate the padding size plus the trailing padding bytes
themselves, P, is no more than N-2, and the frame count, M, satisfies
the constraint that (N-2-P) is a non-negative integer multiple of M.</t>
<t>VBR code 3 packets are large enough to contain all the header bytes (TOC
byte, frame count byte, any padding length bytes, and any frame length bytes),
plus the length of the first M-1 frames, plus any trailing padding bytes.</t>
</list>
</t>
</section>
</section>
<section title="Opus Decoder">
<t>
The Opus decoder consists of two main blocks: the SILK decoder and the CELT
decoder.
At any given time, one or both of the SILK and CELT decoders may be active.
The output of the Opus decode is the sum of the outputs from the SILK and CELT
decoders with proper sample rate conversion and delay compensation on the SILK
side, and optional decimation (when decoding to sample rates less than
48 kHz) on the CELT side, as illustrated in the block diagram below.
</t>
<figure>
<artwork>
<![CDATA[
+---------+ +------------+
| SILK | | Sample |
+->| Decoder |--->| Rate |----+
Bit- +---------+ | | | | Conversion | v
stream | Range |---+ +---------+ +------------+ /---\ Audio
------->| Decoder | | + |------>
| |---+ +---------+ +------------+ \---/
+---------+ | | CELT | | Decimation | ^
+->| Decoder |--->| (Optional) |----+
| | | |
+---------+ +------------+
]]>
</artwork>
</figure>
<section anchor="range-decoder" title="Range Decoder">
<t>
Opus uses an entropy coder based on range coding <xref target="range-coding"></xref>
<xref target="Martin79"></xref>,
which is itself a rediscovery of the FIFO arithmetic code introduced by <xref target="coding-thesis"></xref>.
It is very similar to arithmetic encoding, except that encoding is done with
digits in any base instead of with bits,
so it is faster when using larger bases (i.e., a byte). All of the
calculations in the range coder must use bit-exact integer arithmetic.
</t>
<t>
Symbols may also be coded as "raw bits" packed directly into the bitstream,
bypassing the range coder.
These are packed backwards starting at the end of the frame, as illustrated in
<xref target="rawbits-example"/>.
This reduces complexity and makes the stream more resilient to bit errors, as
corruption in the raw bits will not desynchronize the decoding process, unlike
corruption in the input to the range decoder.
Raw bits are only used in the CELT layer.
</t>
<figure anchor="rawbits-example" title="Illustrative example of packing range
coder and raw bits data">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Range coder data (packed MSB to LSB) -> :
+ +
: :
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: | <- Boundary occurs at an arbitrary bit position :
+-+-+-+ +
: <- Raw bits data (packed LSB to MSB) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<t>
Each symbol coded by the range coder is drawn from a finite alphabet and coded
in a separate "context", which describes the size of the alphabet and the
relative frequency of each symbol in that alphabet.
</t>
<t>
Suppose there is a context with n symbols, identified with an index that ranges
from 0 to n-1.
The parameters needed to encode or decode symbol k in this context are
represented by a three-tuple (fl[k], fh[k], ft), with
0 <= fl[k] < fh[k] <= ft <= 65535.
The values of this tuple are derived from the probability model for the
symbol, represented by traditional "frequency counts".
Because Opus uses static contexts these are not updated as symbols are decoded.
Let f[i] be the frequency of symbol i.
Then the three-tuple corresponding to symbol k is given by
</t>
<figure align="center">
<artwork align="center"><![CDATA[
k-1 n-1
__ __
fl[k] = \ f[i], fh[k] = fl[k] + f[k], ft = \ f[i]
/_ /_
i=0 i=0
]]></artwork>
</figure>
<t>
The range decoder extracts the symbols and integers encoded using the range
encoder in <xref target="range-encoder"/>.
The range decoder maintains an internal state vector composed of the two-tuple
(val, rng), representing the difference between the high end of the
current range and the actual coded value, minus one, and the size of the
current range, respectively.
Both val and rng are 32-bit unsigned integer values.
</t>
<section anchor="range-decoder-init" title="Range Decoder Initialization">
<t>
Let b0 be the first input byte (or zero if there are no bytes in this Opus
frame).
The decoder initializes rng to 128 and initializes val to
(127 - (b0>>1)), where (b0>>1) is the top 7 bits of the
first input byte.
It saves the remaining bit, (b0&1), for use in the renormalization
procedure described in <xref target="range-decoder-renorm"/>, which the
decoder invokes immediately after initialization to read additional bits and
establish the invariant that rng > 2**23.
</t>
</section>
<section anchor="decoding-symbols" title="Decoding Symbols">
<t>
Decoding a symbol is a two-step process.
The first step determines a 16-bit unsigned value fs, which lies within the
range of some symbol in the current context.
The second step updates the range decoder state with the three-tuple
(fl[k], fh[k], ft) corresponding to that symbol.
</t>
<t>
The first step is implemented by ec_decode() (entdec.c), which computes
<figure align="center">
<artwork align="center"><![CDATA[
val
fs = ft - min(------ + 1, ft) .
rng/ft
]]></artwork>
</figure>
The divisions here are integer division.
</t>
<t>
The decoder then identifies the symbol in the current context corresponding to
fs; i.e., the value of k whose three-tuple (fl[k], fh[k], ft)
satisfies fl[k] <= fs < fh[k].
It uses this tuple to update val according to
<figure align="center">
<artwork align="center"><![CDATA[
rng
val = val - --- * (ft - fh[k]) .
ft
]]></artwork>
</figure>
If fl[k] is greater than zero, then the decoder updates rng using
<figure align="center">
<artwork align="center"><![CDATA[
rng
rng = --- * (fh[k] - fl[k]) .
ft
]]></artwork>
</figure>
Otherwise, it updates rng using
<figure align="center">
<artwork align="center"><![CDATA[
rng
rng = rng - --- * (ft - fh[k]) .
ft
]]></artwork>
</figure>
</t>
<t>
Using a special case for the first symbol (rather than the last symbol, as is
commonly done in other arithmetic coders) ensures that all the truncation
error from the finite precision arithmetic accumulates in symbol 0.
This makes the cost of coding a 0 slightly smaller, on average, than its
estimated probability indicates and makes the cost of coding any other symbol
slightly larger.
When contexts are designed so that 0 is the most probable symbol, which is
often the case, this strategy minimizes the inefficiency introduced by the
finite precision.
It also makes some of the special-case decoding routines in
<xref target="decoding-alternate"/> particularly simple.
</t>
<t>
After the updates, implemented by ec_dec_update() (entdec.c), the decoder
normalizes the range using the procedure in the next section, and returns the
index k.
</t>
<section anchor="range-decoder-renorm" title="Renormalization">
<t>
To normalize the range, the decoder repeats the following process, implemented
by ec_dec_normalize() (entdec.c), until rng > 2**23.
If rng is already greater than 2**23, the entire process is skipped.
First, it sets rng to (rng<<8).
Then it reads the next byte of the Opus frame and forms an 8-bit value sym,
using the left-over bit buffered from the previous byte as the high bit
and the top 7 bits of the byte just read as the other 7 bits of sym.
The remaining bit in the byte just read is buffered for use in the next
iteration.
If no more input bytes remain, it uses zero bits instead.
See <xref target="range-decoder-init"/> for the initialization used to process
the first byte.
Then, it sets
<figure align="center">
<artwork align="center"><![CDATA[
val = ((val<<8) + (255-sym)) & 0x7FFFFFFF .
]]></artwork>
</figure>
</t>
<t>
It is normal and expected that the range decoder will read several bytes
into the raw bits data (if any) at the end of the packet by the time the frame
is completely decoded, as illustrated in <xref target="finalize-example"/>.
This same data MUST also be returned as raw bits when requested.
The encoder is expected to terminate the stream in such a way that the decoder
will decode the intended values regardless of the data contained in the raw
bits.
<xref target="encoder-finalizing"/> describes a procedure for doing this.
If the range decoder consumes all of the bytes belonging to the current frame,
it MUST continue to use zero when any further input bytes are required, even
if there is additional data in the current packet from padding or other
frames.
</t>
<figure anchor="finalize-example" title="Illustrative example of raw bits
overlapping range coder data">
<artwork align="center"><![CDATA[
n n+1 n+2 n+3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: | <----------- Overlap region ------------> | :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
^ ^
| End of data buffered by the range coder |
...-----------------------------------------------+
|
| End of data consumed by raw bits
+-------------------------------------------------------...
]]></artwork>
</figure>
</section>
</section>
<section anchor="decoding-alternate" title="Alternate Decoding Methods">
<t>
The reference implementation uses three additional decoding methods that are
exactly equivalent to the above, but make assumptions and simplifications that
allow for a more efficient implementation.
</t>
<section anchor="ec_decode_bin" title="ec_decode_bin()">
<t>
The first is ec_decode_bin() (entdec.c), defined using the parameter ftb
instead of ft.
It is mathematically equivalent to calling ec_decode() with
ft = (1<<ftb), but avoids one of the divisions.
</t>
</section>
<section anchor="ec_dec_bit_logp" title="ec_dec_bit_logp()">
<t>
The next is ec_dec_bit_logp() (entdec.c), which decodes a single binary symbol,
replacing both the ec_decode() and ec_dec_update() steps.
The context is described by a single parameter, logp, which is the absolute
value of the base-2 logarithm of the probability of a "1".
It is mathematically equivalent to calling ec_decode() with
ft = (1<<logp), followed by ec_dec_update() with
the 3-tuple (fl[k] = 0,
fh[k] = (1<<logp) - 1,
ft = (1<<logp)) if the returned value
of fs is less than (1<<logp) - 1 (a "0" was decoded), and with
(fl[k] = (1<<logp) - 1,
fh[k] = ft = (1<<logp)) otherwise (a "1" was
decoded).
The implementation requires no multiplications or divisions.
</t>
</section>
<section anchor="ec_dec_icdf" title="ec_dec_icdf()">
<t>
The last is ec_dec_icdf() (entdec.c), which decodes a single symbol with a
table-based context of up to 8 bits, also replacing both the ec_decode() and
ec_dec_update() steps, as well as the search for the decoded symbol in between.
The context is described by two parameters, an icdf
("inverse" cumulative distribution function) table and ftb.
As with ec_decode_bin(), (1<<ftb) is equivalent to ft.
idcf[k], on the other hand, stores (1<<ftb)-fh[k], which is equal to
(1<<ftb) - fl[k+1].
fl[0] is assumed to be 0, and the table is terminated by a value of 0 (where
fh[k] == ft).
</t>
<t>
The function is mathematically equivalent to calling ec_decode() with
ft = (1<<ftb), using the returned value fs to search the table
for the first entry where fs < (1<<ftb)-icdf[k], and
calling ec_dec_update() with
fl[k] = (1<<ftb) - icdf[k-1] (or 0
if k == 0), fh[k] = (1<<ftb) - idcf[k],
and ft = (1<<ftb).
Combining the search with the update allows the division to be replaced by a
series of multiplications (which are usually much cheaper), and using an
inverse CDF allows the use of an ftb as large as 8 in an 8-bit table without
any special cases.
This is the primary interface with the range decoder in the SILK layer, though
it is used in a few places in the CELT layer as well.
</t>
<t>
Although icdf[k] is more convenient for the code, the frequency counts, f[k],
are a more natural representation of the probability distribution function
(PDF) for a given symbol.
Therefore this draft lists the latter, not the former, when describing the
context in which a symbol is coded as a list, e.g., {4, 4, 4, 4}/16 for a
uniform context with four possible values and ft = 16.
The value of ft after the slash is always the sum of the entries in the PDF,
but is included for convenience.
Contexts with identical probabilities, f[k]/ft, but different values of ft
(or equivalently, ftb) are not the same, and cannot, in general, be used in
place of one another.
An icdf table is also not capable of representing a PDF where the first symbol
has 0 probability.
In such contexts, ec_dec_icdf() can decode the symbol by using a table that
drops the entries for any initial zero-probability values and adding the
constant offset of the first value with a non-zero probability to its return
value.
</t>
</section>
</section>
<section anchor="decoding-bits" title="Decoding Raw Bits">
<t>
The raw bits used by the CELT layer are packed at the end of the packet, with
the least significant bit of the first value packed in the least significant
bit of the last byte, filling up to the most significant bit in the last byte,
continuing on to the least significant bit of the penultimate byte, and so on.
The reference implementation reads them using ec_dec_bits() (entdec.c).
Because the range decoder must read several bytes ahead in the stream, as
described in <xref target="range-decoder-renorm"/>, the input consumed by the
raw bits may overlap with the input consumed by the range coder, and a decoder
MUST allow this.
The format should render it impossible to attempt to read more raw bits than
there are actual bits in the frame, though a decoder may wish to check for
this and report an error.
</t>
</section>
<section anchor="ec_dec_uint" title="Decoding Uniformly Distributed Integers">
<t>
The function ec_dec_uint() (entdec.c) decodes one of ft equiprobable values in
the range 0 to (ft - 1), inclusive, each with a frequency of 1,
where ft may be as large as (2**32 - 1).
Because ec_decode() is limited to a total frequency of (2**16 - 1),
it splits up the value into a range coded symbol representing up to 8 of the
high bits, and, if necessary, raw bits representing the remainder of the
value.
The limit of 8 bits in the range coded symbol is a trade-off between
implementation complexity, modeling error (since the symbols no longer truly
have equal coding cost), and rounding error introduced by the range coder
itself (which gets larger as more bits are included).
Using raw bits reduces the maximum number of divisions required in the worst
case, but means that it may be possible to decode a value outside the range
0 to (ft - 1), inclusive.
</t>
<t>
ec_dec_uint() takes a single, positive parameter, ft, which is not necessarily
a power of two, and returns an integer, t, whose value lies between 0 and
(ft - 1), inclusive.
Let ftb = ilog(ft - 1), i.e., the number of bits required
to store (ft - 1) in two's complement notation.
If ftb is 8 or less, then t is decoded with t = ec_decode(ft), and
the range coder state is updated using the three-tuple (t, t + 1,
ft).
</t>
<t>
If ftb is greater than 8, then the top 8 bits of t are decoded using
<figure align="center">
<artwork align="center"><![CDATA[
t = ec_decode(((ft - 1) >> (ftb - 8)) + 1) ,
]]></artwork>
</figure>
the decoder state is updated using the three-tuple
(t, t + 1,
((ft - 1) >> (ftb - 8)) + 1),
and the remaining bits are decoded as raw bits, setting
<figure align="center">
<artwork align="center"><![CDATA[
t = (t << (ftb - 8)) | ec_dec_bits(ftb - 8) .
]]></artwork>
</figure>
If, at this point, t >= ft, then the current frame is corrupt.
In that case, the decoder should assume there has been an error in the coding,
decoding, or transmission and SHOULD take measures to conceal the
error and/or report to the application that the error has occurred.
</t>
</section>
<section anchor="decoder-tell" title="Current Bit Usage">
<t>
The bit allocation routines in the CELT decoder need a conservative upper bound
on the number of bits that have been used from the current frame thus far,
including both range coder bits and raw bits.
This drives allocation decisions that must match those made in the encoder.
The upper bound is computed in the reference implementation to whole-bit
precision by the function ec_tell() (entcode.h) and to fractional 1/8th bit
precision by the function ec_tell_frac() (entcode.c).
Like all operations in the range coder, it must be implemented in a bit-exact
manner, and must produce exactly the same value returned by the same functions
in the encoder after encoding the same symbols.
</t>
<t>
ec_tell() is guaranteed to return ceil(ec_tell_frac()/8.0).
In various places the codec will check to ensure there is enough room to
contain a symbol before attempting to decode it.
In practice, although the number of bits used so far is an upper bound,
decoding a symbol whose probability model suggests it has a worst-case cost of
p 1/8th bits may actually advance the return value of ec_tell_frac() by
p-1, p, or p+1 1/8th bits, due to approximation error in that upper bound,
truncation error in the range coder, and for large values of ft, modeling
error in ec_dec_uint().
</t>
<t>
However, this error is bounded, and periodic calls to ec_tell() or
ec_tell_frac() at precisely defined points in the decoding process prevent it
from accumulating.
For a range coder symbol that requires a whole number of bits (i.e.,
for which ft/(fh[k] - fl[k]) is a power of two), where there are at
least p 1/8th bits available, decoding the symbol will never cause ec_tell() or
ec_tell_frac() to exceed the size of the frame ("bust the budget").
In this case the return value of ec_tell_frac() will only advance by more than
p 1/8th bits if there was an additional, fractional number of bits remaining,
and it will never advance beyond the next whole-bit boundary, which is safe,
since frames always contain a whole number of bits.
However, when p is not a whole number of bits, an extra 1/8th bit is required
to ensure that decoding the symbol will not bust the budget.
</t>
<t>
The reference implementation keeps track of the total number of whole bits that
have been processed by the decoder so far in the variable nbits_total,
including the (possibly fractional) number of bits that are currently
buffered, but not consumed, inside the range coder.
nbits_total is initialized to 9 just before the initial range renormalization
process completes (or equivalently, it can be initialized to 33 after the
first renormalization).
The extra two bits over the actual amount buffered by the range coder
guarantees that it is an upper bound and that there is enough room for the
encoder to terminate the stream.
Each iteration through the range coder's renormalization loop increases
nbits_total by 8.
Reading raw bits increases nbits_total by the number of raw bits read.
</t>
<section anchor="ec_tell" title="ec_tell()">
<t>
The whole number of bits buffered in rng may be estimated via lg = ilog(rng).
ec_tell() then becomes a simple matter of removing these bits from the total.
It returns (nbits_total - lg).
</t>
<t>
In a newly initialized decoder, before any symbols have been read, this reports
that 1 bit has been used.
This is the bit reserved for termination of the encoder.
</t>
</section>
<section anchor="ec_tell_frac" title="ec_tell_frac()">
<t>
ec_tell_frac() estimates the number of bits buffered in rng to fractional
precision.
Since rng must be greater than 2**23 after renormalization, lg must be at least
24.
Let
<figure align="center">
<artwork align="center">
<![CDATA[
r_Q15 = rng >> (lg-16) ,
]]></artwork>
</figure>
so that 32768 <= r_Q15 < 65536, an unsigned Q15 value representing the
fractional part of rng.
Then the following procedure can be used to add one bit of precision to lg.
First, update
<figure align="center">
<artwork align="center">
<![CDATA[
r_Q15 = (r_Q15*r_Q15) >> 15 .
]]></artwork>
</figure>
Then add the 16th bit of r_Q15 to lg via
<figure align="center">
<artwork align="center">
<![CDATA[
lg = 2*lg + (r_Q15 >> 16) .
]]></artwork>
</figure>
Finally, if this bit was a 1, reduce r_Q15 by a factor of two via
<figure align="center">
<artwork align="center">
<![CDATA[
r_Q15 = r_Q15 >> 1 ,
]]></artwork>
</figure>
so that it once again lies in the range 32768 <= r_Q15 < 65536.
</t>
<t>
This procedure is repeated three times to extend lg to 1/8th bit precision.
ec_tell_frac() then returns (nbits_total*8 - lg).
</t>
</section>
</section>
</section>
<section anchor="silk_decoder_outline" title="SILK Decoder">
<t>
The decoder's LP layer uses a modified version of the SILK codec (herein simply
called "SILK"), which runs a decoded excitation signal through adaptive
long-term and short-term prediction synthesis filters.
It runs at NB, MB, and WB sample rates internally.
When used in a SWB or FB Hybrid frame, the LP layer itself still only runs in
WB.
</t>
<section title="SILK Decoder Modules">
<t>
An overview of the decoder is given in <xref target="silk_decoder_figure"/>.
</t>
<figure align="center" anchor="silk_decoder_figure" title="SILK Decoder">
<artwork align="center">
<![CDATA[
+---------+ +------------+
-->| Range |--->| Decode |---------------------------+
1 | Decoder | 2 | Parameters |----------+ 5 |
+---------+ +------------+ 4 | |
3 | | |
\/ \/ \/
+------------+ +------------+ +------------+
| Generate |-->| LTP |-->| LPC |
| Excitation | | Synthesis | | Synthesis |
+------------+ +------------+ +------------+
^ |
| |
+-------------------+----------------+
| 6
| +------------+ +-------------+
+-->| Stereo |-->| Sample Rate |-->
| Unmixing | 7 | Conversion | 8
+------------+ +-------------+
1: Range encoded bitstream
2: Coded parameters
3: Pulses, LSBs, and signs
4: Pitch lags, Long-Term Prediction (LTP) coefficients
5: Linear Predictive Coding (LPC) coefficients and gains
6: Decoded signal (mono or mid-side stereo)
7: Unmixed signal (mono or left-right stereo)
8: Resampled signal
]]>
</artwork>
</figure>
<t>
The decoder feeds the bitstream (1) to the range decoder from
<xref target="range-decoder"/>, and then decodes the parameters in it (2)
using the procedures detailed in
Sections <xref format="counter" target="silk_header_bits"/>
through <xref format="counter" target="silk_signs"/>.
These parameters (3, 4, 5) are used to generate an excitation signal (see
<xref target="silk_excitation_reconstruction"/>), which is fed to an optional
long-term prediction (LTP) filter (voiced frames only, see
<xref target="silk_ltp_synthesis"/>) and then a short-term prediction filter
(see <xref target="silk_lpc_synthesis"/>), producing the decoded signal (6).
For stereo streams, the mid-side representation is converted to separate left
and right channels (7).
The result is finally resampled to the desired output sample rate (e.g.,
48 kHz) so that the resampled signal (8) can be mixed with the CELT
layer.
</t>
</section>
<section anchor="silk_layer_organization" title="LP Layer Organization">
<t>
Internally, the LP layer of a single Opus frame is composed of either a single
10 ms regular SILK frame or between one and three 20 ms regular SILK
frames.
A stereo Opus frame may double the number of regular SILK frames (up to a total
of six), since it includes separate frames for a mid channel and, optionally,
a side channel.
Optional Low Bit-Rate Redundancy (LBRR) frames, which are reduced-bitrate
encodings of previous SILK frames, may be included to aid in recovery from
packet loss.
If present, these appear before the regular SILK frames.
They are in most respects identical to regular, active SILK frames, except that
they are usually encoded with a lower bitrate.
This draft uses "SILK frame" to refer to either one and "regular SILK frame" if
it needs to draw a distinction between the two.
</t>
<t>
Logically, each SILK frame is in turn composed of either two or four 5 ms
subframes.
Various parameters, such as the quantization gain of the excitation and the
pitch lag and filter coefficients can vary on a subframe-by-subframe basis.
Physically, the parameters for each subframe are interleaved in the bitstream,
as described in the relevant sections for each parameter.
</t>
<t>
All of these frames and subframes are decoded from the same range coder, with
no padding between them.
Thus packing multiple SILK frames in a single Opus frame saves, on average,
half a byte per SILK frame.
It also allows some parameters to be predicted from prior SILK frames in the
same Opus frame, since this does not degrade packet loss robustness (beyond
any penalty for merely using fewer, larger packets to store multiple frames).
</t>
<t>
Stereo support in SILK uses a variant of mid-side coding, allowing a mono
decoder to simply decode the mid channel.
However, the data for the two channels is interleaved, so a mono decoder must
still unpack the data for the side channel.
It would be required to do so anyway for Hybrid Opus frames, or to support
decoding individual 20 ms frames.
</t>
<t>
<xref target="silk_symbols"/> summarizes the overall grouping of the contents of
the LP layer.
Figures <xref format="counter" target="silk_mono_60ms_frame"/>
and <xref format="counter" target="silk_stereo_60ms_frame"/> illustrate
the ordering of the various SILK frames for a 60 ms Opus frame, for both
mono and stereo, respectively.
</t>
<texttable anchor="silk_symbols"
title="Organization of the SILK layer of an Opus frame">
<ttcol align="center">Symbol(s)</ttcol>
<ttcol align="center">PDF(s)</ttcol>
<ttcol align="center">Condition</ttcol>
<c>Voice Activity Detection (VAD) flags</c>
<c>{1, 1}/2</c>
<c/>
<c>LBRR flag</c>
<c>{1, 1}/2</c>
<c/>
<c>Per-frame LBRR flags</c>
<c><xref target="silk_lbrr_flag_pdfs"/></c>
<c><xref target="silk_lbrr_flags"/></c>
<c>LBRR Frame(s)</c>
<c><xref target="silk_frame"/></c>
<c><xref target="silk_lbrr_flags"/></c>
<c>Regular SILK Frame(s)</c>
<c><xref target="silk_frame"/></c>
<c/>
</texttable>
<figure align="center" anchor="silk_mono_60ms_frame"
title="A 60 ms Mono Frame">
<artwork align="center"><![CDATA[
+---------------------------------+
| VAD Flags |
+---------------------------------+
| LBRR Flag |
+---------------------------------+
| Per-Frame LBRR Flags (Optional) |
+---------------------------------+
| LBRR Frame 1 (Optional) |
+---------------------------------+
| LBRR Frame 2 (Optional) |
+---------------------------------+
| LBRR Frame 3 (Optional) |
+---------------------------------+
| Regular SILK Frame 1 |
+---------------------------------+
| Regular SILK Frame 2 |
+---------------------------------+
| Regular SILK Frame 3 |
+---------------------------------+
]]></artwork>
</figure>
<figure align="center" anchor="silk_stereo_60ms_frame"
title="A 60 ms Stereo Frame">
<artwork align="center"><![CDATA[
+---------------------------------------+
| Mid VAD Flags |
+---------------------------------------+
| Mid LBRR Flag |
+---------------------------------------+
| Side VAD Flags |
+---------------------------------------+
| Side LBRR Flag |
+---------------------------------------+
| Mid Per-Frame LBRR Flags (Optional) |
+---------------------------------------+
| Side Per-Frame LBRR Flags (Optional) |
+---------------------------------------+
| Mid LBRR Frame 1 (Optional) |
+---------------------------------------+
| Side LBRR Frame 1 (Optional) |
+---------------------------------------+
| Mid LBRR Frame 2 (Optional) |
+---------------------------------------+
| Side LBRR Frame 2 (Optional) |
+---------------------------------------+
| Mid LBRR Frame 3 (Optional) |
+---------------------------------------+
| Side LBRR Frame 3 (Optional) |
+---------------------------------------+
| Mid Regular SILK Frame 1 |
+---------------------------------------+
| Side Regular SILK Frame 1 (Optional) |
+---------------------------------------+
| Mid Regular SILK Frame 2 |
+---------------------------------------+
| Side Regular SILK Frame 2 (Optional) |
+---------------------------------------+
| Mid Regular SILK Frame 3 |
+---------------------------------------+
| Side Regular SILK Frame 3 (Optional) |
+---------------------------------------+
]]></artwork>
</figure>
</section>
<section anchor="silk_header_bits" title="Header Bits">
<t>
The LP layer begins with two to eight header bits, decoded in silk_Decode()
(dec_API.c).
These consist of one Voice Activity Detection (VAD) bit per frame (up to 3),
followed by a single flag indicating the presence of LBRR frames.
For a stereo packet, these first flags correspond to the mid channel, and a
second set of flags is included for the side channel.
</t>
<t>
Because these are the first symbols decoded by the range coder and because they
are coded as binary values with uniform probability, they can be extracted
directly from the most significant bits of the first byte of compressed data.
Thus, a receiver can determine if an Opus frame contains any active SILK frames
without the overhead of using the range decoder.
</t>
</section>
<section anchor="silk_lbrr_flags" title="Per-Frame LBRR Flags">
<t>
For Opus frames longer than 20 ms, a set of LBRR flags is
decoded for each channel that has its LBRR flag set.
Each set contains one flag per 20 ms SILK frame.
40 ms Opus frames use the 2-frame LBRR flag PDF from
<xref target="silk_lbrr_flag_pdfs"/>, and 60 ms Opus frames use the
3-frame LBRR flag PDF.
For each channel, the resulting 2- or 3-bit integer contains the corresponding
LBRR flag for each frame, packed in order from the LSB to the MSB.
</t>
<texttable anchor="silk_lbrr_flag_pdfs" title="LBRR Flag PDFs">
<ttcol>Frame Size</ttcol>
<ttcol>PDF</ttcol>
<c>40 ms</c> <c>{0, 53, 53, 150}/256</c>
<c>60 ms</c> <c>{0, 41, 20, 29, 41, 15, 28, 82}/256</c>
</texttable>
<t>
A 10 or 20 ms Opus frame does not contain any per-frame LBRR flags,
as there may be at most one LBRR frame per channel.
The global LBRR flag in the header bits (see <xref target="silk_header_bits"/>)
is already sufficient to indicate the presence of that single LBRR frame.
</t>
</section>
<section anchor="silk_lbrr_frames" title="LBRR Frames">
<t>
The LBRR frames, if present, contain an encoded representation of the signal
immediately prior to the current Opus frame as if it were encoded with the
current mode, frame size, audio bandwidth, and channel count, even if those
differ from the prior Opus frame.
When one of these parameters changes from one Opus frame to the next, this
implies that the LBRR frames of the current Opus frame may not be simple
drop-in replacements for the contents of the previous Opus frame.
</t>
<t>
For example, when switching from 20 ms to 60 ms, the 60 ms Opus
frame may contain LBRR frames covering up to three prior 20 ms Opus
frames, even if those frames already contained LBRR frames covering some of
the same time periods.
When switching from 20 ms to 10 ms, the 10 ms Opus frame can
contain an LBRR frame covering at most half the prior 20 ms Opus frame,
potentially leaving a hole that needs to be concealed from even a single
packet loss (see <xref target="Packet Loss Concealment"/>).
When switching from mono to stereo, the LBRR frames in the first stereo Opus
frame MAY contain a non-trivial side channel.
</t>
<t>
In order to properly produce LBRR frames under all conditions, an encoder might
need to buffer up to 60 ms of audio and re-encode it during these
transitions.
However, the reference implementation opts to disable LBRR frames at the
transition point for simplicity.
Since transitions are relatively infrequent in normal usage, this does not have
a significant impact on packet loss robustness.
</t>
<t>
The LBRR frames immediately follow the LBRR flags, prior to any regular SILK
frames.
<xref target="silk_frame"/> describes their exact contents.
LBRR frames do not include their own separate VAD flags.
LBRR frames are only meant to be transmitted for active speech, thus all LBRR
frames are treated as active.
</t>
<t>
In a stereo Opus frame longer than 20 ms, although the per-frame LBRR
flags for the mid channel are coded as a unit before the per-frame LBRR flags
for the side channel, the LBRR frames themselves are interleaved.
The decoder parses an LBRR frame for the mid channel of a given 20 ms
interval (if present) and then immediately parses the corresponding LBRR
frame for the side channel (if present), before proceeding to the next
20 ms interval.
</t>
</section>
<section anchor="silk_regular_frames" title="Regular SILK Frames">
<t>
The regular SILK frame(s) follow the LBRR frames (if any).
<xref target="silk_frame"/> describes their contents, as well.
Unlike the LBRR frames, a regular SILK frame is coded for each time interval in
an Opus frame, even if the corresponding VAD flags are unset.
For stereo Opus frames longer than 20 ms, the regular mid and side SILK
frames for each 20 ms interval are interleaved, just as with the LBRR
frames.
The side frame may be skipped by coding an appropriate flag, as detailed in
<xref target="silk_mid_only_flag"/>.
</t>
</section>
<section anchor="silk_frame" title="SILK Frame Contents">
<t>
Each SILK frame includes a set of side information that encodes
<list style="symbols">
<t>The frame type and quantization type (<xref target="silk_frame_type"/>),</t>
<t>Quantization gains (<xref target="silk_gains"/>),</t>
<t>Short-term prediction filter coefficients (<xref target="silk_nlsfs"/>),</t>
<t>A Line Spectral Frequencies (LSF) interpolation weight (<xref target="silk_nlsf_interpolation"/>),</t>
<t>
Long-term prediction filter lags and gains (<xref target="silk_ltp_params"/>),
and
</t>
<t>A linear congruential generator (LCG) seed (<xref target="silk_seed"/>).</t>
</list>
The quantized excitation signal (see <xref target="silk_excitation"/>) follows
these at the end of the frame.
<xref target="silk_frame_symbols"/> details the overall organization of a
SILK frame.
</t>
<texttable anchor="silk_frame_symbols"
title="Order of the symbols in an individual SILK frame">
<ttcol align="center">Symbol(s)</ttcol>
<ttcol align="center">PDF(s)</ttcol>
<ttcol align="center">Condition</ttcol>
<c>Stereo Prediction Weights</c>
<c><xref target="silk_stereo_pred_pdfs"/></c>
<c><xref target="silk_stereo_pred"/></c>
<c>Mid-only Flag</c>
<c><xref target="silk_mid_only_pdf"/></c>
<c><xref target="silk_mid_only_flag"/></c>
<c>Frame Type</c>
<c><xref target="silk_frame_type"/></c>
<c/>
<c>Subframe Gains</c>
<c><xref target="silk_gains"/></c>
<c/>
<c>Normalized LSF Stage-1 Index</c>
<c><xref target="silk_nlsf_stage1_pdfs"/></c>
<c/>
<c>Normalized LSF Stage-2 Residual</c>
<c><xref target="silk_nlsf_stage2"/></c>
<c/>
<c>Normalized LSF Interpolation Weight</c>
<c><xref target="silk_nlsf_interp_pdf"/></c>
<c>20 ms frame</c>
<c>Primary Pitch Lag</c>
<c><xref target="silk_ltp_lags"/></c>
<c>Voiced frame</c>
<c>Subframe Pitch Contour</c>
<c><xref target="silk_pitch_contour_pdfs"/></c>
<c>Voiced frame</c>
<c>Periodicity Index</c>
<c><xref target="silk_perindex_pdf"/></c>
<c>Voiced frame</c>
<c>LTP Filter</c>
<c><xref target="silk_ltp_filter_pdfs"/></c>
<c>Voiced frame</c>
<c>LTP Scaling</c>
<c><xref target="silk_ltp_scaling_pdf"/></c>
<c><xref target="silk_ltp_scaling"/></c>
<c>LCG Seed</c>
<c><xref target="silk_seed_pdf"/></c>
<c/>
<c>Excitation Rate Level</c>
<c><xref target="silk_rate_level_pdfs"/></c>
<c/>
<c>Excitation Pulse Counts</c>
<c><xref target="silk_pulse_count_pdfs"/></c>
<c/>
<c>Excitation Pulse Locations</c>
<c><xref target="silk_pulse_locations"/></c>
<c>Non-zero pulse count</c>
<c>Excitation LSBs</c>
<c><xref target="silk_shell_lsb_pdf"/></c>
<c><xref target="silk_pulse_counts"/></c>
<c>Excitation Signs</c>
<c><xref target="silk_sign_pdfs"/></c>
<c/>
</texttable>
<section anchor="silk_stereo_pred" toc="include"
title="Stereo Prediction Weights">
<t>
A SILK frame corresponding to the mid channel of a stereo Opus frame begins
with a pair of side channel prediction weights, designed such that zeros
indicate normal mid-side coupling.
Since these weights can change on every frame, the first portion of each frame
linearly interpolates between the previous weights and the current ones, using
zeros for the previous weights if none are available.
These prediction weights are never included in a mono Opus frame, and the
previous weights are reset to zeros on any transition from mono to stereo.
They are also not included in an LBRR frame for the side channel, even if the
LBRR flags indicate the corresponding mid channel was not coded.
In that case, the previous weights are used, again substituting in zeros if no
previous weights are available since the last decoder reset
(see <xref target="decoder-reset"/>).
</t>
<t>
To summarize, these weights are coded if and only if
<list style="symbols">
<t>This is a stereo Opus frame (<xref target="toc_byte"/>), and</t>
<t>The current SILK frame corresponds to the mid channel.</t>
</list>
</t>
<t>
The prediction weights are coded in three separate pieces, which are decoded
by silk_stereo_decode_pred() (decode_stereo_pred.c).
The first piece jointly codes the high-order part of a table index for both
weights.
The second piece codes the low-order part of each table index.
The third piece codes an offset used to linearly interpolate between table
indices.
The details are as follows.
</t>
<t>
Let n be an index decoded with the 25-element stage-1 PDF in
<xref target="silk_stereo_pred_pdfs"/>.
Then let i0 and i1 be indices decoded with the stage-2 and stage-3 PDFs in
<xref target="silk_stereo_pred_pdfs"/>, respectively, and let i2 and i3
be two more indices decoded with the stage-2 and stage-3 PDFs, all in that
order.
</t>
<texttable anchor="silk_stereo_pred_pdfs" title="Stereo Weight PDFs">
<ttcol align="left">Stage</ttcol>
<ttcol align="left">PDF</ttcol>
<c>Stage 1</c>
<c>{7, 2, 1, 1, 1,
10, 24, 8, 1, 1,
3, 23, 92, 23, 3,
1, 1, 8, 24, 10,
1, 1, 1, 2, 7}/256</c>
<c>Stage 2</c>
<c>{85, 86, 85}/256</c>
<c>Stage 3</c>
<c>{51, 51, 52, 51, 51}/256</c>
</texttable>
<t>
Then use n, i0, and i2 to form two table indices, wi0 and wi1, according to
<figure align="center">
<artwork align="center"><![CDATA[
wi0 = i0 + 3*(n/5)
wi1 = i2 + 3*(n%5)
]]></artwork>
</figure>
where the division is integer division.
The range of these indices is 0 to 14, inclusive.
Let w[i] be the i'th weight from <xref target="silk_stereo_weights_table"/>.
Then the two prediction weights, w0_Q13 and w1_Q13, are
<figure align="center">
<artwork align="center"><![CDATA[
w1_Q13 = w_Q13[wi1]
+ ((w_Q13[wi1+1] - w_Q13[wi1])*6554) >> 16)*(2*i3 + 1)
w0_Q13 = w_Q13[wi0]
+ ((w_Q13[wi0+1] - w_Q13[wi0])*6554) >> 16)*(2*i1 + 1)
- w1_Q13
]]></artwork>
</figure>
N.b., w1_Q13 is computed first here, because w0_Q13 depends on it.
The constant 6554 is approximately 0.1 in Q16.
Although wi0 and wi1 only have 15 possible values,
<xref target="silk_stereo_weights_table"/> contains 16 entries to allow
interpolation between entry wi0 and (wi0 + 1) (and likewise for wi1).
</t>
<texttable anchor="silk_stereo_weights_table"
title="Stereo Weight Table">
<ttcol align="left">Index</ttcol>
<ttcol align="right">Weight (Q13)</ttcol>
<c>0</c> <c>-13732</c>
<c>1</c> <c>-10050</c>
<c>2</c> <c>-8266</c>
<c>3</c> <c>-7526</c>
<c>4</c> <c>-6500</c>
<c>5</c> <c>-5000</c>
<c>6</c> <c>-2950</c>
<c>7</c> <c>-820</c>
<c>8</c> <c>820</c>
<c>9</c> <c>2950</c>
<c>10</c> <c>5000</c>
<c>11</c> <c>6500</c>
<c>12</c> <c>7526</c>
<c>13</c> <c>8266</c>
<c>14</c> <c>10050</c>
<c>15</c> <c>13732</c>
</texttable>
</section>
<section anchor="silk_mid_only_flag" toc="include" title="Mid-only Flag">
<t>
A flag appears after the stereo prediction weights that indicates if only the
mid channel is coded for this time interval.
It appears only when
<list style="symbols">
<t>This is a stereo Opus frame (see <xref target="toc_byte"/>),</t>
<t>The current SILK frame corresponds to the mid channel, and</t>
<t>Either
<list style="symbols">
<t>This is a regular SILK frame where the VAD flags
(see <xref target="silk_header_bits"/>) indicate that the corresponding side
channel is not active.</t>
<t>
This is an LBRR frame where the LBRR flags
(see <xref target="silk_header_bits"/> and <xref target="silk_lbrr_flags"/>)
indicate that the corresponding side channel is not coded.
</t>
</list>
</t>
</list>
It is omitted when there are no stereo weights, for all of the same reasons.
It is also omitted for a regular SILK frame when the VAD flag of the
corresponding side channel frame is set (indicating it is active).
The side channel must be coded in this case, making the mid-only flag
redundant.
It is also omitted for an LBRR frame when the corresponding LBRR flags
indicate the side channel is coded.
</t>
<t>
When the flag is present, the decoder reads a single value using the PDF in
<xref target="silk_mid_only_pdf"/>, as implemented in
silk_stereo_decode_mid_only() (decode_stereo_pred.c).
If the flag is set, then there is no corresponding SILK frame for the side
channel, the entire decoding process for the side channel is skipped, and
zeros are fed to the stereo unmixing process (see
<xref target="silk_stereo_unmixing"/>) instead.
As stated above, LBRR frames still include this flag when the LBRR flag
indicates that the side channel is not coded.
In that case, if this flag is zero (indicating that there should be a side
channel), then Packet Loss Concealment (PLC, see
<xref target="Packet Loss Concealment"/>) SHOULD be invoked to recover a
side channel signal.
Otherwise, the stereo image will collapse.
</t>
<texttable anchor="silk_mid_only_pdf" title="Mid-only Flag PDF">
<ttcol align="left">PDF</ttcol>
<c>{192, 64}/256</c>
</texttable>
</section>
<section anchor="silk_frame_type" toc="include" title="Frame Type">
<t>
Each SILK frame contains a single "frame type" symbol that jointly codes the
signal type and quantization offset type of the corresponding frame.
If the current frame is a regular SILK frame whose VAD bit was not set (an
"inactive" frame), then the frame type symbol takes on a value of either 0 or
1 and is decoded using the first PDF in <xref target="silk_frame_type_pdfs"/>.
If the frame is an LBRR frame or a regular SILK frame whose VAD flag was set
(an "active" frame), then the value of the symbol may range from 2 to 5,
inclusive, and is decoded using the second PDF in
<xref target="silk_frame_type_pdfs"/>.
<xref target="silk_frame_type_table"/> translates between the value of the
frame type symbol and the corresponding signal type and quantization offset
type.
</t>
<texttable anchor="silk_frame_type_pdfs" title="Frame Type PDFs">
<ttcol>VAD Flag</ttcol>
<ttcol>PDF</ttcol>
<c>Inactive</c> <c>{26, 230, 0, 0, 0, 0}/256</c>
<c>Active</c> <c>{0, 0, 24, 74, 148, 10}/256</c>
</texttable>
<texttable anchor="silk_frame_type_table"
title="Signal Type and Quantization Offset Type from Frame Type">
<ttcol>Frame Type</ttcol>
<ttcol>Signal Type</ttcol>
<ttcol align="right">Quantization Offset Type</ttcol>
<c>0</c> <c>Inactive</c> <c>Low</c>
<c>1</c> <c>Inactive</c> <c>High</c>
<c>2</c> <c>Unvoiced</c> <c>Low</c>
<c>3</c> <c>Unvoiced</c> <c>High</c>
<c>4</c> <c>Voiced</c> <c>Low</c>
<c>5</c> <c>Voiced</c> <c>High</c>
</texttable>
</section>
<section anchor="silk_gains" toc="include" title="Subframe Gains">
<t>
A separate quantization gain is coded for each 5 ms subframe.
These gains control the step size between quantization levels of the excitation
signal and, therefore, the quality of the reconstruction.
They are independent of and unrelated to the pitch contours coded for voiced
frames.
The quantization gains are themselves uniformly quantized to 6 bits on a
log scale, giving them a resolution of approximately 1.369 dB and a range
of approximately 1.94 dB to 88.21 dB.
</t>
<t>
The subframe gains are either coded independently, or relative to the gain from
the most recent coded subframe in the same channel.
Independent coding is used if and only if
<list style="symbols">
<t>
This is the first subframe in the current SILK frame, and
</t>
<t>Either
<list style="symbols">
<t>
This is the first SILK frame of its type (LBRR or regular) for this channel in
the current Opus frame, or
</t>
<t>
The previous SILK frame of the same type (LBRR or regular) for this channel in
the same Opus frame was not coded.
</t>
</list>
</t>
</list>
</t>
<t>
In an independently coded subframe gain, the 3 most significant bits of the
quantization gain are decoded using a PDF selected from
<xref target="silk_independent_gain_msb_pdfs"/> based on the decoded signal
type (see <xref target="silk_frame_type"/>).
</t>
<texttable anchor="silk_independent_gain_msb_pdfs"
title="PDFs for Independent Quantization Gain MSB Coding">
<ttcol align="left">Signal Type</ttcol>
<ttcol align="left">PDF</ttcol>
<c>Inactive</c> <c>{32, 112, 68, 29, 12, 1, 1, 1}/256</c>
<c>Unvoiced</c> <c>{2, 17, 45, 60, 62, 47, 19, 4}/256</c>
<c>Voiced</c> <c>{1, 3, 26, 71, 94, 50, 9, 2}/256</c>
</texttable>
<t>
The 3 least significant bits are decoded using a uniform PDF:
</t>
<texttable anchor="silk_independent_gain_lsb_pdf"
title="PDF for Independent Quantization Gain LSB Coding">
<ttcol align="left">PDF</ttcol>
<c>{32, 32, 32, 32, 32, 32, 32, 32}/256</c>
</texttable>
<t>
These 6 bits are combined to form a value, gain_index, between 0 and 63.
When the gain for the previous subframe is available, then the current gain is
limited as follows:
<figure align="center">
<artwork align="center"><![CDATA[
log_gain = max(gain_index, previous_log_gain - 16) .
]]></artwork>
</figure>
This may help some implementations limit the change in precision of their
internal LTP history.
The indices which this clamp applies to cannot simply be removed from the
codebook, because previous_log_gain will not be available after packet loss.
The clamping is skipped after a decoder reset, and in the side channel if the
previous frame in the side channel was not coded, since there is no value for
previous_log_gain available.
It MAY also be skipped after packet loss.
</t>
<t>
For subframes which do not have an independent gain (including the first
subframe of frames not listed as using independent coding above), the
quantization gain is coded relative to the gain from the previous subframe (in
the same channel).
The PDF in <xref target="silk_delta_gain_pdf"/> yields a delta_gain_index value
between 0 and 40, inclusive.
</t>
<texttable anchor="silk_delta_gain_pdf"
title="PDF for Delta Quantization Gain Coding">
<ttcol align="left">PDF</ttcol>
<c>{6, 5, 11, 31, 132, 21, 8, 4,
3, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
</texttable>
<t>
The following formula translates this index into a quantization gain for the
current subframe using the gain from the previous subframe:
<figure align="center">
<artwork align="center"><![CDATA[
log_gain = clamp(0, max(2*delta_gain_index - 16,
previous_log_gain + delta_gain_index - 4), 63) .
]]></artwork>
</figure>
</t>
<t>
silk_gains_dequant() (gain_quant.c) dequantizes log_gain for the k'th subframe
and converts it into a linear Q16 scale factor via
<figure align="center">
<artwork align="center"><![CDATA[
gain_Q16[k] = silk_log2lin((0x1D1C71*log_gain>>16) + 2090)
]]></artwork>
</figure>
</t>
<t>
The function silk_log2lin() (log2lin.c) computes an approximation of
2**(inLog_Q7/128.0), where inLog_Q7 is its Q7 input.
Let i = inLog_Q7>>7 be the integer part of inLogQ7 and
f = inLog_Q7&127 be the fractional part.
Then
<figure align="center">
<artwork align="center"><![CDATA[
(1<<i) + ((-174*f*(128-f)>>16)+f)*((1<<i)>>7)
]]></artwork>
</figure>
yields the approximate exponential.
The final Q16 gain values lies between 81920 and 1686110208, inclusive
(representing scale factors of 1.25 to 25728, respectively).
</t>
</section>
<section anchor="silk_nlsfs" toc="include" title="Normalized Line Spectral
Frequency (LSF) and Linear Predictive Coding (LPC) Coefficients">
<t>
A set of normalized Line Spectral Frequency (LSF) coefficients follow the
quantization gains in the bitstream, and represent the Linear Predictive
Coding (LPC) coefficients for the current SILK frame.
Once decoded, the normalized LSFs form an increasing list of Q15 values between
0 and 1.
These represent the interleaved zeros on the upper half of the unit circle
(between 0 and pi, hence "normalized") in the standard decomposition
<xref target="line-spectral-pairs"/> of the LPC filter into a symmetric part
and an anti-symmetric part (P and Q in <xref target="silk_nlsf2lpc"/>).
Because of non-linear effects in the decoding process, an implementation SHOULD
match the fixed-point arithmetic described in this section exactly.
An encoder SHOULD also use the same process.
</t>
<t>
The normalized LSFs are coded using a two-stage vector quantizer (VQ)
(<xref target="silk_nlsf_stage1"/> and <xref target="silk_nlsf_stage2"/>).
NB and MB frames use an order-10 predictor, while WB frames use an order-16
predictor, and thus have different sets of tables.
After reconstructing the normalized LSFs
(<xref target="silk_nlsf_reconstruction"/>), the decoder runs them through a
stabilization process (<xref target="silk_nlsf_stabilization"/>), interpolates
them between frames (<xref target="silk_nlsf_interpolation"/>), converts them
back into LPC coefficients (<xref target="silk_nlsf2lpc"/>), and then runs
them through further processes to limit the range of the coefficients
(<xref target="silk_lpc_range_limit"/>) and the gain of the filter
(<xref target="silk_lpc_gain_limit"/>).
All of this is necessary to ensure the reconstruction process is stable.
</t>
<section anchor="silk_nlsf_stage1" title="Normalized LSF Stage 1 Decoding">
<t>
The first VQ stage uses a 32-element codebook, coded with one of the PDFs in
<xref target="silk_nlsf_stage1_pdfs"/>, depending on the audio bandwidth and
the signal type of the current SILK frame.
This yields a single index, I1, for the entire frame, which
<list style="numbers">
<t>Indexes an element in a coarse codebook,</t>
<t>Selects the PDFs for the second stage of the VQ, and</t>
<t>Selects the prediction weights used to remove intra-frame redundancy from
the second stage.</t>
</list>
The actual codebook elements are listed in
<xref target="silk_nlsf_nbmb_codebook"/> and
<xref target="silk_nlsf_wb_codebook"/>, but they are not needed until the last
stages of reconstructing the LSF coefficients.
</t>
<texttable anchor="silk_nlsf_stage1_pdfs"
title="PDFs for Normalized LSF Stage-1 Index Decoding">
<ttcol align="left">Audio Bandwidth</ttcol>
<ttcol align="left">Signal Type</ttcol>
<ttcol align="left">PDF</ttcol>
<c>NB or MB</c> <c>Inactive or unvoiced</c>
<c>
{44, 34, 30, 19, 21, 12, 11, 3,
3, 2, 16, 2, 2, 1, 5, 2,
1, 3, 3, 1, 1, 2, 2, 2,
3, 1, 9, 9, 2, 7, 2, 1}/256
</c>
<c>NB or MB</c> <c>Voiced</c>
<c>
{1, 10, 1, 8, 3, 8, 8, 14,
13, 14, 1, 14, 12, 13, 11, 11,
12, 11, 10, 10, 11, 8, 9, 8,
7, 8, 1, 1, 6, 1, 6, 5}/256
</c>
<c>WB</c> <c>Inactive or unvoiced</c>
<c>
{31, 21, 3, 17, 1, 8, 17, 4,
1, 18, 16, 4, 2, 3, 1, 10,
1, 3, 16, 11, 16, 2, 2, 3,
2, 11, 1, 4, 9, 8, 7, 3}/256
</c>
<c>WB</c> <c>Voiced</c>
<c>
{1, 4, 16, 5, 18, 11, 5, 14,
15, 1, 3, 12, 13, 14, 14, 6,
14, 12, 2, 6, 1, 12, 12, 11,
10, 3, 10, 5, 1, 1, 1, 3}/256
</c>
</texttable>
</section>
<section anchor="silk_nlsf_stage2" title="Normalized LSF Stage 2 Decoding">
<t>
A total of 16 PDFs are available for the LSF residual in the second stage: the
8 (a...h) for NB and MB frames given in
<xref target="silk_nlsf_stage2_nbmb_pdfs"/>, and the 8 (i...p) for WB frames
given in <xref target="silk_nlsf_stage2_wb_pdfs"/>.
Which PDF is used for which coefficient is driven by the index, I1,
decoded in the first stage.
<xref target="silk_nlsf_nbmb_stage2_cb_sel"/> lists the letter of the
corresponding PDF for each normalized LSF coefficient for NB and MB, and
<xref target="silk_nlsf_wb_stage2_cb_sel"/> lists the same information for WB.
</t>
<texttable anchor="silk_nlsf_stage2_nbmb_pdfs"
title="PDFs for NB/MB Normalized LSF Stage-2 Index Decoding">
<ttcol align="left">Codebook</ttcol>
<ttcol align="left">PDF</ttcol>
<c>a</c> <c>{1, 1, 1, 15, 224, 11, 1, 1, 1}/256</c>
<c>b</c> <c>{1, 1, 2, 34, 183, 32, 1, 1, 1}/256</c>
<c>c</c> <c>{1, 1, 4, 42, 149, 55, 2, 1, 1}/256</c>
<c>d</c> <c>{1, 1, 8, 52, 123, 61, 8, 1, 1}/256</c>
<c>e</c> <c>{1, 3, 16, 53, 101, 74, 6, 1, 1}/256</c>
<c>f</c> <c>{1, 3, 17, 55, 90, 73, 15, 1, 1}/256</c>
<c>g</c> <c>{1, 7, 24, 53, 74, 67, 26, 3, 1}/256</c>
<c>h</c> <c>{1, 1, 18, 63, 78, 58, 30, 6, 1}/256</c>
</texttable>
<texttable anchor="silk_nlsf_stage2_wb_pdfs"
title="PDFs for WB Normalized LSF Stage-2 Index Decoding">
<ttcol align="left">Codebook</ttcol>
<ttcol align="left">PDF</ttcol>
<c>i</c> <c>{1, 1, 1, 9, 232, 9, 1, 1, 1}/256</c>
<c>j</c> <c>{1, 1, 2, 28, 186, 35, 1, 1, 1}/256</c>
<c>k</c> <c>{1, 1, 3, 42, 152, 53, 2, 1, 1}/256</c>
<c>l</c> <c>{1, 1, 10, 49, 126, 65, 2, 1, 1}/256</c>
<c>m</c> <c>{1, 4, 19, 48, 100, 77, 5, 1, 1}/256</c>
<c>n</c> <c>{1, 1, 14, 54, 100, 72, 12, 1, 1}/256</c>
<c>o</c> <c>{1, 1, 15, 61, 87, 61, 25, 4, 1}/256</c>
<c>p</c> <c>{1, 7, 21, 50, 77, 81, 17, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_nlsf_nbmb_stage2_cb_sel"
title="Codebook Selection for NB/MB Normalized LSF Stage-2 Index Decoding">
<ttcol>I1</ttcol>
<ttcol>Coefficient</ttcol>
<c/>
<c><spanx style="vbare">0 1 2 3 4 5 6 7 8 9</spanx></c>
<c> 0</c>
<c><spanx style="vbare">a a a a a a a a a a</spanx></c>
<c> 1</c>
<c><spanx style="vbare">b d b c c b c b b b</spanx></c>
<c> 2</c>
<c><spanx style="vbare">c b b b b b b b b b</spanx></c>
<c> 3</c>
<c><spanx style="vbare">b c c c c b c b b b</spanx></c>
<c> 4</c>
<c><spanx style="vbare">c d d d d c c c c c</spanx></c>
<c> 5</c>
<c><spanx style="vbare">a f d d c c c c b b</spanx></c>
<c> g</c>
<c><spanx style="vbare">a c c c c c c c c b</spanx></c>
<c> 7</c>
<c><spanx style="vbare">c d g e e e f e f f</spanx></c>
<c> 8</c>
<c><spanx style="vbare">c e f f e f e g e e</spanx></c>
<c> 9</c>
<c><spanx style="vbare">c e e h e f e f f e</spanx></c>
<c>10</c>
<c><spanx style="vbare">e d d d c d c c c c</spanx></c>
<c>11</c>
<c><spanx style="vbare">b f f g e f e f f f</spanx></c>
<c>12</c>
<c><spanx style="vbare">c h e g f f f f f f</spanx></c>
<c>13</c>
<c><spanx style="vbare">c h f f f f f g f e</spanx></c>
<c>14</c>
<c><spanx style="vbare">d d f e e f e f e e</spanx></c>
<c>15</c>
<c><spanx style="vbare">c d d f f e e e e e</spanx></c>
<c>16</c>
<c><spanx style="vbare">c e e g e f e f f f</spanx></c>
<c>17</c>
<c><spanx style="vbare">c f e g f f f e f e</spanx></c>
<c>18</c>
<c><spanx style="vbare">c h e f e f e f f f</spanx></c>
<c>19</c>
<c><spanx style="vbare">c f e g h g f g f e</spanx></c>
<c>20</c>
<c><spanx style="vbare">d g h e g f f g e f</spanx></c>
<c>21</c>
<c><spanx style="vbare">c h g e e e f e f f</spanx></c>
<c>22</c>
<c><spanx style="vbare">e f f e g g f g f e</spanx></c>
<c>23</c>
<c><spanx style="vbare">c f f g f g e g e e</spanx></c>
<c>24</c>
<c><spanx style="vbare">e f f f d h e f f e</spanx></c>
<c>25</c>
<c><spanx style="vbare">c d e f f g e f f e</spanx></c>
<c>26</c>
<c><spanx style="vbare">c d c d d e c d d d</spanx></c>
<c>27</c>
<c><spanx style="vbare">b b c c c c c d c c</spanx></c>
<c>28</c>
<c><spanx style="vbare">e f f g g g f g e f</spanx></c>
<c>29</c>
<c><spanx style="vbare">d f f e e e e d d c</spanx></c>
<c>30</c>
<c><spanx style="vbare">c f d h f f e e f e</spanx></c>
<c>31</c>
<c><spanx style="vbare">e e f e f g f g f e</spanx></c>
</texttable>
<texttable anchor="silk_nlsf_wb_stage2_cb_sel"
title="Codebook Selection for WB Normalized LSF Stage-2 Index Decoding">
<ttcol>I1</ttcol>
<ttcol>Coefficient</ttcol>
<c/>
<c><spanx style="vbare">0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</spanx></c>
<c> 0</c>
<c><spanx style="vbare">i i i i i i i i i i i i i i i i</spanx></c>
<c> 1</c>
<c><spanx style="vbare">k l l l l l k k k k k j j j i l</spanx></c>
<c> 2</c>
<c><spanx style="vbare">k n n l p m m n k n m n n m l l</spanx></c>
<c> 3</c>
<c><spanx style="vbare">i k j k k j j j j j i i i i i j</spanx></c>
<c> 4</c>
<c><spanx style="vbare">i o n m o m p n m m m n n m m l</spanx></c>
<c> 5</c>
<c><spanx style="vbare">i l n n m l l n l l l l l l k m</spanx></c>
<c> 6</c>
<c><spanx style="vbare">i i i i i i i i i i i i i i i i</spanx></c>
<c> 7</c>
<c><spanx style="vbare">i k o l p k n l m n n m l l k l</spanx></c>
<c> 8</c>
<c><spanx style="vbare">i o k o o m n m o n m m n l l l</spanx></c>
<c> 9</c>
<c><spanx style="vbare">k j i i i i i i i i i i i i i i</spanx></c>
<c>10</c>
<c><spanx style="vbare">i j i i i i i i i i i i i i i j</spanx></c>
<c>11</c>
<c><spanx style="vbare">k k l m n l l l l l l l k k j l</spanx></c>
<c>12</c>
<c><spanx style="vbare">k k l l m l l l l l l l l k j l</spanx></c>
<c>13</c>
<c><spanx style="vbare">l m m m o m m n l n m m n m l m</spanx></c>
<c>14</c>
<c><spanx style="vbare">i o m n m p n k o n p m m l n l</spanx></c>
<c>15</c>
<c><spanx style="vbare">i j i j j j j j j j i i i i j i</spanx></c>
<c>16</c>
<c><spanx style="vbare">j o n p n m n l m n m m m l l m</spanx></c>
<c>17</c>
<c><spanx style="vbare">j l l m m l l n k l l n n n l m</spanx></c>
<c>18</c>
<c><spanx style="vbare">k l l k k k l k j k j k j j j m</spanx></c>
<c>19</c>
<c><spanx style="vbare">i k l n l l k k k j j i i i i i</spanx></c>
<c>20</c>
<c><spanx style="vbare">l m l n l l k k j j j j j k k m</spanx></c>
<c>21</c>
<c><spanx style="vbare">k o l p p m n m n l n l l k l l</spanx></c>
<c>22</c>
<c><spanx style="vbare">k l n o o l n l m m l l l l k m</spanx></c>
<c>23</c>
<c><spanx style="vbare">j l l m m m m l n n n l j j j j</spanx></c>
<c>24</c>
<c><spanx style="vbare">k n l o o m p m m n l m m l l l</spanx></c>
<c>25</c>
<c><spanx style="vbare">i o j j i i i i i i i i i i i i</spanx></c>
<c>26</c>
<c><spanx style="vbare">i o o l n k n n l m m p p m m m</spanx></c>
<c>27</c>
<c><spanx style="vbare">l l p l n m l l l k k l l l k l</spanx></c>
<c>28</c>
<c><spanx style="vbare">i i j i i i k j k j j k k k j j</spanx></c>
<c>29</c>
<c><spanx style="vbare">i l k n l l k l k j i i j i i j</spanx></c>
<c>30</c>
<c><spanx style="vbare">l n n m p n l l k l k k j i j i</spanx></c>
<c>31</c>
<c><spanx style="vbare">k l n l m l l l k j k o m i i i</spanx></c>
</texttable>
<t>
Decoding the second stage residual proceeds as follows.
For each coefficient, the decoder reads a symbol using the PDF corresponding to
I1 from either <xref target="silk_nlsf_nbmb_stage2_cb_sel"/> or
<xref target="silk_nlsf_wb_stage2_cb_sel"/>, and subtracts 4 from the result
to give an index in the range -4 to 4, inclusive.
If the index is either -4 or 4, it reads a second symbol using the PDF in
<xref target="silk_nlsf_ext_pdf"/>, and adds the value of this second symbol
to the index, using the same sign.
This gives the index, I2[k], a total range of -10 to 10, inclusive.
</t>
<texttable anchor="silk_nlsf_ext_pdf"
title="PDF for Normalized LSF Index Extension Decoding">
<ttcol align="left">PDF</ttcol>
<c>{156, 60, 24, 9, 4, 2, 1}/256</c>
</texttable>
<t>
The decoded indices from both stages are translated back into normalized LSF
coefficients in silk_NLSF_decode() (NLSF_decode.c).
The stage-2 indices represent residuals after both the first stage of the VQ
and a separate backwards-prediction step.
The backwards prediction process in the encoder subtracts a prediction from
each residual formed by a multiple of the coefficient that follows it.
The decoder must undo this process.
<xref target="silk_nlsf_pred_weights"/> contains lists of prediction weights
for each coefficient.
There are two lists for NB and MB, and another two lists for WB, giving two
possible prediction weights for each coefficient.
</t>
<texttable anchor="silk_nlsf_pred_weights"
title="Prediction Weights for Normalized LSF Decoding">
<ttcol align="left">Coefficient</ttcol>
<ttcol align="right">A</ttcol>
<ttcol align="right">B</ttcol>
<ttcol align="right">C</ttcol>
<ttcol align="right">D</ttcol>
<c>0</c> <c>179</c> <c>116</c> <c>175</c> <c>68</c>
<c>1</c> <c>138</c> <c>67</c> <c>148</c> <c>62</c>
<c>2</c> <c>140</c> <c>82</c> <c>160</c> <c>66</c>
<c>3</c> <c>148</c> <c>59</c> <c>176</c> <c>60</c>
<c>4</c> <c>151</c> <c>92</c> <c>178</c> <c>72</c>
<c>5</c> <c>149</c> <c>72</c> <c>173</c> <c>117</c>
<c>6</c> <c>153</c> <c>100</c> <c>174</c> <c>85</c>
<c>7</c> <c>151</c> <c>89</c> <c>164</c> <c>90</c>
<c>8</c> <c>163</c> <c>92</c> <c>177</c> <c>118</c>
<c>9</c> <c/> <c/> <c>174</c> <c>136</c>
<c>10</c> <c/> <c/> <c>196</c> <c>151</c>
<c>11</c> <c/> <c/> <c>182</c> <c>142</c>
<c>12</c> <c/> <c/> <c>198</c> <c>160</c>
<c>13</c> <c/> <c/> <c>192</c> <c>142</c>
<c>14</c> <c/> <c/> <c>182</c> <c>155</c>
</texttable>
<t>
The prediction is undone using the procedure implemented in
silk_NLSF_residual_dequant() (NLSF_decode.c), which is as follows.
Each coefficient selects its prediction weight from one of the two lists based
on the stage-1 index, I1.
<xref target="silk_nlsf_nbmb_weight_sel"/> gives the selections for each
coefficient for NB and MB, and <xref target="silk_nlsf_wb_weight_sel"/> gives
the selections for WB.
Let d_LPC be the order of the codebook, i.e., 10 for NB and MB, and 16 for WB,
and let pred_Q8[k] be the weight for the k'th coefficient selected by this
process for 0 <= k < d_LPC-1.
Then, the stage-2 residual for each coefficient is computed via
<figure align="center">
<artwork align="center"><![CDATA[
res_Q10[k] = (k+1 < d_LPC ? (res_Q10[k+1]*pred_Q8[k])>>8 : 0)
+ ((((I2[k]<<10) - sign(I2[k])*102)*qstep)>>16) ,
]]></artwork>
</figure>
where qstep is the Q16 quantization step size, which is 11796 for NB and MB
and 9830 for WB (representing step sizes of approximately 0.18 and 0.15,
respectively).
</t>
<texttable anchor="silk_nlsf_nbmb_weight_sel"
title="Prediction Weight Selection for NB/MB Normalized LSF Decoding">
<ttcol>I1</ttcol>
<ttcol>Coefficient</ttcol>
<c/>
<c><spanx style="vbare">0 1 2 3 4 5 6 7 8</spanx></c>
<c> 0</c>
<c><spanx style="vbare">A B A A A A A A A</spanx></c>
<c> 1</c>
<c><spanx style="vbare">B A A A A A A A A</spanx></c>
<c> 2</c>
<c><spanx style="vbare">A A A A A A A A A</spanx></c>
<c> 3</c>
<c><spanx style="vbare">B B B A A A A B A</spanx></c>
<c> 4</c>
<c><spanx style="vbare">A B A A A A A A A</spanx></c>
<c> 5</c>
<c><spanx style="vbare">A B A A A A A A A</spanx></c>
<c> 6</c>
<c><spanx style="vbare">B A B B A A A B A</spanx></c>
<c> 7</c>
<c><spanx style="vbare">A B B A A B B A A</spanx></c>
<c> 8</c>
<c><spanx style="vbare">A A B B A B A B B</spanx></c>
<c> 9</c>
<c><spanx style="vbare">A A B B A A B B B</spanx></c>
<c>10</c>
<c><spanx style="vbare">A A A A A A A A A</spanx></c>
<c>11</c>
<c><spanx style="vbare">A B A B B B B B A</spanx></c>
<c>12</c>
<c><spanx style="vbare">A B A B B B B B A</spanx></c>
<c>13</c>
<c><spanx style="vbare">A B B B B B B B A</spanx></c>
<c>14</c>
<c><spanx style="vbare">B A B B A B B B B</spanx></c>
<c>15</c>
<c><spanx style="vbare">A B B B B B A B A</spanx></c>
<c>16</c>
<c><spanx style="vbare">A A B B A B A B A</spanx></c>
<c>17</c>
<c><spanx style="vbare">A A B B B A B B B</spanx></c>
<c>18</c>
<c><spanx style="vbare">A B B A A B B B A</spanx></c>
<c>19</c>
<c><spanx style="vbare">A A A B B B A B A</spanx></c>
<c>20</c>
<c><spanx style="vbare">A B B A A B A B A</spanx></c>
<c>21</c>
<c><spanx style="vbare">A B B A A A B B A</spanx></c>
<c>22</c>
<c><spanx style="vbare">A A A A A B B B B</spanx></c>
<c>23</c>
<c><spanx style="vbare">A A B B A A A B B</spanx></c>
<c>24</c>
<c><spanx style="vbare">A A A B A B B B B</spanx></c>
<c>25</c>
<c><spanx style="vbare">A B B B B B B B A</spanx></c>
<c>26</c>
<c><spanx style="vbare">A A A A A A A A A</spanx></c>
<c>27</c>
<c><spanx style="vbare">A A A A A A A A A</spanx></c>
<c>28</c>
<c><spanx style="vbare">A A B A B B A B A</spanx></c>
<c>29</c>
<c><spanx style="vbare">B A A B A A A A A</spanx></c>
<c>30</c>
<c><spanx style="vbare">A A A B B A B A B</spanx></c>
<c>31</c>
<c><spanx style="vbare">B A B B A B B B B</spanx></c>
</texttable>
<texttable anchor="silk_nlsf_wb_weight_sel"
title="Prediction Weight Selection for WB Normalized LSF Decoding">
<ttcol>I1</ttcol>
<ttcol>Coefficient</ttcol>
<c/>
<c><spanx style="vbare">0 1 2 3 4 5 6 7 8 9 10 11 12 13 14</spanx></c>
<c> 0</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c> 1</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C C</spanx></c>
<c> 2</c>
<c><spanx style="vbare">C C D C C D D D C D D D D C C</spanx></c>
<c> 3</c>
<c><spanx style="vbare">C C C C C C C C C C C C D C C</spanx></c>
<c> 4</c>
<c><spanx style="vbare">C D D C D C D D C D D D D D C</spanx></c>
<c> 5</c>
<c><spanx style="vbare">C C D C C C C C C C C C C C C</spanx></c>
<c> 6</c>
<c><spanx style="vbare">D C C C C C C C C C C D C D C</spanx></c>
<c> 7</c>
<c><spanx style="vbare">C D D C C C D C D D D C D C D</spanx></c>
<c> 8</c>
<c><spanx style="vbare">C D C D D C D C D C D D D D D</spanx></c>
<c> 9</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>10</c>
<c><spanx style="vbare">C D C C C C C C C C C C C C C</spanx></c>
<c>11</c>
<c><spanx style="vbare">C C D C D D D D D D D C D C C</spanx></c>
<c>12</c>
<c><spanx style="vbare">C C D C C D C D C D C C D C C</spanx></c>
<c>13</c>
<c><spanx style="vbare">C C C C D D C D C D D D D C C</spanx></c>
<c>14</c>
<c><spanx style="vbare">C D C C C D D C D D D C D D D</spanx></c>
<c>15</c>
<c><spanx style="vbare">C C D D C C C C C C C C D D C</spanx></c>
<c>16</c>
<c><spanx style="vbare">C D D C D C D D D D D C D C C</spanx></c>
<c>17</c>
<c><spanx style="vbare">C C D C C C C D C C D D D C C</spanx></c>
<c>18</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>19</c>
<c><spanx style="vbare">C C C C C C C C C C C C D C C</spanx></c>
<c>20</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C C</spanx></c>
<c>21</c>
<c><spanx style="vbare">C D C D C D D C D C D C D D C</spanx></c>
<c>22</c>
<c><spanx style="vbare">C C D D D D C D D C C D D C C</spanx></c>
<c>23</c>
<c><spanx style="vbare">C D D C D C D C D C C C C D C</spanx></c>
<c>24</c>
<c><spanx style="vbare">C C C D D C D C D D D D D D D</spanx></c>
<c>25</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>26</c>
<c><spanx style="vbare">C D D C C C D D C C D D D D D</spanx></c>
<c>27</c>
<c><spanx style="vbare">C C C C C D C D D D D C D D D</spanx></c>
<c>28</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>29</c>
<c><spanx style="vbare">C C C C C C C C C C C C C C D</spanx></c>
<c>30</c>
<c><spanx style="vbare">D C C C C C C C C C C D C C C</spanx></c>
<c>31</c>
<c><spanx style="vbare">C C D C C D D D C C D C C D C</spanx></c>
</texttable>
</section>
<section anchor="silk_nlsf_reconstruction"
title="Reconstructing the Normalized LSF Coefficients">
<t>
Once the stage-1 index I1 and the stage-2 residual res_Q10[] have been decoded,
the final normalized LSF coefficients can be reconstructed.
</t>
<t>
The spectral distortion introduced by the quantization of each LSF coefficient
varies, so the stage-2 residual is weighted accordingly, using the
low-complexity Inverse Harmonic Mean Weighting (IHMW) function proposed in
<xref target="laroia-icassp"/>.
The weights are derived directly from the stage-1 codebook vector.
Let cb1_Q8[k] be the k'th entry of the stage-1 codebook vector from
<xref target="silk_nlsf_nbmb_codebook"/> or
<xref target="silk_nlsf_wb_codebook"/>.
Then for 0 <= k < d_LPC the following expression
computes the square of the weight as a Q18 value:
<figure align="center">
<artwork align="center">
<![CDATA[
w2_Q18[k] = (1024/(cb1_Q8[k] - cb1_Q8[k-1])
+ 1024/(cb1_Q8[k+1] - cb1_Q8[k])) << 16 ,
]]>
</artwork>
</figure>
where cb1_Q8[-1] = 0 and cb1_Q8[d_LPC] = 256, and the
division is integer division.
This is reduced to an unsquared, Q9 value using the following square-root
approximation:
<figure align="center">
<artwork align="center"><![CDATA[
i = ilog(w2_Q18[k])
f = (w2_Q18[k]>>(i-8)) & 127
y = ((i&1) ? 32768 : 46214) >> ((32-i)>>1)
w_Q9[k] = y + ((213*f*y)>>16)
]]></artwork>
</figure>
The constant 46214 here is approximately the square root of 2 in Q15.
The cb1_Q8[] vector completely determines these weights, and they may be
tabulated and stored as 13-bit unsigned values (with a range of 1819 to 5227,
inclusive) to avoid computing them when decoding.
The reference implementation already requires code to compute these weights on
unquantized coefficients in the encoder, in silk_NLSF_VQ_weights_laroia()
(NLSF_VQ_weights_laroia.c) and its callers, so it reuses that code in the
decoder instead of using a pre-computed table to reduce the amount of ROM
required.
</t>
<texttable anchor="silk_nlsf_nbmb_codebook"
title="NB/MB Normalized LSF Stage-1 Codebook Vectors">
<ttcol>I1</ttcol>
<ttcol>Codebook (Q8)</ttcol>
<c/>
<c><spanx style="vbare"> 0 1 2 3 4 5 6 7 8 9</spanx></c>
<c>0</c>
<c><spanx style="vbare">12 35 60 83 108 132 157 180 206 228</spanx></c>
<c>1</c>
<c><spanx style="vbare">15 32 55 77 101 125 151 175 201 225</spanx></c>
<c>2</c>
<c><spanx style="vbare">19 42 66 89 114 137 162 184 209 230</spanx></c>
<c>3</c>
<c><spanx style="vbare">12 25 50 72 97 120 147 172 200 223</spanx></c>
<c>4</c>
<c><spanx style="vbare">26 44 69 90 114 135 159 180 205 225</spanx></c>
<c>5</c>
<c><spanx style="vbare">13 22 53 80 106 130 156 180 205 228</spanx></c>
<c>6</c>
<c><spanx style="vbare">15 25 44 64 90 115 142 168 196 222</spanx></c>
<c>7</c>
<c><spanx style="vbare">19 24 62 82 100 120 145 168 190 214</spanx></c>
<c>8</c>
<c><spanx style="vbare">22 31 50 79 103 120 151 170 203 227</spanx></c>
<c>9</c>
<c><spanx style="vbare">21 29 45 65 106 124 150 171 196 224</spanx></c>
<c>10</c>
<c><spanx style="vbare">30 49 75 97 121 142 165 186 209 229</spanx></c>
<c>11</c>
<c><spanx style="vbare">19 25 52 70 93 116 143 166 192 219</spanx></c>
<c>12</c>
<c><spanx style="vbare">26 34 62 75 97 118 145 167 194 217</spanx></c>
<c>13</c>
<c><spanx style="vbare">25 33 56 70 91 113 143 165 196 223</spanx></c>
<c>14</c>
<c><spanx style="vbare">21 34 51 72 97 117 145 171 196 222</spanx></c>
<c>15</c>
<c><spanx style="vbare">20 29 50 67 90 117 144 168 197 221</spanx></c>
<c>16</c>
<c><spanx style="vbare">22 31 48 66 95 117 146 168 196 222</spanx></c>
<c>17</c>
<c><spanx style="vbare">24 33 51 77 116 134 158 180 200 224</spanx></c>
<c>18</c>
<c><spanx style="vbare">21 28 70 87 106 124 149 170 194 217</spanx></c>
<c>19</c>
<c><spanx style="vbare">26 33 53 64 83 117 152 173 204 225</spanx></c>
<c>20</c>
<c><spanx style="vbare">27 34 65 95 108 129 155 174 210 225</spanx></c>
<c>21</c>
<c><spanx style="vbare">20 26 72 99 113 131 154 176 200 219</spanx></c>
<c>22</c>
<c><spanx style="vbare">34 43 61 78 93 114 155 177 205 229</spanx></c>
<c>23</c>
<c><spanx style="vbare">23 29 54 97 124 138 163 179 209 229</spanx></c>
<c>24</c>
<c><spanx style="vbare">30 38 56 89 118 129 158 178 200 231</spanx></c>
<c>25</c>
<c><spanx style="vbare">21 29 49 63 85 111 142 163 193 222</spanx></c>
<c>26</c>
<c><spanx style="vbare">27 48 77 103 133 158 179 196 215 232</spanx></c>
<c>27</c>
<c><spanx style="vbare">29 47 74 99 124 151 176 198 220 237</spanx></c>
<c>28</c>
<c><spanx style="vbare">33 42 61 76 93 121 155 174 207 225</spanx></c>
<c>29</c>
<c><spanx style="vbare">29 53 87 112 136 154 170 188 208 227</spanx></c>
<c>30</c>
<c><spanx style="vbare">24 30 52 84 131 150 166 186 203 229</spanx></c>
<c>31</c>
<c><spanx style="vbare">37 48 64 84 104 118 156 177 201 230</spanx></c>
</texttable>
<texttable anchor="silk_nlsf_wb_codebook"
title="WB Normalized LSF Stage-1 Codebook Vectors">
<ttcol>I1</ttcol>
<ttcol>Codebook (Q8)</ttcol>
<c/>
<c><spanx style="vbare"> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</spanx></c>
<c>0</c>
<c><spanx style="vbare"> 7 23 38 54 69 85 100 116 131 147 162 178 193 208 223 239</spanx></c>
<c>1</c>
<c><spanx style="vbare">13 25 41 55 69 83 98 112 127 142 157 171 187 203 220 236</spanx></c>
<c>2</c>
<c><spanx style="vbare">15 21 34 51 61 78 92 106 126 136 152 167 185 205 225 240</spanx></c>
<c>3</c>
<c><spanx style="vbare">10 21 36 50 63 79 95 110 126 141 157 173 189 205 221 237</spanx></c>
<c>4</c>
<c><spanx style="vbare">17 20 37 51 59 78 89 107 123 134 150 164 184 205 224 240</spanx></c>
<c>5</c>
<c><spanx style="vbare">10 15 32 51 67 81 96 112 129 142 158 173 189 204 220 236</spanx></c>
<c>6</c>
<c><spanx style="vbare"> 8 21 37 51 65 79 98 113 126 138 155 168 179 192 209 218</spanx></c>
<c>7</c>
<c><spanx style="vbare">12 15 34 55 63 78 87 108 118 131 148 167 185 203 219 236</spanx></c>
<c>8</c>
<c><spanx style="vbare">16 19 32 36 56 79 91 108 118 136 154 171 186 204 220 237</spanx></c>
<c>9</c>
<c><spanx style="vbare">11 28 43 58 74 89 105 120 135 150 165 180 196 211 226 241</spanx></c>
<c>10</c>
<c><spanx style="vbare"> 6 16 33 46 60 75 92 107 123 137 156 169 185 199 214 225</spanx></c>
<c>11</c>
<c><spanx style="vbare">11 19 30 44 57 74 89 105 121 135 152 169 186 202 218 234</spanx></c>
<c>12</c>
<c><spanx style="vbare">12 19 29 46 57 71 88 100 120 132 148 165 182 199 216 233</spanx></c>
<c>13</c>
<c><spanx style="vbare">17 23 35 46 56 77 92 106 123 134 152 167 185 204 222 237</spanx></c>
<c>14</c>
<c><spanx style="vbare">14 17 45 53 63 75 89 107 115 132 151 171 188 206 221 240</spanx></c>
<c>15</c>
<c><spanx style="vbare"> 9 16 29 40 56 71 88 103 119 137 154 171 189 205 222 237</spanx></c>
<c>16</c>
<c><spanx style="vbare">16 19 36 48 57 76 87 105 118 132 150 167 185 202 218 236</spanx></c>
<c>17</c>
<c><spanx style="vbare">12 17 29 54 71 81 94 104 126 136 149 164 182 201 221 237</spanx></c>
<c>18</c>
<c><spanx style="vbare">15 28 47 62 79 97 115 129 142 155 168 180 194 208 223 238</spanx></c>
<c>19</c>
<c><spanx style="vbare"> 8 14 30 45 62 78 94 111 127 143 159 175 192 207 223 239</spanx></c>
<c>20</c>
<c><spanx style="vbare">17 30 49 62 79 92 107 119 132 145 160 174 190 204 220 235</spanx></c>
<c>21</c>
<c><spanx style="vbare">14 19 36 45 61 76 91 108 121 138 154 172 189 205 222 238</spanx></c>
<c>22</c>
<c><spanx style="vbare">12 18 31 45 60 76 91 107 123 138 154 171 187 204 221 236</spanx></c>
<c>23</c>
<c><spanx style="vbare">13 17 31 43 53 70 83 103 114 131 149 167 185 203 220 237</spanx></c>
<c>24</c>
<c><spanx style="vbare">17 22 35 42 58 78 93 110 125 139 155 170 188 206 224 240</spanx></c>
<c>25</c>
<c><spanx style="vbare"> 8 15 34 50 67 83 99 115 131 146 162 178 193 209 224 239</spanx></c>
<c>26</c>
<c><spanx style="vbare">13 16 41 66 73 86 95 111 128 137 150 163 183 206 225 241</spanx></c>
<c>27</c>
<c><spanx style="vbare">17 25 37 52 63 75 92 102 119 132 144 160 175 191 212 231</spanx></c>
<c>28</c>
<c><spanx style="vbare">19 31 49 65 83 100 117 133 147 161 174 187 200 213 227 242</spanx></c>
<c>29</c>
<c><spanx style="vbare">18 31 52 68 88 103 117 126 138 149 163 177 192 207 223 239</spanx></c>
<c>30</c>
<c><spanx style="vbare">16 29 47 61 76 90 106 119 133 147 161 176 193 209 224 240</spanx></c>
<c>31</c>
<c><spanx style="vbare">15 21 35 50 61 73 86 97 110 119 129 141 175 198 218 237</spanx></c>
</texttable>
<t>
Given the stage-1 codebook entry cb1_Q8[], the stage-2 residual res_Q10[], and
their corresponding weights, w_Q9[], the reconstructed normalized LSF
coefficients are
<figure align="center">
<artwork align="center"><![CDATA[
NLSF_Q15[k] = clamp(0,
(cb1_Q8[k]<<7) + (res_Q10[k]<<14)/w_Q9[k], 32767) ,
]]></artwork>
</figure>
where the division is integer division.
However, nothing in either the reconstruction process or the
quantization process in the encoder thus far guarantees that the coefficients
are monotonically increasing and separated well enough to ensure a stable
filter <xref target="Kabal86"/>.
When using the reference encoder, roughly 2% of frames violate this constraint.
The next section describes a stabilization procedure used to make these
guarantees.
</t>
</section>
<section anchor="silk_nlsf_stabilization" title="Normalized LSF Stabilization">
<t>
The normalized LSF stabilization procedure is implemented in
silk_NLSF_stabilize() (NLSF_stabilize.c).
This process ensures that consecutive values of the normalized LSF
coefficients, NLSF_Q15[], are spaced some minimum distance apart
(predetermined to be the 0.01 percentile of a large training set).
<xref target="silk_nlsf_min_spacing"/> gives the minimum spacings for NB and MB
and those for WB, where row k is the minimum allowed value of
NLSF_Q[k]-NLSF_Q[k-1].
For the purposes of computing this spacing for the first and last coefficient,
NLSF_Q15[-1] is taken to be 0, and NLSF_Q15[d_LPC] is taken to be 32768.
</t>
<texttable anchor="silk_nlsf_min_spacing"
title="Minimum Spacing for Normalized LSF Coefficients">
<ttcol>Coefficient</ttcol>
<ttcol align="right">NB and MB</ttcol>
<ttcol align="right">WB</ttcol>
<c>0</c> <c>250</c> <c>100</c>
<c>1</c> <c>3</c> <c>3</c>
<c>2</c> <c>6</c> <c>40</c>
<c>3</c> <c>3</c> <c>3</c>
<c>4</c> <c>3</c> <c>3</c>
<c>5</c> <c>3</c> <c>3</c>
<c>6</c> <c>4</c> <c>5</c>
<c>7</c> <c>3</c> <c>14</c>
<c>8</c> <c>3</c> <c>14</c>
<c>9</c> <c>3</c> <c>10</c>
<c>10</c> <c>461</c> <c>11</c>
<c>11</c> <c/> <c>3</c>
<c>12</c> <c/> <c>8</c>
<c>13</c> <c/> <c>9</c>
<c>14</c> <c/> <c>7</c>
<c>15</c> <c/> <c>3</c>
<c>16</c> <c/> <c>347</c>
</texttable>
<t>
The procedure starts off by trying to make small adjustments which attempt to
minimize the amount of distortion introduced.
After 20 such adjustments, it falls back to a more direct method which
guarantees the constraints are enforced but may require large adjustments.
</t>
<t>
Let NDeltaMin_Q15[k] be the minimum required spacing for the current audio
bandwidth from <xref target="silk_nlsf_min_spacing"/>.
First, the procedure finds the index i where
NLSF_Q15[i] - NLSF_Q15[i-1] - NDeltaMin_Q15[i] is the
smallest, breaking ties by using the lower value of i.
If this value is non-negative, then the stabilization stops; the coefficients
satisfy all the constraints.
Otherwise, if i == 0, it sets NLSF_Q15[0] to NDeltaMin_Q15[0], and if
i == d_LPC, it sets NLSF_Q15[d_LPC-1] to
(32768 - NDeltaMin_Q15[d_LPC]).
For all other values of i, both NLSF_Q15[i-1] and NLSF_Q15[i] are updated as
follows:
<figure align="center">
<artwork align="center"><![CDATA[
i-1
__
min_center_Q15 = (NDeltaMin_Q15[i]>>1) + \ NDeltaMin_Q15[k]
/_
k=0
d_LPC
__
max_center_Q15 = 32768 - (NDeltaMin_Q15[i]>>1) - \ NDeltaMin_Q15[k]
/_
k=i+1
center_freq_Q15 = clamp(min_center_Q15[i],
(NLSF_Q15[i-1] + NLSF_Q15[i] + 1)>>1,
max_center_Q15[i])
NLSF_Q15[i-1] = center_freq_Q15 - (NDeltaMin_Q15[i]>>1)
NLSF_Q15[i] = NLSF_Q15[i-1] + NDeltaMin_Q15[i] .
]]></artwork>
</figure>
Then the procedure repeats again, until it has either executed 20 times or
has stopped because the coefficients satisfy all the constraints.
</t>
<t>
After the 20th repetition of the above procedure, the following fallback
procedure executes once.
First, the values of NLSF_Q15[k] for 0 <= k < d_LPC
are sorted in ascending order.
Then for each value of k from 0 to d_LPC-1, NLSF_Q15[k] is set to
<figure align="center">
<artwork align="center"><![CDATA[
max(NLSF_Q15[k], NLSF_Q15[k-1] + NDeltaMin_Q15[k]) .
]]></artwork>
</figure>
Next, for each value of k from d_LPC-1 down to 0, NLSF_Q15[k] is set to
<figure align="center">
<artwork align="center"><![CDATA[
min(NLSF_Q15[k], NLSF_Q15[k+1] - NDeltaMin_Q15[k+1]) .
]]></artwork>
</figure>
</t>
</section>
<section anchor="silk_nlsf_interpolation" title="Normalized LSF Interpolation">
<t>
For 20 ms SILK frames, the first half of the frame (i.e., the first two
subframes) may use normalized LSF coefficients that are interpolated between
the decoded LSFs for the most recent coded frame (in the same channel) and the
current frame.
A Q2 interpolation factor follows the LSF coefficient indices in the bitstream,
which is decoded using the PDF in <xref target="silk_nlsf_interp_pdf"/>.
This happens in silk_decode_indices() (decode_indices.c).
After either
<list style="symbols">
<t>An uncoded regular SILK frame in the side channel, or</t>
<t>A decoder reset (see <xref target="decoder-reset"/>),</t>
</list>
the decoder still decodes this factor, but ignores its value and always uses
4 instead.
For 10 ms SILK frames, this factor is not stored at all.
</t>
<texttable anchor="silk_nlsf_interp_pdf"
title="PDF for Normalized LSF Interpolation Index">
<ttcol>PDF</ttcol>
<c>{13, 22, 29, 11, 181}/256</c>
</texttable>
<t>
Let n2_Q15[k] be the normalized LSF coefficients decoded by the procedure in
<xref target="silk_nlsfs"/>, n0_Q15[k] be the LSF coefficients
decoded for the prior frame, and w_Q2 be the interpolation factor.
Then the normalized LSF coefficients used for the first half of a 20 ms
frame, n1_Q15[k], are
<figure align="center">
<artwork align="center"><![CDATA[
n1_Q15[k] = n0_Q15[k] + (w_Q2*(n2_Q15[k] - n0_Q15[k]) >> 2) .
]]></artwork>
</figure>
This interpolation is performed in silk_decode_parameters()
(decode_parameters.c).
</t>
</section>
<section anchor="silk_nlsf2lpc"
title="Converting Normalized LSFs to LPC Coefficients">
<t>
Any LPC filter A(z) can be split into a symmetric part P(z) and an
anti-symmetric part Q(z) such that
<figure align="center">
<artwork align="center"><![CDATA[
d_LPC
__ -k 1
A(z) = 1 - \ a[k] * z = - * (P(z) + Q(z))
/_ 2
k=1
]]></artwork>
</figure>
with
<figure align="center">
<artwork align="center"><![CDATA[
-d_LPC-1 -1
P(z) = A(z) + z * A(z )
-d_LPC-1 -1
Q(z) = A(z) - z * A(z ) .
]]></artwork>
</figure>
The even normalized LSF coefficients correspond to a pair of conjugate roots of
P(z), while the odd coefficients correspond to a pair of conjugate roots of
Q(z), all of which lie on the unit circle.
In addition, P(z) has a root at pi and Q(z) has a root at 0.
Thus, they may be reconstructed mathematically from a set of normalized LSF
coefficients, n[k], as
<figure align="center">
<artwork align="center"><![CDATA[
d_LPC/2-1
-1 ___ -1 -2
P(z) = (1 + z ) * | | (1 - 2*cos(pi*n[2*k])*z + z )
k=0
d_LPC/2-1
-1 ___ -1 -2
Q(z) = (1 - z ) * | | (1 - 2*cos(pi*n[2*k+1])*z + z )
k=0
]]></artwork>
</figure>
</t>
<t>
However, SILK performs this reconstruction using a fixed-point approximation so
that all decoders can reproduce it in a bit-exact manner to avoid prediction
drift.
The function silk_NLSF2A() (NLSF2A.c) implements this procedure.
</t>
<t>
To start, it approximates cos(pi*n[k]) using a table lookup with linear
interpolation.
The encoder SHOULD use the inverse of this piecewise linear approximation,
rather than the true inverse of the cosine function, when deriving the
normalized LSF coefficients.
These values are also re-ordered to improve numerical accuracy when
constructing the LPC polynomials.
</t>
<texttable anchor="silk_nlsf_orderings"
title="LSF Ordering for Polynomial Evaluation">
<ttcol>Coefficient</ttcol>
<ttcol align="right">NB and MB</ttcol>
<ttcol align="right">WB</ttcol>
<c>0</c> <c>0</c> <c>0</c>
<c>1</c> <c>9</c> <c>15</c>
<c>2</c> <c>6</c> <c>8</c>
<c>3</c> <c>3</c> <c>7</c>
<c>4</c> <c>4</c> <c>4</c>
<c>5</c> <c>5</c> <c>11</c>
<c>6</c> <c>8</c> <c>12</c>
<c>7</c> <c>1</c> <c>3</c>
<c>8</c> <c>2</c> <c>2</c>
<c>9</c> <c>7</c> <c>13</c>
<c>10</c> <c/> <c>10</c>
<c>11</c> <c/> <c>5</c>
<c>12</c> <c/> <c>6</c>
<c>13</c> <c/> <c>9</c>
<c>14</c> <c/> <c>14</c>
<c>15</c> <c/> <c>1</c>
</texttable>
<t>
The top 7 bits of each normalized LSF coefficient index a value in the table,
and the next 8 bits interpolate between it and the next value.
Let i = (n[k] >> 8) be the integer index and
f = (n[k] & 255) be the fractional part of a given
coefficient.
Then the re-ordered, approximated cosine, c_Q17[ordering[k]], is
<figure align="center">
<artwork align="center"><![CDATA[
c_Q17[ordering[k]] = (cos_Q12[i]*256
+ (cos_Q12[i+1]-cos_Q12[i])*f + 4) >> 3 ,
]]></artwork>
</figure>
where ordering[k] is the k'th entry of the column of
<xref target="silk_nlsf_orderings"/> corresponding to the current audio
bandwidth and cos_Q12[i] is the i'th entry of <xref target="silk_cos_table"/>.
</t>
<texttable anchor="silk_cos_table"
title="Q12 Cosine Table for LSF Conversion">
<ttcol align="right">i</ttcol>
<ttcol align="right">+0</ttcol>
<ttcol align="right">+1</ttcol>
<ttcol align="right">+2</ttcol>
<ttcol align="right">+3</ttcol>
<c>0</c>
<c>4096</c> <c>4095</c> <c>4091</c> <c>4085</c>
<c>4</c>
<c>4076</c> <c>4065</c> <c>4052</c> <c>4036</c>
<c>8</c>
<c>4017</c> <c>3997</c> <c>3973</c> <c>3948</c>
<c>12</c>
<c>3920</c> <c>3889</c> <c>3857</c> <c>3822</c>
<c>16</c>
<c>3784</c> <c>3745</c> <c>3703</c> <c>3659</c>
<c>20</c>
<c>3613</c> <c>3564</c> <c>3513</c> <c>3461</c>
<c>24</c>
<c>3406</c> <c>3349</c> <c>3290</c> <c>3229</c>
<c>28</c>
<c>3166</c> <c>3102</c> <c>3035</c> <c>2967</c>
<c>32</c>
<c>2896</c> <c>2824</c> <c>2751</c> <c>2676</c>
<c>36</c>
<c>2599</c> <c>2520</c> <c>2440</c> <c>2359</c>
<c>40</c>
<c>2276</c> <c>2191</c> <c>2106</c> <c>2019</c>
<c>44</c>
<c>1931</c> <c>1842</c> <c>1751</c> <c>1660</c>
<c>48</c>
<c>1568</c> <c>1474</c> <c>1380</c> <c>1285</c>
<c>52</c>
<c>1189</c> <c>1093</c> <c>995</c> <c>897</c>
<c>56</c>
<c>799</c> <c>700</c> <c>601</c> <c>501</c>
<c>60</c>
<c>401</c> <c>301</c> <c>201</c> <c>101</c>
<c>64</c>
<c>0</c> <c>-101</c> <c>-201</c> <c>-301</c>
<c>68</c>
<c>-401</c> <c>-501</c> <c>-601</c> <c>-700</c>
<c>72</c>
<c>-799</c> <c>-897</c> <c>-995</c> <c>-1093</c>
<c>76</c>
<c>-1189</c><c>-1285</c><c>-1380</c><c>-1474</c>
<c>80</c>
<c>-1568</c><c>-1660</c><c>-1751</c><c>-1842</c>
<c>84</c>
<c>-1931</c><c>-2019</c><c>-2106</c><c>-2191</c>
<c>88</c>
<c>-2276</c><c>-2359</c><c>-2440</c><c>-2520</c>
<c>92</c>
<c>-2599</c><c>-2676</c><c>-2751</c><c>-2824</c>
<c>96</c>
<c>-2896</c><c>-2967</c><c>-3035</c><c>-3102</c>
<c>100</c>
<c>-3166</c><c>-3229</c><c>-3290</c><c>-3349</c>
<c>104</c>
<c>-3406</c><c>-3461</c><c>-3513</c><c>-3564</c>
<c>108</c>
<c>-3613</c><c>-3659</c><c>-3703</c><c>-3745</c>
<c>112</c>
<c>-3784</c><c>-3822</c><c>-3857</c><c>-3889</c>
<c>116</c>
<c>-3920</c><c>-3948</c><c>-3973</c><c>-3997</c>
<c>120</c>
<c>-4017</c><c>-4036</c><c>-4052</c><c>-4065</c>
<c>124</c>
<c>-4076</c><c>-4085</c><c>-4091</c><c>-4095</c>
<c>128</c>
<c>-4096</c> <c/> <c/> <c/>
</texttable>
<t>
Given the list of cosine values, silk_NLSF2A_find_poly() (NLSF2A.c)
computes the coefficients of P and Q, described here via a simple recurrence.
Let p_Q16[k][j] and q_Q16[k][j] be the coefficients of the products of the
first (k+1) root pairs for P and Q, with j indexing the coefficient number.
Only the first (k+2) coefficients are needed, as the products are symmetric.
Let p_Q16[0][0] = q_Q16[0][0] = 1<<16,
p_Q16[0][1] = -c_Q17[0], q_Q16[0][1] = -c_Q17[1], and
d2 = d_LPC/2.
As boundary conditions, assume
p_Q16[k][j] = q_Q16[k][j] = 0 for all
j < 0.
Also, assume p_Q16[k][k+2] = p_Q16[k][k] and
q_Q16[k][k+2] = q_Q16[k][k] (because of the symmetry).
Then, for 0 < k < d2 and 0 <= j <= k+1,
<figure align="center">
<artwork align="center"><![CDATA[
p_Q16[k][j] = p_Q16[k-1][j] + p_Q16[k-1][j-2]
- ((c_Q17[2*k]*p_Q16[k-1][j-1] + 32768)>>16) ,
q_Q16[k][j] = q_Q16[k-1][j] + q_Q16[k-1][j-2]
- ((c_Q17[2*k+1]*q_Q16[k-1][j-1] + 32768)>>16) .
]]></artwork>
</figure>
The use of Q17 values for the cosine terms in an otherwise Q16 expression
implicitly scales them by a factor of 2.
The multiplications in this recurrence may require up to 48 bits of precision
in the result to avoid overflow.
In practice, each row of the recurrence only depends on the previous row, so an
implementation does not need to store all of them.
</t>
<t>
silk_NLSF2A() uses the values from the last row of this recurrence to
reconstruct a 32-bit version of the LPC filter (without the leading 1.0
coefficient), a32_Q17[k], 0 <= k < d2:
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q17[k] = -(q_Q16[d2-1][k+1] - q_Q16[d2-1][k])
- (p_Q16[d2-1][k+1] + p_Q16[d2-1][k])) ,
a32_Q17[d_LPC-k-1] = (q_Q16[d2-1][k+1] - q_Q16[d2-1][k])
- (p_Q16[d2-1][k+1] + p_Q16[d2-1][k])) .
]]></artwork>
</figure>
The sum and difference of two terms from each of the p_Q16 and q_Q16
coefficient lists reflect the (1 + z**-1) and
(1 - z**-1) factors of P and Q, respectively.
The promotion of the expression from Q16 to Q17 implicitly scales the result
by 1/2.
</t>
</section>
<section anchor="silk_lpc_range_limit"
title="Limiting the Range of the LPC Coefficients">
<t>
The a32_Q17[] coefficients are too large to fit in a 16-bit value, which
significantly increases the cost of applying this filter in fixed-point
decoders.
Reducing them to Q12 precision doesn't incur any significant quality loss,
but still does not guarantee they will fit.
silk_NLSF2A() applies up to 10 rounds of bandwidth expansion to limit
the dynamic range of these coefficients.
Even floating-point decoders SHOULD perform these steps, to avoid mismatch.
</t>
<t>
For each round, the process first finds the index k such that abs(a32_Q17[k])
is largest, breaking ties by choosing the lowest value of k.
Then, it computes the corresponding Q12 precision value, maxabs_Q12, subject to
an upper bound to avoid overflow in subsequent computations:
<figure align="center">
<artwork align="center"><![CDATA[
maxabs_Q12 = min((maxabs_Q17 + 16) >> 5, 163838) .
]]></artwork>
</figure>
If this is larger than 32767, the procedure derives the chirp factor,
sc_Q16[0], to use in the bandwidth expansion as
<figure align="center">
<artwork align="center"><![CDATA[
(maxabs_Q12 - 32767) << 14
sc_Q16[0] = 65470 - -------------------------- ,
(maxabs_Q12 * (k+1)) >> 2
]]></artwork>
</figure>
where the division here is integer division.
This is an approximation of the chirp factor needed to reduce the target
coefficient to 32767, though it is both less than 0.999 and, for
k > 0 when maxabs_Q12 is much greater than 32767, still slightly
too large.
The upper bound on maxabs_Q12, 163838, was chosen because it is equal to
((2**31 - 1) >> 14) + 32767, i.e., the
largest value of maxabs_Q12 that would not overflow the numerator in the
equation above when stored in a signed 32-bit integer.
</t>
<t>
silk_bwexpander_32() (bwexpander_32.c) performs the bandwidth expansion (again,
only when maxabs_Q12 is greater than 32767) using the following recurrence:
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q17[k] = (a32_Q17[k]*sc_Q16[k]) >> 16
sc_Q16[k+1] = (sc_Q16[0]*sc_Q16[k] + 32768) >> 16
]]></artwork>
</figure>
The first multiply may require up to 48 bits of precision in the result to
avoid overflow.
The second multiply must be unsigned to avoid overflow with only 32 bits of
precision.
The reference implementation uses a slightly more complex formulation that
avoids the 32-bit overflow using signed multiplication, but is otherwise
equivalent.
</t>
<t>
After 10 rounds of bandwidth expansion are performed, they are simply saturated
to 16 bits:
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q17[k] = clamp(-32768, (a32_Q17[k] + 16) >> 5, 32767) << 5 .
]]></artwork>
</figure>
Because this performs the actual saturation in the Q12 domain, but converts the
coefficients back to the Q17 domain for the purposes of prediction gain
limiting, this step must be performed after the 10th round of bandwidth
expansion, regardless of whether or not the Q12 version of any coefficient
still overflows a 16-bit integer.
This saturation is not performed if maxabs_Q12 drops to 32767 or less prior to
the 10th round.
</t>
</section>
<section anchor="silk_lpc_gain_limit"
title="Limiting the Prediction Gain of the LPC Filter">
<t>
The prediction gain of an LPC synthesis filter is the square-root of the output
energy when the filter is excited by a unit-energy impulse.
Even if the Q12 coefficients would fit, the resulting filter may still have a
significant gain (especially for voiced sounds), making the filter unstable.
silk_NLSF2A() applies up to 18 additional rounds of bandwidth expansion to
limit the prediction gain.
Instead of controlling the amount of bandwidth expansion using the prediction
gain itself (which may diverge to infinity for an unstable filter),
silk_NLSF2A() uses silk_LPC_inverse_pred_gain_QA() (LPC_inv_pred_gain.c) to
compute the reflection coefficients associated with the filter.
The filter is stable if and only if the magnitude of these coefficients is
sufficiently less than one.
The reflection coefficients, rc[k], can be computed using a simple Levinson
recurrence, initialized with the LPC coefficients
a[d_LPC-1][n] = a[n], and then updated via
<figure align="center">
<artwork align="center"><![CDATA[
rc[k] = -a[k][k] ,
a[k][n] - a[k][k-n-1]*rc[k]
a[k-1][n] = --------------------------- .
2
1 - rc[k]
]]></artwork>
</figure>
</t>
<t>
However, silk_LPC_inverse_pred_gain_QA() approximates this using fixed-point
arithmetic to guarantee reproducible results across platforms and
implementations.
Since small changes in the coefficients can make a stable filter unstable, it
takes the real Q12 coefficients that will be used during reconstruction as
input.
Thus, let
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q12[n] = (a32_Q17[n] + 16) >> 5
]]></artwork>
</figure>
be the Q12 version of the LPC coefficients that will eventually be used.
As a simple initial check, the decoder computes the DC response as
<figure align="center">
<artwork align="center"><![CDATA[
d_PLC-1
__
DC_resp = \ a32_Q12[n]
/_
n=0
]]></artwork>
</figure>
and if DC_resp > 4096, the filter is unstable.
</t>
<t>
Increasing the precision of these Q12 coefficients to Q24 for intermediate
computations allows more accurate computation of the reflection coefficients,
so the decoder initializes the recurrence via
<figure align="center">
<artwork align="center"><![CDATA[
a32_Q24[d_LPC-1][n] = a32_Q12[n] << 12 .
]]></artwork>
</figure>
Then for each k from d_LPC-1 down to 0, if
abs(a32_Q24[k][k]) > 16773022, the filter is unstable and the
recurrence stops.
The constant 16773022 here is approximately 0.99975 in Q24.
Otherwise, row k-1 of a32_Q24 is computed from row k as
<figure align="center">
<artwork align="center"><![CDATA[
rc_Q31[k] = -a32_Q24[k][k] << 7 ,
div_Q30[k] = (1<<30) - (rc_Q31[k]*rc_Q31[k] >> 32) ,
b1[k] = ilog(div_Q30[k]) ,
b2[k] = b1[k] - 16 ,
(1<<29) - 1
inv_Qb2[k] = ----------------------- ,
div_Q30[k] >> (b2[k]+1)
err_Q29[k] = (1<<29)
- ((div_Q30[k]<<(15-b2[k]))*inv_Qb2[k] >> 16) ,
gain_Qb1[k] = ((inv_Qb2[k] << 16)
+ (err_Q29[k]*inv_Qb2[k] >> 13)) ,
num_Q24[k-1][n] = a32_Q24[k][n]
- ((a32_Q24[k][k-n-1]*rc_Q31[k] + (1<<30)) >> 31) ,
a32_Q24[k-1][n] = (num_Q24[k-1][n]*gain_Qb1[k]
+ (1<<(b1[k]-1))) >> b1[k] ,
]]></artwork>
</figure>
where 0 <= n < k.
Here, rc_Q30[k] are the reflection coefficients.
div_Q30[k] is the denominator for each iteration, and gain_Qb1[k] is its
multiplicative inverse (with b1[k] fractional bits, where b1[k] ranges from
20 to 31).
inv_Qb2[k], which ranges from 16384 to 32767, is a low-precision version of
that inverse (with b2[k] fractional bits).
err_Q29[k] is the residual error, ranging from -32763 to 32392, which is used
to improve the accuracy.
The values t_Q24[k-1][n] for each n are the numerators for the next row of
coefficients in the recursion, and a32_Q24[k-1][n] is the final version of
that row.
Every multiply in this procedure except the one used to compute gain_Qb1[k]
requires more than 32 bits of precision, but otherwise all intermediate
results fit in 32 bits or less.
In practice, because each row only depends on the next one, an implementation
does not need to store them all.
</t>
<t>
If abs(a32_Q24[k][k]) <= 16773022 for
0 <= k < d_LPC, then the filter is considered stable.
However, the problem of determining stability is ill-conditioned when the
filter contains several reflection coefficients whose magnitude is very close
to one.
This fixed-point algorithm is not mathematically guaranteed to correctly
classify filters as stable or unstable in this case, though it does very well
in practice.
</t>
<t>
On round i, 1 <= i <= 18, if the filter passes these
stability checks, then this procedure stops, and the final LPC coefficients to
use for reconstruction in <xref target="silk_lpc_synthesis"/> are
<figure align="center">
<artwork align="center"><![CDATA[
a_Q12[k] = (a32_Q17[k] + 16) >> 5 .
]]></artwork>
</figure>
Otherwise, a round of bandwidth expansion is applied using the same procedure
as in <xref target="silk_lpc_range_limit"/>, with
<figure align="center">
<artwork align="center"><![CDATA[
sc_Q16[0] = 65536 - (2<<i) .
]]></artwork>
</figure>
During the 15th round, sc_Q16[0] becomes 0 in the above equation, so a_Q12[k]
is set to 0 for all k, guaranteeing a stable filter.
</t>
</section>
</section>
<section anchor="silk_ltp_params" toc="include"
title="Long-Term Prediction (LTP) Parameters">
<t>
After the normalized LSF indices and, for 20 ms frames, the LSF
interpolation index, voiced frames (see <xref target="silk_frame_type"/>)
include additional LTP parameters.
There is one primary lag index for each SILK frame, but this is refined to
produce a separate lag index per subframe using a vector quantizer.
Each subframe also gets its own prediction gain coefficient.
</t>
<section anchor="silk_ltp_lags" title="Pitch Lags">
<t>
The primary lag index is coded either relative to the primary lag of the prior
frame in the same channel, or as an absolute index.
Absolute coding is used if and only if
<list style="symbols">
<t>
This is the first SILK frame of its type (LBRR or regular) for this channel in
the current Opus frame,
</t>
<t>
The previous SILK frame of the same type (LBRR or regular) for this channel in
the same Opus frame was not coded, or
</t>
<t>
That previous SILK frame was coded, but was not voiced (see
<xref target="silk_frame_type"/>).
</t>
</list>
</t>
<t>
With absolute coding, the primary pitch lag may range from 2 ms
(inclusive) up to 18 ms (exclusive), corresponding to pitches from
500 Hz down to 55.6 Hz, respectively.
It is comprised of a high part and a low part, where the decoder reads the high
part using the 32-entry codebook in <xref target="silk_abs_pitch_high_pdf"/>
and the low part using the codebook corresponding to the current audio
bandwidth from <xref target="silk_abs_pitch_low_pdf"/>.
The final primary pitch lag is then
<figure align="center">
<artwork align="center"><![CDATA[
lag = lag_high*lag_scale + lag_low + lag_min
]]></artwork>
</figure>
where lag_high is the high part, lag_low is the low part, and lag_scale
and lag_min are the values from the "Scale" and "Minimum Lag" columns of
<xref target="silk_abs_pitch_low_pdf"/>, respectively.
</t>
<texttable anchor="silk_abs_pitch_high_pdf"
title="PDF for High Part of Primary Pitch Lag">
<ttcol align="left">PDF</ttcol>
<c>{3, 3, 6, 11, 21, 30, 32, 19,
11, 10, 12, 13, 13, 12, 11, 9,
8, 7, 6, 4, 2, 2, 2, 1,
1, 1, 1, 1, 1, 1, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_abs_pitch_low_pdf"
title="PDF for Low Part of Primary Pitch Lag">
<ttcol>Audio Bandwidth</ttcol>
<ttcol>PDF</ttcol>
<ttcol>Scale</ttcol>
<ttcol>Minimum Lag</ttcol>
<ttcol>Maximum Lag</ttcol>
<c>NB</c> <c>{64, 64, 64, 64}/256</c> <c>4</c> <c>16</c> <c>144</c>
<c>MB</c> <c>{43, 42, 43, 43, 42, 43}/256</c> <c>6</c> <c>24</c> <c>216</c>
<c>WB</c> <c>{32, 32, 32, 32, 32, 32, 32, 32}/256</c> <c>8</c> <c>32</c> <c>288</c>
</texttable>
<t>
All frames that do not use absolute coding for the primary lag index use
relative coding instead.
The decoder reads a single delta value using the 21-entry PDF in
<xref target="silk_rel_pitch_pdf"/>.
If the resulting value is zero, it falls back to the absolute coding procedure
from the prior paragraph.
Otherwise, the final primary pitch lag is then
<figure align="center">
<artwork align="center"><![CDATA[
lag = previous_lag + (delta_lag_index - 9)
]]></artwork>
</figure>
where previous_lag is the primary pitch lag from the most recent frame in the
same channel and delta_lag_index is the value just decoded.
This allows a per-frame change in the pitch lag of -8 to +11 samples.
The decoder does no clamping at this point, so this value can fall outside the
range of 2 ms to 18 ms, and the decoder must use this unclamped
value when using relative coding in the next SILK frame (if any).
However, because an Opus frame can use relative coding for at most two
consecutive SILK frames, integer overflow should not be an issue.
</t>
<texttable anchor="silk_rel_pitch_pdf"
title="PDF for Primary Pitch Lag Change">
<ttcol align="left">PDF</ttcol>
<c>{46, 2, 2, 3, 4, 6, 10, 15,
26, 38, 30, 22, 15, 10, 7, 6,
4, 4, 2, 2, 2}/256</c>
</texttable>
<t>
After the primary pitch lag, a "pitch contour", stored as a single entry from
one of four small VQ codebooks, gives lag offsets for each subframe in the
current SILK frame.
The codebook index is decoded using one of the PDFs in
<xref target="silk_pitch_contour_pdfs"/> depending on the current frame size
and audio bandwidth.
Tables <xref format="counter" target="silk_pitch_contour_cb_nb10ms"/>
through <xref format="counter" target="silk_pitch_contour_cb_mbwb20ms"/>
give the corresponding offsets to apply to the primary pitch lag for each
subframe given the decoded codebook index.
</t>
<texttable anchor="silk_pitch_contour_pdfs"
title="PDFs for Subframe Pitch Contour">
<ttcol>Audio Bandwidth</ttcol>
<ttcol>SILK Frame Size</ttcol>
<ttcol align="right">Codebook Size</ttcol>
<ttcol>PDF</ttcol>
<c>NB</c> <c>10 ms</c> <c>3</c>
<c>{143, 50, 63}/256</c>
<c>NB</c> <c>20 ms</c> <c>11</c>
<c>{68, 12, 21, 17, 19, 22, 30, 24,
17, 16, 10}/256</c>
<c>MB or WB</c> <c>10 ms</c> <c>12</c>
<c>{91, 46, 39, 19, 14, 12, 8, 7,
6, 5, 5, 4}/256</c>
<c>MB or WB</c> <c>20 ms</c> <c>34</c>
<c>{33, 22, 18, 16, 15, 14, 14, 13,
13, 10, 9, 9, 8, 6, 6, 6,
5, 4, 4, 4, 3, 3, 3, 2,
2, 2, 2, 2, 2, 2, 1, 1,
1, 1}/256</c>
</texttable>
<texttable anchor="silk_pitch_contour_cb_nb10ms"
title="Codebook Vectors for Subframe Pitch Contour: NB, 10 ms Frames">
<ttcol>Index</ttcol>
<ttcol align="right">Subframe Offsets</ttcol>
<c>0</c> <c><spanx style="vbare"> 0 0</spanx></c>
<c>1</c> <c><spanx style="vbare"> 1 0</spanx></c>
<c>2</c> <c><spanx style="vbare"> 0 1</spanx></c>
</texttable>
<texttable anchor="silk_pitch_contour_cb_nb20ms"
title="Codebook Vectors for Subframe Pitch Contour: NB, 20 ms Frames">
<ttcol>Index</ttcol>
<ttcol align="right">Subframe Offsets</ttcol>
<c>0</c> <c><spanx style="vbare"> 0 0 0 0</spanx></c>
<c>1</c> <c><spanx style="vbare"> 2 1 0 -1</spanx></c>
<c>2</c> <c><spanx style="vbare">-1 0 1 2</spanx></c>
<c>3</c> <c><spanx style="vbare">-1 0 0 1</spanx></c>
<c>4</c> <c><spanx style="vbare">-1 0 0 0</spanx></c>
<c>5</c> <c><spanx style="vbare"> 0 0 0 1</spanx></c>
<c>6</c> <c><spanx style="vbare"> 0 0 1 1</spanx></c>
<c>7</c> <c><spanx style="vbare"> 1 1 0 0</spanx></c>
<c>8</c> <c><spanx style="vbare"> 1 0 0 0</spanx></c>
<c>9</c> <c><spanx style="vbare"> 0 0 0 -1</spanx></c>
<c>10</c> <c><spanx style="vbare"> 1 0 0 -1</spanx></c>
</texttable>
<texttable anchor="silk_pitch_contour_cb_mbwb10ms"
title="Codebook Vectors for Subframe Pitch Contour: MB or WB, 10 ms Frames">
<ttcol>Index</ttcol>
<ttcol align="right">Subframe Offsets</ttcol>
<c>0</c> <c><spanx style="vbare"> 0 0</spanx></c>
<c>1</c> <c><spanx style="vbare"> 0 1</spanx></c>
<c>2</c> <c><spanx style="vbare"> 1 0</spanx></c>
<c>3</c> <c><spanx style="vbare">-1 1</spanx></c>
<c>4</c> <c><spanx style="vbare"> 1 -1</spanx></c>
<c>5</c> <c><spanx style="vbare">-1 2</spanx></c>
<c>6</c> <c><spanx style="vbare"> 2 -1</spanx></c>
<c>7</c> <c><spanx style="vbare">-2 2</spanx></c>
<c>8</c> <c><spanx style="vbare"> 2 -2</spanx></c>
<c>9</c> <c><spanx style="vbare">-2 3</spanx></c>
<c>10</c> <c><spanx style="vbare"> 3 -2</spanx></c>
<c>11</c> <c><spanx style="vbare">-3 3</spanx></c>
</texttable>
<texttable anchor="silk_pitch_contour_cb_mbwb20ms"
title="Codebook Vectors for Subframe Pitch Contour: MB or WB, 20 ms Frames">
<ttcol>Index</ttcol>
<ttcol align="right">Subframe Offsets</ttcol>
<c>0</c> <c><spanx style="vbare"> 0 0 0 0</spanx></c>
<c>1</c> <c><spanx style="vbare"> 0 0 1 1</spanx></c>
<c>2</c> <c><spanx style="vbare"> 1 1 0 0</spanx></c>
<c>3</c> <c><spanx style="vbare">-1 0 0 0</spanx></c>
<c>4</c> <c><spanx style="vbare"> 0 0 0 1</spanx></c>
<c>5</c> <c><spanx style="vbare"> 1 0 0 0</spanx></c>
<c>6</c> <c><spanx style="vbare">-1 0 0 1</spanx></c>
<c>7</c> <c><spanx style="vbare"> 0 0 0 -1</spanx></c>
<c>8</c> <c><spanx style="vbare">-1 0 1 2</spanx></c>
<c>9</c> <c><spanx style="vbare"> 1 0 0 -1</spanx></c>
<c>10</c> <c><spanx style="vbare">-2 -1 1 2</spanx></c>
<c>11</c> <c><spanx style="vbare"> 2 1 0 -1</spanx></c>
<c>12</c> <c><spanx style="vbare">-2 0 0 2</spanx></c>
<c>13</c> <c><spanx style="vbare">-2 0 1 3</spanx></c>
<c>14</c> <c><spanx style="vbare"> 2 1 -1 -2</spanx></c>
<c>15</c> <c><spanx style="vbare">-3 -1 1 3</spanx></c>
<c>16</c> <c><spanx style="vbare"> 2 0 0 -2</spanx></c>
<c>17</c> <c><spanx style="vbare"> 3 1 0 -2</spanx></c>
<c>18</c> <c><spanx style="vbare">-3 -1 2 4</spanx></c>
<c>19</c> <c><spanx style="vbare">-4 -1 1 4</spanx></c>
<c>20</c> <c><spanx style="vbare"> 3 1 -1 -3</spanx></c>
<c>21</c> <c><spanx style="vbare">-4 -1 2 5</spanx></c>
<c>22</c> <c><spanx style="vbare"> 4 2 -1 -3</spanx></c>
<c>23</c> <c><spanx style="vbare"> 4 1 -1 -4</spanx></c>
<c>24</c> <c><spanx style="vbare">-5 -1 2 6</spanx></c>
<c>25</c> <c><spanx style="vbare"> 5 2 -1 -4</spanx></c>
<c>26</c> <c><spanx style="vbare">-6 -2 2 6</spanx></c>
<c>27</c> <c><spanx style="vbare">-5 -2 2 5</spanx></c>
<c>28</c> <c><spanx style="vbare"> 6 2 -1 -5</spanx></c>
<c>29</c> <c><spanx style="vbare">-7 -2 3 8</spanx></c>
<c>30</c> <c><spanx style="vbare"> 6 2 -2 -6</spanx></c>
<c>31</c> <c><spanx style="vbare"> 5 2 -2 -5</spanx></c>
<c>32</c> <c><spanx style="vbare"> 8 3 -2 -7</spanx></c>
<c>33</c> <c><spanx style="vbare">-9 -3 3 9</spanx></c>
</texttable>
<t>
The final pitch lag for each subframe is assembled in silk_decode_pitch()
(decode_pitch.c).
Let lag be the primary pitch lag for the current SILK frame, contour_index be
index of the VQ codebook, and lag_cb[contour_index][k] be the corresponding
entry of the codebook from the appropriate table given above for the k'th
subframe.
Then the final pitch lag for that subframe is
<figure align="center">
<artwork align="center"><![CDATA[
pitch_lags[k] = clamp(lag_min, lag + lag_cb[contour_index][k],
lag_max)
]]></artwork>
</figure>
where lag_min and lag_max are the values from the "Minimum Lag" and
"Maximum Lag" columns of <xref target="silk_abs_pitch_low_pdf"/>,
respectively.
</t>
</section>
<section anchor="silk_ltp_filter" title="LTP Filter Coefficients">
<t>
SILK uses a separate 5-tap pitch filter for each subframe, selected from one
of three codebooks.
The three codebooks each represent different rate-distortion trade-offs, with
average rates of 1.61 bits/subframe, 3.68 bits/subframe, and
4.85 bits/subframe, respectively.
</t>
<t>
The importance of the filter coefficients generally depends on two factors: the
periodicity of the signal and relative energy between the current subframe and
the signal from one period earlier.
Greater periodicity and decaying energy both lead to more important filter
coefficients, and thus should be coded with lower distortion and higher rate.
These properties are relatively stable over the duration of a single SILK
frame, hence all of the subframes in a SILK frame choose their filter from the
same codebook.
This is signaled with an explicitly-coded "periodicity index".
This immediately follows the subframe pitch lags, and is coded using the
3-entry PDF from <xref target="silk_perindex_pdf"/>.
</t>
<texttable anchor="silk_perindex_pdf" title="Periodicity Index PDF">
<ttcol>PDF</ttcol>
<c>{77, 80, 99}/256</c>
</texttable>
<t>
The indices of the filters for each subframe follow.
They are all coded using the PDF from <xref target="silk_ltp_filter_pdfs"/>
corresponding to the periodicity index.
Tables <xref format="counter" target="silk_ltp_filter_coeffs0"/>
through <xref format="counter" target="silk_ltp_filter_coeffs2"/>
contain the corresponding filter taps as signed Q7 integers.
</t>
<texttable anchor="silk_ltp_filter_pdfs" title="LTP Filter PDFs">
<ttcol>Periodicity Index</ttcol>
<ttcol align="right">Codebook Size</ttcol>
<ttcol>PDF</ttcol>
<c>0</c> <c>8</c> <c>{185, 15, 13, 13, 9, 9, 6, 6}/256</c>
<c>1</c> <c>16</c> <c>{57, 34, 21, 20, 15, 13, 12, 13,
10, 10, 9, 10, 9, 8, 7, 8}/256</c>
<c>2</c> <c>32</c> <c>{15, 16, 14, 12, 12, 12, 11, 11,
11, 10, 9, 9, 9, 9, 8, 8,
8, 8, 7, 7, 6, 6, 5, 4,
5, 4, 4, 4, 3, 4, 3, 2}/256</c>
</texttable>
<texttable anchor="silk_ltp_filter_coeffs0"
title="Codebook Vectors for LTP Filter, Periodicity Index 0">
<ttcol>Index</ttcol>
<ttcol align="right">Filter Taps (Q7)</ttcol>
<c>0</c>
<c><spanx style="vbare"> 4 6 24 7 5</spanx></c>
<c>1</c>
<c><spanx style="vbare"> 0 0 2 0 0</spanx></c>
<c>2</c>
<c><spanx style="vbare"> 12 28 41 13 -4</spanx></c>
<c>3</c>
<c><spanx style="vbare"> -9 15 42 25 14</spanx></c>
<c>4</c>
<c><spanx style="vbare"> 1 -2 62 41 -9</spanx></c>
<c>5</c>
<c><spanx style="vbare">-10 37 65 -4 3</spanx></c>
<c>6</c>
<c><spanx style="vbare"> -6 4 66 7 -8</spanx></c>
<c>7</c>
<c><spanx style="vbare"> 16 14 38 -3 33</spanx></c>
</texttable>
<texttable anchor="silk_ltp_filter_coeffs1"
title="Codebook Vectors for LTP Filter, Periodicity Index 1">
<ttcol>Index</ttcol>
<ttcol align="right">Filter Taps (Q7)</ttcol>
<c>0</c>
<c><spanx style="vbare"> 13 22 39 23 12</spanx></c>
<c>1</c>
<c><spanx style="vbare"> -1 36 64 27 -6</spanx></c>
<c>2</c>
<c><spanx style="vbare"> -7 10 55 43 17</spanx></c>
<c>3</c>
<c><spanx style="vbare"> 1 1 8 1 1</spanx></c>
<c>4</c>
<c><spanx style="vbare"> 6 -11 74 53 -9</spanx></c>
<c>5</c>
<c><spanx style="vbare">-12 55 76 -12 8</spanx></c>
<c>6</c>
<c><spanx style="vbare"> -3 3 93 27 -4</spanx></c>
<c>7</c>
<c><spanx style="vbare"> 26 39 59 3 -8</spanx></c>
<c>8</c>
<c><spanx style="vbare"> 2 0 77 11 9</spanx></c>
<c>9</c>
<c><spanx style="vbare"> -8 22 44 -6 7</spanx></c>
<c>10</c>
<c><spanx style="vbare"> 40 9 26 3 9</spanx></c>
<c>11</c>
<c><spanx style="vbare"> -7 20 101 -7 4</spanx></c>
<c>12</c>
<c><spanx style="vbare"> 3 -8 42 26 0</spanx></c>
<c>13</c>
<c><spanx style="vbare">-15 33 68 2 23</spanx></c>
<c>14</c>
<c><spanx style="vbare"> -2 55 46 -2 15</spanx></c>
<c>15</c>
<c><spanx style="vbare"> 3 -1 21 16 41</spanx></c>
</texttable>
<texttable anchor="silk_ltp_filter_coeffs2"
title="Codebook Vectors for LTP Filter, Periodicity Index 2">
<ttcol>Index</ttcol>
<ttcol align="right">Filter Taps (Q7)</ttcol>
<c>0</c>
<c><spanx style="vbare"> -6 27 61 39 5</spanx></c>
<c>1</c>
<c><spanx style="vbare">-11 42 88 4 1</spanx></c>
<c>2</c>
<c><spanx style="vbare"> -2 60 65 6 -4</spanx></c>
<c>3</c>
<c><spanx style="vbare"> -1 -5 73 56 1</spanx></c>
<c>4</c>
<c><spanx style="vbare"> -9 19 94 29 -9</spanx></c>
<c>5</c>
<c><spanx style="vbare"> 0 12 99 6 4</spanx></c>
<c>6</c>
<c><spanx style="vbare"> 8 -19 102 46 -13</spanx></c>
<c>7</c>
<c><spanx style="vbare"> 3 2 13 3 2</spanx></c>
<c>8</c>
<c><spanx style="vbare"> 9 -21 84 72 -18</spanx></c>
<c>9</c>
<c><spanx style="vbare">-11 46 104 -22 8</spanx></c>
<c>10</c>
<c><spanx style="vbare"> 18 38 48 23 0</spanx></c>
<c>11</c>
<c><spanx style="vbare">-16 70 83 -21 11</spanx></c>
<c>12</c>
<c><spanx style="vbare"> 5 -11 117 22 -8</spanx></c>
<c>13</c>
<c><spanx style="vbare"> -6 23 117 -12 3</spanx></c>
<c>14</c>
<c><spanx style="vbare"> 3 -8 95 28 4</spanx></c>
<c>15</c>
<c><spanx style="vbare">-10 15 77 60 -15</spanx></c>
<c>16</c>
<c><spanx style="vbare"> -1 4 124 2 -4</spanx></c>
<c>17</c>
<c><spanx style="vbare"> 3 38 84 24 -25</spanx></c>
<c>18</c>
<c><spanx style="vbare"> 2 13 42 13 31</spanx></c>
<c>19</c>
<c><spanx style="vbare"> 21 -4 56 46 -1</spanx></c>
<c>20</c>
<c><spanx style="vbare"> -1 35 79 -13 19</spanx></c>
<c>21</c>
<c><spanx style="vbare"> -7 65 88 -9 -14</spanx></c>
<c>22</c>
<c><spanx style="vbare"> 20 4 81 49 -29</spanx></c>
<c>23</c>
<c><spanx style="vbare"> 20 0 75 3 -17</spanx></c>
<c>24</c>
<c><spanx style="vbare"> 5 -9 44 92 -8</spanx></c>
<c>25</c>
<c><spanx style="vbare"> 1 -3 22 69 31</spanx></c>
<c>26</c>
<c><spanx style="vbare"> -6 95 41 -12 5</spanx></c>
<c>27</c>
<c><spanx style="vbare"> 39 67 16 -4 1</spanx></c>
<c>28</c>
<c><spanx style="vbare"> 0 -6 120 55 -36</spanx></c>
<c>29</c>
<c><spanx style="vbare">-13 44 122 4 -24</spanx></c>
<c>30</c>
<c><spanx style="vbare"> 81 5 11 3 7</spanx></c>
<c>31</c>
<c><spanx style="vbare"> 2 0 9 10 88</spanx></c>
</texttable>
</section>
<section anchor="silk_ltp_scaling" title="LTP Scaling Parameter">
<t>
An LTP scaling parameter appears after the LTP filter coefficients if and only
if
<list style="symbols">
<t>This is a voiced frame (see <xref target="silk_frame_type"/>), and</t>
<t>Either
<list style="symbols">
<t>
This SILK frame corresponds to the first time interval of the
current Opus frame for its type (LBRR or regular), or
</t>
<t>
This is an LBRR frame where the LBRR flags (see
<xref target="silk_lbrr_flags"/>) indicate the previous LBRR frame in the same
channel is not coded.
</t>
</list>
</t>
</list>
This allows the encoder to trade off the prediction gain between
packets against the recovery time after packet loss.
Unlike absolute-coding for pitch lags, regular SILK frames that are not at the
start of an Opus frame (i.e., that do not correspond to the first 20 ms
time interval in Opus frames of 40 or 60 ms) do not include this
field, even if the prior frame was not voiced, or (in the case of the side
channel) not even coded.
After an uncoded frame in the side channel, the LTP buffer (see
<xref target="silk_ltp_synthesis"/>) is cleared to zero, and is thus in a
known state.
In contrast, LBRR frames do include this field when the prior frame was not
coded, since the LTP buffer contains the output of the PLC, which is
non-normative.
</t>
<t>
If present, the decoder reads a value using the 3-entry PDF in
<xref target="silk_ltp_scaling_pdf"/>.
The three possible values represent Q14 scale factors of 15565, 12288, and
8192, respectively (corresponding to approximately 0.95, 0.75, and 0.5).
Frames that do not code the scaling parameter use the default factor of 15565
(approximately 0.95).
</t>
<texttable anchor="silk_ltp_scaling_pdf"
title="PDF for LTP Scaling Parameter">
<ttcol align="left">PDF</ttcol>
<c>{128, 64, 64}/256</c>
</texttable>
</section>
</section>
<section anchor="silk_seed" toc="include"
title="Linear Congruential Generator (LCG) Seed">
<t>
As described in <xref target="silk_excitation_reconstruction"/>, SILK uses a
linear congruential generator (LCG) to inject pseudorandom noise into the
quantized excitation.
To ensure synchronization of this process between the encoder and decoder, each
SILK frame stores a 2-bit seed after the LTP parameters (if any).
The encoder may consider the choice of seed during quantization, and the
flexibility of this choice lets it reduce distortion, helping to pay for the
bit cost required to signal it.
The decoder reads the seed using the uniform 4-entry PDF in
<xref target="silk_seed_pdf"/>, yielding a value between 0 and 3, inclusive.
</t>
<texttable anchor="silk_seed_pdf"
title="PDF for LCG Seed">
<ttcol align="left">PDF</ttcol>
<c>{64, 64, 64, 64}/256</c>
</texttable>
</section>
<section anchor="silk_excitation" toc="include" title="Excitation">
<t>
SILK codes the excitation using a modified version of the Pyramid Vector
Quantization (PVQ) codebook <xref target="PVQ"/>.
The PVQ codebook is designed for Laplace-distributed values and consists of all
sums of K signed, unit pulses in a vector of dimension N, where two pulses at
the same position are required to have the same sign.
Thus the codebook includes all integer codevectors y of dimension N that
satisfy
<figure align="center">
<artwork align="center"><![CDATA[
N-1
__
\ abs(y[j]) = K .
/_
j=0
]]></artwork>
</figure>
Unlike regular PVQ, SILK uses a variable-length, rather than fixed-length,
encoding.
This encoding is better suited to the more Gaussian-like distribution of the
coefficient magnitudes and the non-uniform distribution of their signs (caused
by the quantization offset described below).
SILK also handles large codebooks by coding the least significant bits (LSBs)
of each coefficient directly.
This adds a small coding efficiency loss, but greatly reduces the computation
time and ROM size required for decoding, as implemented in
silk_decode_pulses() (decode_pulses.c).
</t>
<t>
SILK fixes the dimension of the codebook to N = 16.
The excitation is made up of a number of "shell blocks", each 16 samples in
size.
<xref target="silk_shell_block_table"/> lists the number of shell blocks
required for a SILK frame for each possible audio bandwidth and frame size.
10 ms MB frames nominally contain 120 samples (10 ms at
12 kHz), which is not a multiple of 16.
This is handled by coding 8 shell blocks (128 samples) and discarding the final
8 samples of the last block.
The decoder contains no special case that prevents an encoder from placing
pulses in these samples, and they must be correctly parsed from the bitstream
if present, but they are otherwise ignored.
</t>
<texttable anchor="silk_shell_block_table"
title="Number of Shell Blocks Per SILK Frame">
<ttcol>Audio Bandwidth</ttcol>
<ttcol>Frame Size</ttcol>
<ttcol align="right">Number of Shell Blocks</ttcol>
<c>NB</c> <c>10 ms</c> <c>5</c>
<c>MB</c> <c>10 ms</c> <c>8</c>
<c>WB</c> <c>10 ms</c> <c>10</c>
<c>NB</c> <c>20 ms</c> <c>10</c>
<c>MB</c> <c>20 ms</c> <c>15</c>
<c>WB</c> <c>20 ms</c> <c>20</c>
</texttable>
<section anchor="silk_rate_level" title="Rate Level">
<t>
The first symbol in the excitation is a "rate level", which is an index from 0
to 8, inclusive, coded using the PDF in <xref target="silk_rate_level_pdfs"/>
corresponding to the signal type of the current frame (from
<xref target="silk_frame_type"/>).
The rate level selects the PDF used to decode the number of pulses in
the individual shell blocks.
It does not directly convey any information about the bitrate or the number of
pulses itself, but merely changes the probability of the symbols in
<xref target="silk_pulse_counts"/>.
Level 0 provides a more efficient encoding at low rates generally, and
level 8 provides a more efficient encoding at high rates generally,
though the most efficient level for a particular SILK frame may depend on the
exact distribution of the coded symbols.
An encoder should, but is not required to, use the most efficient rate level.
</t>
<texttable anchor="silk_rate_level_pdfs"
title="PDFs for the Rate Level">
<ttcol>Signal Type</ttcol>
<ttcol>PDF</ttcol>
<c>Inactive or Unvoiced</c>
<c>{15, 51, 12, 46, 45, 13, 33, 27, 14}/256</c>
<c>Voiced</c>
<c>{33, 30, 36, 17, 34, 49, 18, 21, 18}/256</c>
</texttable>
</section>
<section anchor="silk_pulse_counts" title="Pulses Per Shell Block">
<t>
The total number of pulses in each of the shell blocks follows the rate level.
The pulse counts for all of the shell blocks are coded consecutively, before
the content of any of the blocks.
Each block may have anywhere from 0 to 16 pulses, inclusive, coded using the
18-entry PDF in <xref target="silk_pulse_count_pdfs"/> corresponding to the
rate level from <xref target="silk_rate_level"/>.
The special value 17 indicates that this block has one or more additional
LSBs to decode for each coefficient.
If the decoder encounters this value, it decodes another value for the actual
pulse count of the block, but uses the PDF corresponding to the special rate
level 9 instead of the normal rate level.
This process repeats until the decoder reads a value less than 17, and it then
sets the number of extra LSBs used to the number of 17's decoded for that
block.
If it reads the value 17 ten times, then the next iteration uses the special
rate level 10 instead of 9.
The probability of decoding a 17 when using the PDF for rate level 10 is
zero, ensuring that the number of LSBs for a block will not exceed 10.
The cumulative distribution for rate level 10 is just a shifted version of
that for 9 and thus does not require any additional storage.
</t>
<texttable anchor="silk_pulse_count_pdfs"
title="PDFs for the Pulse Count">
<ttcol>Rate Level</ttcol>
<ttcol>PDF</ttcol>
<c>0</c>
<c>{131, 74, 25, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
<c>1</c>
<c>{58, 93, 60, 23, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
<c>2</c>
<c>{43, 51, 46, 33, 24, 16, 11, 8, 6, 3, 3, 3, 2, 1, 1, 2, 1, 2}/256</c>
<c>3</c>
<c>{17, 52, 71, 57, 31, 12, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
<c>4</c>
<c>{6, 21, 41, 53, 49, 35, 21, 11, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1}/256</c>
<c>5</c>
<c>{7, 14, 22, 28, 29, 28, 25, 20, 17, 13, 11, 9, 7, 5, 4, 4, 3, 10}/256</c>
<c>6</c>
<c>{2, 5, 14, 29, 42, 46, 41, 31, 19, 11, 6, 3, 2, 1, 1, 1, 1, 1}/256</c>
<c>7</c>
<c>{1, 2, 4, 10, 19, 29, 35, 37, 34, 28, 20, 14, 8, 5, 4, 2, 2, 2}/256</c>
<c>8</c>
<c>{1, 2, 2, 5, 9, 14, 20, 24, 27, 28, 26, 23, 20, 15, 11, 8, 6, 15}/256</c>
<c>9</c>
<c>{1, 1, 1, 6, 27, 58, 56, 39, 25, 14, 10, 6, 3, 3, 2, 1, 1, 2}/256</c>
<c>10</c>
<c>{2, 1, 6, 27, 58, 56, 39, 25, 14, 10, 6, 3, 3, 2, 1, 1, 2, 0}/256</c>
</texttable>
</section>
<section anchor="silk_pulse_locations" title="Pulse Location Decoding">
<t>
The locations of the pulses in each shell block follow the pulse counts,
as decoded by silk_shell_decoder() (shell_coder.c).
As with the pulse counts, these locations are coded for all the shell blocks
before any of the remaining information for each block.
Unlike many other codecs, SILK places no restriction on the distribution of
pulses within a shell block.
All of the pulses may be placed in a single location, or each one in a unique
location, or anything in between.
</t>
<t>
The location of pulses is coded by recursively partitioning each block into
halves, and coding how many pulses fall on the left side of the split.
All remaining pulses must fall on the right side of the split.
The process then recurses into the left half, and after that returns, the
right half (preorder traversal).
The PDF to use is chosen by the size of the current partition (16, 8, 4, or 2)
and the number of pulses in the partition (1 to 16, inclusive).
Tables <xref format="counter" target="silk_shell_code3_pdfs"/>
through <xref format="counter" target="silk_shell_code0_pdfs"/> list the
PDFs used for each partition size and pulse count.
This process skips partitions without any pulses, i.e., where the initial pulse
count from <xref target="silk_pulse_counts"/> was zero, or where the split in
the prior level indicated that all of the pulses fell on the other side.
These partitions have nothing to code, so they require no PDF.
</t>
<texttable anchor="silk_shell_code3_pdfs"
title="PDFs for Pulse Count Split, 16 Sample Partitions">
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>1</c> <c>{126, 130}/256</c>
<c>2</c> <c>{56, 142, 58}/256</c>
<c>3</c> <c>{25, 101, 104, 26}/256</c>
<c>4</c> <c>{12, 60, 108, 64, 12}/256</c>
<c>5</c> <c>{7, 35, 84, 87, 37, 6}/256</c>
<c>6</c> <c>{4, 20, 59, 86, 63, 21, 3}/256</c>
<c>7</c> <c>{3, 12, 38, 72, 75, 42, 12, 2}/256</c>
<c>8</c> <c>{2, 8, 25, 54, 73, 59, 27, 7, 1}/256</c>
<c>9</c> <c>{2, 5, 17, 39, 63, 65, 42, 18, 4, 1}/256</c>
<c>10</c> <c>{1, 4, 12, 28, 49, 63, 54, 30, 11, 3, 1}/256</c>
<c>11</c> <c>{1, 4, 8, 20, 37, 55, 57, 41, 22, 8, 2, 1}/256</c>
<c>12</c> <c>{1, 3, 7, 15, 28, 44, 53, 48, 33, 16, 6, 1, 1}/256</c>
<c>13</c> <c>{1, 2, 6, 12, 21, 35, 47, 48, 40, 25, 12, 5, 1, 1}/256</c>
<c>14</c> <c>{1, 1, 4, 10, 17, 27, 37, 47, 43, 33, 21, 9, 4, 1, 1}/256</c>
<c>15</c> <c>{1, 1, 1, 8, 14, 22, 33, 40, 43, 38, 28, 16, 8, 1, 1, 1}/256</c>
<c>16</c> <c>{1, 1, 1, 1, 13, 18, 27, 36, 41, 41, 34, 24, 14, 1, 1, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_shell_code2_pdfs"
title="PDFs for Pulse Count Split, 8 Sample Partitions">
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>1</c> <c>{127, 129}/256</c>
<c>2</c> <c>{53, 149, 54}/256</c>
<c>3</c> <c>{22, 105, 106, 23}/256</c>
<c>4</c> <c>{11, 61, 111, 63, 10}/256</c>
<c>5</c> <c>{6, 35, 86, 88, 36, 5}/256</c>
<c>6</c> <c>{4, 20, 59, 87, 62, 21, 3}/256</c>
<c>7</c> <c>{3, 13, 40, 71, 73, 41, 13, 2}/256</c>
<c>8</c> <c>{3, 9, 27, 53, 70, 56, 28, 9, 1}/256</c>
<c>9</c> <c>{3, 8, 19, 37, 57, 61, 44, 20, 6, 1}/256</c>
<c>10</c> <c>{3, 7, 15, 28, 44, 54, 49, 33, 17, 5, 1}/256</c>
<c>11</c> <c>{1, 7, 13, 22, 34, 46, 48, 38, 28, 14, 4, 1}/256</c>
<c>12</c> <c>{1, 1, 11, 22, 27, 35, 42, 47, 33, 25, 10, 1, 1}/256</c>
<c>13</c> <c>{1, 1, 6, 14, 26, 37, 43, 43, 37, 26, 14, 6, 1, 1}/256</c>
<c>14</c> <c>{1, 1, 4, 10, 20, 31, 40, 42, 40, 31, 20, 10, 4, 1, 1}/256</c>
<c>15</c> <c>{1, 1, 3, 8, 16, 26, 35, 38, 38, 35, 26, 16, 8, 3, 1, 1}/256</c>
<c>16</c> <c>{1, 1, 2, 6, 12, 21, 30, 36, 38, 36, 30, 21, 12, 6, 2, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_shell_code1_pdfs"
title="PDFs for Pulse Count Split, 4 Sample Partitions">
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>1</c> <c>{127, 129}/256</c>
<c>2</c> <c>{49, 157, 50}/256</c>
<c>3</c> <c>{20, 107, 109, 20}/256</c>
<c>4</c> <c>{11, 60, 113, 62, 10}/256</c>
<c>5</c> <c>{7, 36, 84, 87, 36, 6}/256</c>
<c>6</c> <c>{6, 24, 57, 82, 60, 23, 4}/256</c>
<c>7</c> <c>{5, 18, 39, 64, 68, 42, 16, 4}/256</c>
<c>8</c> <c>{6, 14, 29, 47, 61, 52, 30, 14, 3}/256</c>
<c>9</c> <c>{1, 15, 23, 35, 51, 50, 40, 30, 10, 1}/256</c>
<c>10</c> <c>{1, 1, 21, 32, 42, 52, 46, 41, 18, 1, 1}/256</c>
<c>11</c> <c>{1, 6, 16, 27, 36, 42, 42, 36, 27, 16, 6, 1}/256</c>
<c>12</c> <c>{1, 5, 12, 21, 31, 38, 40, 38, 31, 21, 12, 5, 1}/256</c>
<c>13</c> <c>{1, 3, 9, 17, 26, 34, 38, 38, 34, 26, 17, 9, 3, 1}/256</c>
<c>14</c> <c>{1, 3, 7, 14, 22, 29, 34, 36, 34, 29, 22, 14, 7, 3, 1}/256</c>
<c>15</c> <c>{1, 2, 5, 11, 18, 25, 31, 35, 35, 31, 25, 18, 11, 5, 2, 1}/256</c>
<c>16</c> <c>{1, 1, 4, 9, 15, 21, 28, 32, 34, 32, 28, 21, 15, 9, 4, 1, 1}/256</c>
</texttable>
<texttable anchor="silk_shell_code0_pdfs"
title="PDFs for Pulse Count Split, 2 Sample Partitions">
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>1</c> <c>{128, 128}/256</c>
<c>2</c> <c>{42, 172, 42}/256</c>
<c>3</c> <c>{21, 107, 107, 21}/256</c>
<c>4</c> <c>{12, 60, 112, 61, 11}/256</c>
<c>5</c> <c>{8, 34, 86, 86, 35, 7}/256</c>
<c>6</c> <c>{8, 23, 55, 90, 55, 20, 5}/256</c>
<c>7</c> <c>{5, 15, 38, 72, 72, 36, 15, 3}/256</c>
<c>8</c> <c>{6, 12, 27, 52, 77, 47, 20, 10, 5}/256</c>
<c>9</c> <c>{6, 19, 28, 35, 40, 40, 35, 28, 19, 6}/256</c>
<c>10</c> <c>{4, 14, 22, 31, 37, 40, 37, 31, 22, 14, 4}/256</c>
<c>11</c> <c>{3, 10, 18, 26, 33, 38, 38, 33, 26, 18, 10, 3}/256</c>
<c>12</c> <c>{2, 8, 13, 21, 29, 36, 38, 36, 29, 21, 13, 8, 2}/256</c>
<c>13</c> <c>{1, 5, 10, 17, 25, 32, 38, 38, 32, 25, 17, 10, 5, 1}/256</c>
<c>14</c> <c>{1, 4, 7, 13, 21, 29, 35, 36, 35, 29, 21, 13, 7, 4, 1}/256</c>
<c>15</c> <c>{1, 2, 5, 10, 17, 25, 32, 36, 36, 32, 25, 17, 10, 5, 2, 1}/256</c>
<c>16</c> <c>{1, 2, 4, 7, 13, 21, 28, 34, 36, 34, 28, 21, 13, 7, 4, 2, 1}/256</c>
</texttable>
</section>
<section anchor="silk_shell_lsb" title="LSB Decoding">
<t>
After the decoder reads the pulse locations for all blocks, it reads the LSBs
(if any) for each block in turn.
Inside each block, it reads all the LSBs for each coefficient in turn, even
those where no pulses were allocated, before proceeding to the next one.
For 10 ms MB frames, it reads LSBs even for the extra 8 samples in
the last block.
The LSBs are coded from most significant to least significant, and they all use
the PDF in <xref target="silk_shell_lsb_pdf"/>.
</t>
<texttable anchor="silk_shell_lsb_pdf" title="PDF for Excitation LSBs">
<ttcol>PDF</ttcol>
<c>{136, 120}/256</c>
</texttable>
<t>
The number of LSBs read for each coefficient in a block is determined in
<xref target="silk_pulse_counts"/>.
The magnitude of the coefficient is initially equal to the number of pulses
placed at that location in <xref target="silk_pulse_locations"/>.
As each LSB is decoded, the magnitude is doubled, and then the value of the LSB
added to it, to obtain an updated magnitude.
</t>
</section>
<section anchor="silk_signs" title="Sign Decoding">
<t>
After decoding the pulse locations and the LSBs, the decoder knows the
magnitude of each coefficient in the excitation.
It then decodes a sign for all coefficients with a non-zero magnitude, using
one of the PDFs from <xref target="silk_sign_pdfs"/>.
If the value decoded is 0, then the coefficient magnitude is negated.
Otherwise, it remains positive.
</t>
<t>
The decoder chooses the PDF for the sign based on the signal type and
quantization offset type (from <xref target="silk_frame_type"/>) and the
number of pulses in the block (from <xref target="silk_pulse_counts"/>).
The number of pulses in the block does not take into account any LSBs.
Most PDFs are skewed towards negative signs because of the quantization offset,
but the PDFs for zero pulses are highly skewed towards positive signs.
If a block contains many positive coefficients, it is sometimes beneficial to
code it solely using LSBs (i.e., with zero pulses), since the encoder may be
able to save enough bits on the signs to justify the less efficient
coefficient magnitude encoding.
</t>
<texttable anchor="silk_sign_pdfs"
title="PDFs for Excitation Signs">
<ttcol>Signal Type</ttcol>
<ttcol>Quantization Offset Type</ttcol>
<ttcol>Pulse Count</ttcol>
<ttcol>PDF</ttcol>
<c>Inactive</c> <c>Low</c> <c>0</c> <c>{2, 254}/256</c>
<c>Inactive</c> <c>Low</c> <c>1</c> <c>{207, 49}/256</c>
<c>Inactive</c> <c>Low</c> <c>2</c> <c>{189, 67}/256</c>
<c>Inactive</c> <c>Low</c> <c>3</c> <c>{179, 77}/256</c>
<c>Inactive</c> <c>Low</c> <c>4</c> <c>{174, 82}/256</c>
<c>Inactive</c> <c>Low</c> <c>5</c> <c>{163, 93}/256</c>
<c>Inactive</c> <c>Low</c> <c>6 or more</c> <c>{157, 99}/256</c>
<c>Inactive</c> <c>High</c> <c>0</c> <c>{58, 198}/256</c>
<c>Inactive</c> <c>High</c> <c>1</c> <c>{245, 11}/256</c>
<c>Inactive</c> <c>High</c> <c>2</c> <c>{238, 18}/256</c>
<c>Inactive</c> <c>High</c> <c>3</c> <c>{232, 24}/256</c>
<c>Inactive</c> <c>High</c> <c>4</c> <c>{225, 31}/256</c>
<c>Inactive</c> <c>High</c> <c>5</c> <c>{220, 36}/256</c>
<c>Inactive</c> <c>High</c> <c>6 or more</c> <c>{211, 45}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>0</c> <c>{1, 255}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>1</c> <c>{210, 46}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>2</c> <c>{190, 66}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>3</c> <c>{178, 78}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>4</c> <c>{169, 87}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>5</c> <c>{162, 94}/256</c>
<c>Unvoiced</c> <c>Low</c> <c>6 or more</c> <c>{152, 104}/256</c>
<c>Unvoiced</c> <c>High</c> <c>0</c> <c>{48, 208}/256</c>
<c>Unvoiced</c> <c>High</c> <c>1</c> <c>{242, 14}/256</c>
<c>Unvoiced</c> <c>High</c> <c>2</c> <c>{235, 21}/256</c>
<c>Unvoiced</c> <c>High</c> <c>3</c> <c>{224, 32}/256</c>
<c>Unvoiced</c> <c>High</c> <c>4</c> <c>{214, 42}/256</c>
<c>Unvoiced</c> <c>High</c> <c>5</c> <c>{205, 51}/256</c>
<c>Unvoiced</c> <c>High</c> <c>6 or more</c> <c>{190, 66}/256</c>
<c>Voiced</c> <c>Low</c> <c>0</c> <c>{1, 255}/256</c>
<c>Voiced</c> <c>Low</c> <c>1</c> <c>{162, 94}/256</c>
<c>Voiced</c> <c>Low</c> <c>2</c> <c>{152, 104}/256</c>
<c>Voiced</c> <c>Low</c> <c>3</c> <c>{147, 109}/256</c>
<c>Voiced</c> <c>Low</c> <c>4</c> <c>{144, 112}/256</c>
<c>Voiced</c> <c>Low</c> <c>5</c> <c>{141, 115}/256</c>
<c>Voiced</c> <c>Low</c> <c>6 or more</c> <c>{138, 118}/256</c>
<c>Voiced</c> <c>High</c> <c>0</c> <c>{8, 248}/256</c>
<c>Voiced</c> <c>High</c> <c>1</c> <c>{203, 53}/256</c>
<c>Voiced</c> <c>High</c> <c>2</c> <c>{187, 69}/256</c>
<c>Voiced</c> <c>High</c> <c>3</c> <c>{176, 80}/256</c>
<c>Voiced</c> <c>High</c> <c>4</c> <c>{168, 88}/256</c>
<c>Voiced</c> <c>High</c> <c>5</c> <c>{161, 95}/256</c>
<c>Voiced</c> <c>High</c> <c>6 or more</c> <c>{154, 102}/256</c>
</texttable>
</section>
<section anchor="silk_excitation_reconstruction"
title="Reconstructing the Excitation">
<t>
After the signs have been read, there is enough information to reconstruct the
complete excitation signal.
This requires adding a constant quantization offset to each non-zero sample,
and then pseudorandomly inverting and offsetting every sample.
The constant quantization offset varies depending on the signal type and
quantization offset type (see <xref target="silk_frame_type"/>).
</t>
<texttable anchor="silk_quantization_offsets"
title="Excitation Quantization Offsets">
<ttcol align="left">Signal Type</ttcol>
<ttcol align="left">Quantization Offset Type</ttcol>
<ttcol align="right">Quantization Offset (Q23)</ttcol>
<c>Inactive</c> <c>Low</c> <c>25</c>
<c>Inactive</c> <c>High</c> <c>60</c>
<c>Unvoiced</c> <c>Low</c> <c>25</c>
<c>Unvoiced</c> <c>High</c> <c>60</c>
<c>Voiced</c> <c>Low</c> <c>8</c>
<c>Voiced</c> <c>High</c> <c>25</c>
</texttable>
<t>
Let e_raw[i] be the raw excitation value at position i, with a magnitude
composed of the pulses at that location (see
<xref target="silk_pulse_locations"/>) combined with any additional LSBs (see
<xref target="silk_shell_lsb"/>), and with the corresponding sign decoded in
<xref target="silk_signs"/>.
Additionally, let seed be the current pseudorandom seed, which is initialized
to the value decoded from <xref target="silk_seed"/> for the first sample in
the current SILK frame, and updated for each subsequent sample according to
the procedure below.
Finally, let offset_Q23 be the quantization offset from
<xref target="silk_quantization_offsets"/>.
Then the following procedure produces the final reconstructed excitation value,
e_Q23[i]:
<figure align="center">
<artwork align="center"><![CDATA[
e_Q23[i] = (e_raw[i] << 8) - sign(e_raw[i])*20 + offset_Q23;
seed = (196314165*seed + 907633515) & 0xFFFFFFFF;
e_Q23[i] = (seed & 0x80000000) ? -e_Q23[i] : e_Q23[i];
seed = (seed + e_raw[i]) & 0xFFFFFFFF;
]]></artwork>
</figure>
When e_raw[i] is zero, sign() returns 0 by the definition in
<xref target="sign"/>, so the factor of 20 does not get added.
The final e_Q23[i] value may require more than 16 bits per sample, but will not
require more than 23, including the sign.
</t>
</section>
</section>
<section anchor="silk_frame_reconstruction" toc="include"
title="SILK Frame Reconstruction">
<t>
The remainder of the reconstruction process for the frame does not need to be
bit-exact, as small errors should only introduce proportionally small
distortions.
Although the reference implementation only includes a fixed-point version of
the remaining steps, this section describes them in terms of a floating-point
version for simplicity.
This produces a signal with a nominal range of -1.0 to 1.0.
</t>
<t>
silk_decode_core() (decode_core.c) contains the code for the main
reconstruction process.
It proceeds subframe-by-subframe, since quantization gains, LTP parameters, and
(in 20 ms SILK frames) LPC coefficients can vary from one to the
next.
</t>
<t>
Let a_Q12[k] be the LPC coefficients for the current subframe.
If this is the first or second subframe of a 20 ms SILK frame and the LSF
interpolation factor, w_Q2 (see <xref target="silk_nlsf_interpolation"/>), is
less than 4, then these correspond to the final LPC coefficients produced by
<xref target="silk_lpc_gain_limit"/> from the interpolated LSF coefficients,
n1_Q15[k] (computed in <xref target="silk_nlsf_interpolation"/>).
Otherwise, they correspond to the final LPC coefficients produced from the
uninterpolated LSF coefficients for the current frame, n2_Q15[k].
</t>
<t>
Also, let n be the number of samples in a subframe (40 for NB, 60 for MB, and
80 for WB), s be the index of the current subframe in this SILK frame (0 or 1
for 10 ms frames, or 0 to 3 for 20 ms frames), and j be the index of
the first sample in the residual corresponding to the current subframe.
</t>
<section anchor="silk_ltp_synthesis" title="LTP Synthesis">
<t>
Voiced SILK frames (see <xref target="silk_frame_type"/>) pass the excitation
through an LTP filter using the parameters decoded in
<xref target="silk_ltp_params"/> to produce an LPC residual.
The LTP filter requires LPC residual values from before the current subframe as
input.
However, since the LPC coefficients may have changed, it obtains this residual
by "rewhitening" the corresponding output signal using the LPC coefficients
from the current subframe.
Let out[i] for
(j - pitch_lags[s] - d_LPC - 2) <= i < j
be the fully reconstructed output signal from the last
(pitch_lags[s] + d_LPC + 2) samples of previous subframes
(see <xref target="silk_lpc_synthesis"/>), where pitch_lags[s] is the pitch
lag for the current subframe from <xref target="silk_ltp_lags"/>.
During reconstruction of the first subframe for this channel after either
<list style="symbols">
<t>An uncoded regular SILK frame (if this is the side channel), or</t>
<t>A decoder reset (see <xref target="decoder-reset"/>),</t>
</list>
out[] is rewhitened into an LPC residual,
res[i], via
<figure align="center">
<artwork align="center"><![CDATA[
4.0*LTP_scale_Q14
res[i] = ----------------- * clamp(-1.0,
gain_Q16[s]
d_LPC-1
__ a_Q12[k]
out[i] - \ out[i-k-1] * --------, 1.0) .
/_ 4096.0
k=0
]]></artwork>
</figure>
This requires storage to buffer up to 306 values of out[i] from previous
subframes.
This corresponds to WB with a maximum pitch lag of
18 ms * 16 kHz samples, plus 16 samples for d_LPC, plus 2
samples for the width of the LTP filter.
</t>
<t>
Let e_Q23[i] for j <= i < (j + n) be the
excitation for the current subframe, and b_Q7[k] for
0 <= k < 5 be the coefficients of the LTP filter
taken from the codebook entry in one of
Tables <xref format="counter" target="silk_ltp_filter_coeffs0"/>
through <xref format="counter" target="silk_ltp_filter_coeffs2"/>
corresponding to the index decoded for the current subframe in
<xref target="silk_ltp_filter"/>.
Then for i such that j <= i < (j + n),
the LPC residual is
<figure align="center">
<artwork align="center"><![CDATA[
4
e_Q23[i] __ b_Q7[k]
res[i] = --------- + \ res[i - pitch_lags[s] + 2 - k] * ------- .
2.0**23 /_ 128.0
k=0
]]></artwork>
</figure>
</t>
<t>
For unvoiced frames, the LPC residual for
j <= i < (j + n) is simply a normalized
copy of the excitation signal, i.e.,
<figure align="center">
<artwork align="center"><![CDATA[
e_Q23[i]
res[i] = ---------
2.0**23
]]></artwork>
</figure>
</t>
</section>
<section anchor="silk_lpc_synthesis" title="LPC Synthesis">
<t>
LPC synthesis uses the short-term LPC filter to predict the next output
coefficient.
For i such that (j - d_LPC) <= i < j, let
lpc[i] be the result of LPC synthesis from the last d_LPC samples of the
previous subframe, or zeros in the first subframe for this channel after
either
<list style="symbols">
<t>An uncoded regular SILK frame (if this is the side channel), or</t>
<t>A decoder reset (see <xref target="decoder-reset"/>).</t>
</list>
Then for i such that j <= i < (j + n), the
result of LPC synthesis for the current subframe is
<figure align="center">
<artwork align="center"><![CDATA[
d_LPC-1
gain_Q16[i] __ a_Q12[k]
lpc[i] = ----------- * res[i] + \ lpc[i-k-1] * -------- .
65536.0 /_ 4096.0
k=0
]]></artwork>
</figure>
The decoder saves the final d_LPC values, i.e., lpc[i] such that
(j + n - d_LPC) <= i < (j + n),
to feed into the LPC synthesis of the next subframe.
This requires storage for up to 16 values of lpc[i] (for WB frames).
</t>
<t>
Then, the signal is clamped into the final nominal range:
<figure align="center">
<artwork align="center"><![CDATA[
out[i] = clamp(-1.0, lpc[i], 1.0) .
]]></artwork>
</figure>
This clamping occurs entirely after the LPC synthesis filter has run.
The decoder saves the unclamped values, lpc[i], to feed into the LPC filter for
the next subframe, but saves the clamped values, out[i], for rewhitening in
voiced frames.
</t>
</section>
</section>
</section>
<section anchor="silk_stereo_unmixing" title="Stereo Unmixing">
<t>
For stereo streams, after decoding a frame from each channel, the decoder must
convert the mid-side (MS) representation into a left-right (LR)
representation.
The function silk_stereo_MS_to_LR (stereo_MS_to_LR.c) implements this process.
In it, the decoder predicts the side channel using a) a simple low-passed
version of the mid channel, and b) the unfiltered mid channel, using the
prediction weights decoded in <xref target="silk_stereo_pred"/>.
This simple low-pass filter imposes a one-sample delay, and the unfiltered
mid channel is also delayed by one sample.
In order to allow seamless switching between stereo and mono, mono streams must
also impose the same one-sample delay.
The encoder requires an additional one-sample delay for both mono and stereo
streams, though an encoder may omit the delay for mono if it knows it will
never switch to stereo.
</t>
<t>
The unmixing process operates in two phases.
The first phase lasts for 8 ms, during which it interpolates the
prediction weights from the previous frame, prev_w0_Q13 and prev_w1_Q13, to
the values for the current frame, w0_Q13 and w1_Q13.
The second phase simply uses these weights for the remainder of the frame.
</t>
<t>
Let mid[i] and side[i] be the contents of out[i] (from
<xref target="silk_lpc_synthesis"/>) for the current mid and side channels,
respectively, and let left[i] and right[i] be the corresponding stereo output
channels.
If the side channel is not coded (see <xref target="silk_mid_only_flag"/>),
then side[i] is set to zero.
Also let j be defined as in <xref target="silk_frame_reconstruction"/>, n1 be
the number of samples in phase 1 (64 for NB, 96 for MB, and 128 for WB),
and n2 be the total number of samples in the frame.
Then for i such that j <= i < (j + n2),
the left and right channel output is
<figure align="center">
<artwork align="center"><![CDATA[
prev_w0_Q13 (w0_Q13 - prev_w0_Q13)
w0 = ----------- + min(i - j, n1)*---------------------- ,
8192.0 8192.0*n1
prev_w1_Q13 (w1_Q13 - prev_w1_Q13)
w1 = ----------- + min(i - j, n1)*---------------------- ,
8192.0 8192.0*n1
mid[i-2] + 2*mid[i-1] + mid[i]
p0 = ------------------------------ ,
4.0
left[i] = clamp(-1.0, (1 + w1)*mid[i-1] + side[i-1] + w0*p0, 1.0) ,
right[i] = clamp(-1.0, (1 - w1)*mid[i-1] - side[i-1] - w0*p0, 1.0) .
]]></artwork>
</figure>
These formulas require two samples prior to index j, the start of the
frame, for the mid channel, and one prior sample for the side channel.
For the first frame after a decoder reset, zeros are used instead.
</t>
</section>
<section title="Resampling">
<t>
After stereo unmixing (if any), the decoder applies resampling to convert the
decoded SILK output to the sample rate desired by the application.
This is necessary when decoding a Hybrid frame at SWB or FB sample rates, or
whenever the decoder wants the output at a different sample rate than the
internal SILK sampling rate (e.g., to allow a constant sample rate when the
audio bandwidth changes, or to allow mixing with audio from other
applications).
The resampler itself is non-normative, and a decoder can use any method it
wants to perform the resampling.
</t>
<t>
However, a minimum amount of delay is imposed to allow the resampler to
operate, and this delay is normative, so that the corresponding delay can be
applied to the MDCT layer in the encoder.
A decoder is always free to use a resampler which requires more delay than
allowed for here (e.g., to improve quality), but it must then delay the output
of the MDCT layer by this extra amount.
Keeping as much delay as possible on the encoder side allows an encoder which
knows it will never use any of the SILK or Hybrid modes to skip this delay.
By contrast, if it were all applied by the decoder, then a decoder which
processes audio in fixed-size blocks would be forced to delay the output of
CELT frames just in case of a later switch to a SILK or Hybrid mode.
</t>
<t>
<xref target="silk_resampler_delay_alloc"/> gives the maximum resampler delay
in samples at 48 kHz for each SILK audio bandwidth.
Because the actual output rate may not be 48 kHz, it may not be possible
to achieve exactly these delays while using a whole number of input or output
samples.
The reference implementation is able to resample to any of the supported
output sampling rates (8, 12, 16, 24, or 48 kHz) within or near this
delay constraint.
Some resampling filters (including those used by the reference implementation)
may add a delay that is not an exact integer, or is not linear-phase, and so
cannot be represented by a single delay at all frequencies.
However, such deviations are unlikely to be perceptible, and the comparison
tool described in <xref target="conformance"/> is designed to be relatively
insensitive to them.
The delays listed here are the ones that should be targeted by the encoder.
</t>
<texttable anchor="silk_resampler_delay_alloc"
title="SILK Resampler Delay Allocations">
<ttcol>Audio Bandwidth</ttcol>
<ttcol>Delay in millisecond</ttcol>
<c>NB</c> <c>0.538</c>
<c>MB</c> <c>0.692</c>
<c>WB</c> <c>0.706</c>
</texttable>
<t>
NB is given a smaller decoder delay allocation than MB and WB to allow a
higher-order filter when resampling to 8 kHz in both the encoder and
decoder.
This implies that the audio content of two SILK frames operating at different
bandwidths are not perfectly aligned in time.
This is not an issue for any transitions described in
<xref target="switching"/>, because they all involve a SILK decoder reset.
When the decoder is reset, any samples remaining in the resampling buffer
are discarded, and the resampler is re-initialized with silence.
</t>
</section>
</section>
<section title="CELT Decoder">
<t>
The CELT layer of Opus is based on the Modified Discrete Cosine Transform
<xref target='MDCT'/> with partially overlapping windows of 5 to 22.5 ms.
The main principle behind CELT is that the MDCT spectrum is divided into
bands that (roughly) follow the Bark scale, i.e., the scale of the ear's
critical bands <xref target="Zwicker61"/>. The normal CELT layer uses 21 of those bands, though Opus
Custom (see <xref target="opus-custom"/>) may use a different number of bands.
In Hybrid mode, the first 17 bands (up to 8 kHz) are not coded.
A band can contain as little as one MDCT bin per channel, and as many as 176
bins per channel, as detailed in <xref target="celt_band_sizes"/>.
In each band, the gain (energy) is coded separately from
the shape of the spectrum. Coding the gain explicitly makes it easy to
preserve the spectral envelope of the signal. The remaining unit-norm shape
vector is encoded using a Pyramid Vector Quantizer (PVQ) <xref target='PVQ-decoder'/>.
</t>
<texttable anchor="celt_band_sizes"
title="MDCT Bins Per Channel Per Band for Each Frame Size">
<ttcol>Frame Size:</ttcol>
<ttcol align="right">2.5 ms</ttcol>
<ttcol align="right">5 ms</ttcol>
<ttcol align="right">10 ms</ttcol>
<ttcol align="right">20 ms</ttcol>
<ttcol align="right">Start Frequency</ttcol>
<ttcol align="right">Stop Frequency</ttcol>
<c>Band</c> <c>Bins:</c> <c/> <c/> <c/> <c/> <c/>
<c>0</c> <c>1</c> <c>2</c> <c>4</c> <c>8</c> <c>0 Hz</c> <c>200 Hz</c>
<c>1</c> <c>1</c> <c>2</c> <c>4</c> <c>8</c> <c>200 Hz</c> <c>400 Hz</c>
<c>2</c> <c>1</c> <c>2</c> <c>4</c> <c>8</c> <c>400 Hz</c> <c>600 Hz</c>
<c>3</c> <c>1</c> <c>2</c> <c>4</c> <c>8</c> <c>600 Hz</c> <c>800 Hz</c>
<c>4</c> <c>1</c> <c>2</c> <c>4</c> <c>8</c> <c>800 Hz</c> <c>1000 Hz</c>
<c>5</c> <c>1</c> <c>2</c> <c>4</c> <c>8</c> <c>1000 Hz</c> <c>1200 Hz</c>
<c>6</c> <c>1</c> <c>2</c> <c>4</c> <c>8</c> <c>1200 Hz</c> <c>1400 Hz</c>
<c>7</c> <c>1</c> <c>2</c> <c>4</c> <c>8</c> <c>1400 Hz</c> <c>1600 Hz</c>
<c>8</c> <c>2</c> <c>4</c> <c>8</c> <c>16</c> <c>1600 Hz</c> <c>2000 Hz</c>
<c>9</c> <c>2</c> <c>4</c> <c>8</c> <c>16</c> <c>2000 Hz</c> <c>2400 Hz</c>
<c>10</c> <c>2</c> <c>4</c> <c>8</c> <c>16</c> <c>2400 Hz</c> <c>2800 Hz</c>
<c>11</c> <c>2</c> <c>4</c> <c>8</c> <c>16</c> <c>2800 Hz</c> <c>3200 Hz</c>
<c>12</c> <c>4</c> <c>8</c> <c>16</c> <c>32</c> <c>3200 Hz</c> <c>4000 Hz</c>
<c>13</c> <c>4</c> <c>8</c> <c>16</c> <c>32</c> <c>4000 Hz</c> <c>4800 Hz</c>
<c>14</c> <c>4</c> <c>8</c> <c>16</c> <c>32</c> <c>4800 Hz</c> <c>5600 Hz</c>
<c>15</c> <c>6</c> <c>12</c> <c>24</c> <c>48</c> <c>5600 Hz</c> <c>6800 Hz</c>
<c>16</c> <c>6</c> <c>12</c> <c>24</c> <c>48</c> <c>6800 Hz</c> <c>8000 Hz</c>
<c>17</c> <c>8</c> <c>16</c> <c>32</c> <c>64</c> <c>8000 Hz</c> <c>9600 Hz</c>
<c>18</c> <c>12</c> <c>24</c> <c>48</c> <c>96</c> <c>9600 Hz</c> <c>12000 Hz</c>
<c>19</c> <c>18</c> <c>36</c> <c>72</c> <c>144</c> <c>12000 Hz</c> <c>15600 Hz</c>
<c>20</c> <c>22</c> <c>44</c> <c>88</c> <c>176</c> <c>15600 Hz</c> <c>20000 Hz</c>
</texttable>
<t>
Transients are notoriously difficult for transform codecs to code.
CELT uses two different strategies for them:
<list style="numbers">
<t>Using multiple smaller MDCTs instead of a single large MDCT, and</t>
<t>Dynamic time-frequency resolution changes (See <xref target='tf-change'/>).</t>
</list>
To improve quality on highly tonal and periodic signals, CELT includes
a prefilter/postfilter combination. The prefilter on the encoder side
attenuates the signal's harmonics. The postfilter on the decoder side
restores the original gain of the harmonics, while shaping the coding noise
to roughly follow the harmonics. Such noise shaping reduces the perception
of the noise.
</t>
<t>
When coding a stereo signal, three coding methods are available:
<list style="symbols">
<t>mid-side stereo: encodes the mean and the difference of the left and right channels,</t>
<t>intensity stereo: only encodes the mean of the left and right channels (discards the difference),</t>
<t>dual stereo: encodes the left and right channels separately.</t>
</list>
</t>
<t>
An overview of the decoder is given in <xref target="celt-decoder-overview"/>.
</t>
<figure anchor="celt-decoder-overview" title="Structure of the CELT decoder">
<artwork align="center"><![CDATA[
+---------+
| Coarse |
+->| decoder |----+
| +---------+ |
| |
| +---------+ v
| | Fine | +---+
+->| decoder |->| + |
| +---------+ +---+
| ^ |
+---------+ | | |
| Range | | +----------+ v
| Decoder |-+ | Bit | +------+
+---------+ | |Allocation| | 2**x |
| +----------+ +------+
| | |
| v v +--------+
| +---------+ +---+ +-------+ | pitch |
+->| PVQ |->| * |->| IMDCT |->| post- |--->
| | decoder | +---+ +-------+ | filter |
| +---------+ +--------+
| ^
+--------------------------------------+
]]></artwork>
</figure>
<t>
The decoder is based on the following symbols and sets of symbols:
</t>
<texttable anchor="celt_symbols"
title="Order of the Symbols in the CELT Section of the Bitstream">
<ttcol align="center">Symbol(s)</ttcol>
<ttcol align="center">PDF</ttcol>
<ttcol align="center">Condition</ttcol>
<c>silence</c> <c>{32767, 1}/32768</c> <c></c>
<c>post-filter</c> <c>{1, 1}/2</c> <c></c>
<c>octave</c> <c>uniform (6)</c><c>post-filter</c>
<c>period</c> <c>raw bits (4+octave)</c><c>post-filter</c>
<c>gain</c> <c>raw bits (3)</c><c>post-filter</c>
<c>tapset</c> <c>{2, 1, 1}/4</c><c>post-filter</c>
<c>transient</c> <c>{7, 1}/8</c><c></c>
<c>intra</c> <c>{7, 1}/8</c><c></c>
<c>coarse energy</c><c><xref target="energy-decoding"/></c><c></c>
<c>tf_change</c> <c><xref target="transient-decoding"/></c><c></c>
<c>tf_select</c> <c>{1, 1}/2</c><c><xref target="transient-decoding"/></c>
<c>spread</c> <c>{7, 2, 21, 2}/32</c><c></c>
<c>dyn. alloc.</c> <c><xref target="allocation"/></c><c></c>
<c>alloc. trim</c> <c>{2, 2, 5, 10, 22, 46, 22, 10, 5, 2, 2}/128</c><c></c>
<c>skip</c> <c>{1, 1}/2</c><c><xref target="allocation"/></c>
<c>intensity</c> <c>uniform</c><c><xref target="allocation"/></c>
<c>dual</c> <c>{1, 1}/2</c><c></c>
<c>fine energy</c> <c><xref target="energy-decoding"/></c><c></c>
<c>residual</c> <c><xref target="PVQ-decoder"/></c><c></c>
<c>anti-collapse</c><c>{1, 1}/2</c><c><xref target="anti-collapse"/></c>
<c>finalize</c> <c><xref target="energy-decoding"/></c><c></c>
</texttable>
<t>
The decoder extracts information from the range-coded bitstream in the order
described in <xref target='celt_symbols'/>. In some circumstances, it is
possible for a decoded value to be out of range due to a very small amount of redundancy
in the encoding of large integers by the range coder.
In that case, the decoder should assume there has been an error in the coding,
decoding, or transmission and SHOULD take measures to conceal the error and/or report
to the application that a problem has occurred. Such out of range errors cannot occur
in the SILK layer.
</t>
<section anchor="transient-decoding" title="Transient Decoding">
<t>
The "transient" flag indicates whether the frame uses a single long MDCT or several short MDCTs.
When it is set, then the MDCT coefficients represent multiple
short MDCTs in the frame. When not set, the coefficients represent a single
long MDCT for the frame. The flag is encoded in the bitstream with a probability of 1/8.
In addition to the global transient flag is a per-band
binary flag to change the time-frequency (tf) resolution independently in each band. The
change in tf resolution is defined in tf_select_table[][] in celt.c and depends
on the frame size, whether the transient flag is set, and the value of tf_select.
The tf_select flag uses a 1/2 probability, but is only decoded
if it can have an impact on the result knowing the value of all per-band
tf_change flags.
</t>
</section>
<section anchor="energy-decoding" title="Energy Envelope Decoding">
<t>
It is important to quantize the energy with sufficient resolution because
any energy quantization error cannot be compensated for at a later
stage. Regardless of the resolution used for encoding the spectral shape of a band,
it is perceptually important to preserve the energy in each band. CELT uses a
three-step coarse-fine-fine strategy for encoding the energy in the base-2 log
domain, as implemented in quant_bands.c</t>
<section anchor="coarse-energy-decoding" title="Coarse energy decoding">
<t>
Coarse quantization of the energy uses a fixed resolution of 6 dB
(integer part of base-2 log). To minimize the bitrate, prediction is applied
both in time (using the previous frame) and in frequency (using the previous
bands). The part of the prediction that is based on the
previous frame can be disabled, creating an "intra" frame where the energy
is coded without reference to prior frames. The decoder first reads the intra flag
to determine what prediction is used.
The 2-D z-transform <xref target='z-transform'/> of
the prediction filter is:
<figure align="center">
<artwork align="center"><![CDATA[
-1 -1
(1 - alpha*z_l )*(1 - z_b )
A(z_l, z_b) = -----------------------------
-1
1 - beta*z_b
]]></artwork>
</figure>
where b is the band index and l is the frame index. The prediction coefficients
applied depend on the frame size in use when not using intra energy and are alpha=0, beta=4915/32768
when using intra energy.
The time-domain prediction is based on the final fine quantization of the previous
frame, while the frequency domain (within the current frame) prediction is based
on coarse quantization only (because the fine quantization has not been computed
yet). The prediction is clamped internally so that fixed point implementations with
limited dynamic range always remain in the same state as floating point implementations.
We approximate the ideal
probability distribution of the prediction error using a Laplace distribution
with separate parameters for each frame size in intra- and inter-frame modes. These
parameters are held in the e_prob_model table in quant_bands.c.
The
coarse energy quantization is performed by unquant_coarse_energy() and
unquant_coarse_energy_impl() (quant_bands.c). The encoding of the Laplace-distributed values is
implemented in ec_laplace_decode() (laplace.c).
</t>
</section>
<section anchor="fine-energy-decoding" title="Fine energy quantization">
<t>
The number of bits assigned to fine energy quantization in each band is determined
by the bit allocation computation described in <xref target="allocation"></xref>.
Let B_i be the number of fine energy bits
for band i; the refinement is an integer f in the range [0,2**B_i-1]. The mapping between f
and the correction applied to the coarse energy is equal to (f+1/2)/2**B_i - 1/2. Fine
energy quantization is implemented in quant_fine_energy() (quant_bands.c).
</t>
<t>
When some bits are left "unused" after all other flags have been decoded, these bits
are assigned to a "final" step of fine allocation. In effect, these bits are used
to add one extra fine energy bit per band per channel. The allocation process
determines two "priorities" for the final fine bits.
Any remaining bits are first assigned only to bands of priority 0, starting
from band 0 and going up. If all bands of priority 0 have received one bit per
channel, then bands of priority 1 are assigned an extra bit per channel,
starting from band 0. If any bits are left after this, they are left unused.
This is implemented in unquant_energy_finalise() (quant_bands.c).
</t>
</section> <!-- fine energy -->
</section> <!-- Energy decode -->
<section anchor="allocation" title="Bit Allocation">
<t>Because the bit allocation drives the decoding of the range-coder
stream, it MUST be recovered exactly so that identical coding decisions are
made in the encoder and decoder. Any deviation from the reference's resulting
bit allocation will result in corrupted output, though implementers are
free to implement the procedure in any way which produces identical results.</t>
<t>The per-band gain-shape structure of the CELT layer ensures that using
the same number of bits for the spectral shape of a band in every frame will
result in a roughly constant signal-to-noise ratio in that band.
This results in coding noise that has the same spectral envelope as the signal.
The masking curve produced by a standard psychoacoustic model also closely
follows the spectral envelope of the signal.
This structure means that the ideal allocation is more consistent from frame to
frame than it is for other codecs without an equivalent structure, and that a
fixed allocation provides fairly consistent perceptual
performance <xref target='Valin2010'/>.</t>
<t>Many codecs transmit significant amounts of side information to control the
bit allocation within a frame.
Often this control is only indirect, and must be exercised carefully to
achieve the desired rate constraints.
The CELT layer, however, can adapt over a very wide range of rates, and thus
has a large number of codebook sizes to choose from for each band.
Explicitly signaling the size of each of these codebooks would impose
considerable overhead, even though the allocation is relatively static from
frame to frame.
This is because all of the information required to compute these codebook sizes
must be derived from a single frame by itself, in order to retain robustness
to packet loss, so the signaling cannot take advantage of knowledge of the
allocation in neighboring frames.
This problem is exacerbated in low-latency (small frame size) applications,
which would include this overhead in every frame.</t>
<t>For this reason, in the MDCT mode Opus uses a primarily implicit bit
allocation. The available bitstream capacity is known in advance to both
the encoder and decoder without additional signaling, ultimately from the
packet sizes expressed by a higher-level protocol. Using this information,
the codec interpolates an allocation from a hard-coded table.</t>
<t>While the band-energy structure effectively models intra-band masking,
it ignores the weaker inter-band masking, band-temporal masking, and
other less significant perceptual effects. While these effects can
often be ignored, they can become significant for particular samples. One
mechanism available to encoders would be to simply increase the overall
rate for these frames, but this is not possible in a constant rate mode
and can be fairly inefficient. As a result three explicitly signaled
mechanisms are provided to alter the implicit allocation:</t>
<t>
<list style="symbols">
<t>Band boost</t>
<t>Allocation trim</t>
<t>Band skipping</t>
</list>
</t>
<t>The first of these mechanisms, band boost, allows an encoder to boost
the allocation in specific bands. The second, allocation trim, works by
biasing the overall allocation towards higher or lower frequency bands. The third, band
skipping, selects which low-precision high frequency bands
will be allocated no shape bits at all.</t>
<t>In stereo mode there are two additional parameters
potentially coded as part of the allocation procedure: a parameter to allow the
selective elimination of allocation for the 'side' (i.e., intensity stereo) in jointly coded bands,
and a flag to deactivate joint coding (i.e., dual stereo). These values are not signaled if
they would be meaningless in the overall context of the allocation.</t>
<t>Because every signaled adjustment increases overhead and implementation
complexity, none were included speculatively: the reference encoder makes use
of all of these mechanisms. While the decision logic in the reference was
found to be effective enough to justify the overhead and complexity, further
analysis techniques may be discovered which increase the effectiveness of these
parameters. As with other signaled parameters, an encoder is free to choose the
values in any manner, but unless a technique is known to deliver superior
perceptual results the methods used by the reference implementation should be
used.</t>
<t>The allocation process consists of the following steps: determining the per-band
maximum allocation vector, decoding the boosts, decoding the tilt, determining
the remaining capacity of the frame, searching the mode table for the
entry nearest but not exceeding the available space (subject to the tilt, boosts, band
maximums, and band minimums), linear interpolation, reallocation of
unused bits with concurrent skip decoding, determination of the
fine-energy vs. shape split, and final reallocation. This process results
in a per-band shape allocation (in 1/8th bit units), a per-band fine-energy
allocation (in 1 bit per channel units), a set of band priorities for
controlling the use of remaining bits at the end of the frame, and a
remaining balance of unallocated space, which is usually zero except
at very high rates.</t>
<t>
The "static" bit allocation (in 1/8 bits) for a quality q, excluding the minimums, maximums,
tilt and boosts, is equal to channels*N*alloc[band][q]<<LM>>2, where
alloc[][] is given in <xref target="static_alloc"/> and LM=log2(frame_size/120). The allocation
is obtained by linearly interpolating between two values of q (in steps of 1/64) to find the
highest allocation that does not exceed the number of bits remaining.
</t>
<texttable anchor="static_alloc"
title="CELT Static Allocation Table">
<preamble>Rows indicate the MDCT bands, columns are the different quality (q) parameters. The units are 1/32 bit per MDCT bin.</preamble>
<ttcol align="right">0</ttcol>
<ttcol align="right">1</ttcol>
<ttcol align="right">2</ttcol>
<ttcol align="right">3</ttcol>
<ttcol align="right">4</ttcol>
<ttcol align="right">5</ttcol>
<ttcol align="right">6</ttcol>
<ttcol align="right">7</ttcol>
<ttcol align="right">8</ttcol>
<ttcol align="right">9</ttcol>
<ttcol align="right">10</ttcol>
<c>0</c><c>90</c><c>110</c><c>118</c><c>126</c><c>134</c><c>144</c><c>152</c><c>162</c><c>172</c><c>200</c>
<c>0</c><c>80</c><c>100</c><c>110</c><c>119</c><c>127</c><c>137</c><c>145</c><c>155</c><c>165</c><c>200</c>
<c>0</c><c>75</c><c>90</c><c>103</c><c>112</c><c>120</c><c>130</c><c>138</c><c>148</c><c>158</c><c>200</c>
<c>0</c><c>69</c><c>84</c><c>93</c><c>104</c><c>114</c><c>124</c><c>132</c><c>142</c><c>152</c><c>200</c>
<c>0</c><c>63</c><c>78</c><c>86</c><c>95</c><c>103</c><c>113</c><c>123</c><c>133</c><c>143</c><c>200</c>
<c>0</c><c>56</c><c>71</c><c>80</c><c>89</c><c>97</c><c>107</c><c>117</c><c>127</c><c>137</c><c>200</c>
<c>0</c><c>49</c><c>65</c><c>75</c><c>83</c><c>91</c><c>101</c><c>111</c><c>121</c><c>131</c><c>200</c>
<c>0</c><c>40</c><c>58</c><c>70</c><c>78</c><c>85</c><c>95</c><c>105</c><c>115</c><c>125</c><c>200</c>
<c>0</c><c>34</c><c>51</c><c>65</c><c>72</c><c>78</c><c>88</c><c>98</c><c>108</c><c>118</c><c>198</c>
<c>0</c><c>29</c><c>45</c><c>59</c><c>66</c><c>72</c><c>82</c><c>92</c><c>102</c><c>112</c><c>193</c>
<c>0</c><c>20</c><c>39</c><c>53</c><c>60</c><c>66</c><c>76</c><c>86</c><c>96</c><c>106</c><c>188</c>
<c>0</c><c>18</c><c>32</c><c>47</c><c>54</c><c>60</c><c>70</c><c>80</c><c>90</c><c>100</c><c>183</c>
<c>0</c><c>10</c><c>26</c><c>40</c><c>47</c><c>54</c><c>64</c><c>74</c><c>84</c><c>94</c><c>178</c>
<c>0</c><c>0</c><c>20</c><c>31</c><c>39</c><c>47</c><c>57</c><c>67</c><c>77</c><c>87</c><c>173</c>
<c>0</c><c>0</c><c>12</c><c>23</c><c>32</c><c>41</c><c>51</c><c>61</c><c>71</c><c>81</c><c>168</c>
<c>0</c><c>0</c><c>0</c><c>15</c><c>25</c><c>35</c><c>45</c><c>55</c><c>65</c><c>75</c><c>163</c>
<c>0</c><c>0</c><c>0</c><c>4</c><c>17</c><c>29</c><c>39</c><c>49</c><c>59</c><c>69</c><c>158</c>
<c>0</c><c>0</c><c>0</c><c>0</c><c>12</c><c>23</c><c>33</c><c>43</c><c>53</c><c>63</c><c>153</c>
<c>0</c><c>0</c><c>0</c><c>0</c><c>1</c><c>16</c><c>26</c><c>36</c><c>46</c><c>56</c><c>148</c>
<c>0</c><c>0</c><c>0</c><c>0</c><c>0</c><c>10</c><c>15</c><c>20</c><c>30</c><c>45</c><c>129</c>
<c>0</c><c>0</c><c>0</c><c>0</c><c>0</c><c>1</c><c>1</c><c>1</c><c>1</c><c>20</c><c>104</c>
</texttable>
<t>The maximum allocation vector is an approximation of the maximum space
that can be used by each band for a given mode. The value is
approximate because the shape encoding is variable rate (due
to entropy coding of splitting parameters). Setting the maximum too low reduces the
maximum achievable quality in a band while setting it too high
may result in waste: bitstream capacity available at the end
of the frame which can not be put to any use. The maximums
specified by the codec reflect the average maximum. In the reference
implementation, the maximums in bits/sample are precomputed in a static table
(see cache_caps50[] in static_modes_float.h) for each band,
for each value of LM, and for both mono and stereo.
Implementations are expected
to simply use the same table data, but the procedure for generating
this table is included in rate.c as part of compute_pulse_cache().</t>
<t>To convert the values in cache.caps into the actual maximums: first
set nbBands to the maximum number of bands for this mode, and stereo to
zero if stereo is not in use and one otherwise. For each band set N
to the number of MDCT bins covered by the band (for one channel), set LM
to the shift value for the frame size,
then set i to nbBands*(2*LM+stereo). Then set the maximum for the band to
the i-th index of cache.caps + 64 and multiply by the number of channels
in the current frame (one or two) and by N, then divide the result by 4
using integer division. The resulting vector will be called
cap[]. The elements fit in signed 16-bit integers but do not fit in 8 bits.
This procedure is implemented in the reference in the function init_caps() in celt.c.
</t>
<t>The band boosts are represented by a series of binary symbols which
are entropy coded with very low probability. Each band can potentially be boosted
multiple times, subject to the frame actually having enough room to obey
the boost and having enough room to code the boost symbol. The default
coding cost for a boost starts out at six bits (probability p=1/64), but subsequent boosts
in a band cost only a single bit and every time a band is boosted the
initial cost is reduced (down to a minimum of two bits, or p=1/4). Since the initial
cost of coding a boost is 6 bits, the coding cost of the boost symbols when
completely unused is 0.48 bits/frame for a 21 band mode (21*-log2(1-1/2**6)).</t>
<t>To decode the band boosts: First set 'dynalloc_logp' to 6, the initial
amount of storage required to signal a boost in bits, 'total_bits' to the
size of the frame in 8th bits, 'total_boost' to zero, and 'tell' to the total number
of 8th bits decoded
so far. For each band from the coding start (0 normally, but 17 in Hybrid mode)
to the coding end (which changes depending on the signaled bandwidth), the boost quanta
in units of 1/8 bit is calculated as quanta = min(8*N, max(48, N)).
This represents a boost step size of six bits, subject to a lower limit of
1/8th bit/sample and an upper limit of 1 bit/sample.
Set 'boost' to zero and 'dynalloc_loop_logp'
to dynalloc_logp. While dynalloc_loop_log (the current worst case symbol cost) in
8th bits plus tell is less than total_bits plus total_boost and boost is less than cap[] for this
band: Decode a bit from the bitstream with a with dynalloc_loop_logp as the cost
of a one, update tell to reflect the current used capacity, if the decoded value
is zero break the loop otherwise add quanta to boost and total_boost, subtract quanta from
total_bits, and set dynalloc_loop_log to 1. When the while loop finishes
boost contains the boost for this band. If boost is non-zero and dynalloc_logp
is greater than 2, decrease dynalloc_logp. Once this process has been
executed on all bands, the band boosts have been decoded. This procedure
is implemented around line 2474 of celt.c.</t>
<t>At very low rates it is possible that there won't be enough available
space to execute the inner loop even once. In these cases band boost
is not possible but its overhead is completely eliminated. Because of the
high cost of band boost when activated, a reasonable encoder should not be
using it at very low rates. The reference implements its dynalloc decision
logic around line 1304 of celt.c.</t>
<t>The allocation trim is a integer value from 0-10. The default value of
5 indicates no trim. The trim parameter is entropy coded in order to
lower the coding cost of less extreme adjustments. Values lower than
5 bias the allocation towards lower frequencies and values above 5
bias it towards higher frequencies. Like other signaled parameters, signaling
of the trim is gated so that it is not included if there is insufficient space
available in the bitstream. To decode the trim, first set
the trim value to 5, then if and only if the count of decoded 8th bits so far (ec_tell_frac)
plus 48 (6 bits) is less than or equal to the total frame size in 8th
bits minus total_boost (a product of the above band boost procedure),
decode the trim value using the PDF in <xref target="celt_trim_pdf"/>.</t>
<texttable anchor="celt_trim_pdf" title="PDF for the Trim">
<ttcol>PDF</ttcol>
<c>{1, 1, 2, 5, 10, 22, 46, 22, 10, 5, 2, 2}/128</c>
</texttable>
<t>For 10 ms and 20 ms frames using short blocks and that have at least LM+2 bits left prior to
the allocation process, then one anti-collapse bit is reserved in the allocation process so it can
be decoded later. Following the the anti-collapse reservation, one bit is reserved for skip if available.</t>
<t>For stereo frames, bits are reserved for intensity stereo and for dual stereo. Intensity stereo
requires ilog2(end-start) bits. Those bits are reserved if there is enough bits left. Following this, one
bit is reserved for dual stereo if available.</t>
<t>The allocation computation begins by setting up some initial conditions.
'total' is set to the remaining available 8th bits, computed by taking the
size of the coded frame times 8 and subtracting ec_tell_frac(). From this value, one (8th bit)
is subtracted to ensure that the resulting allocation will be conservative. 'anti_collapse_rsv'
is set to 8 (8th bits) if and only if the frame is a transient, LM is greater than 1, and total is
greater than or equal to (LM+2) * 8. Total is then decremented by anti_collapse_rsv and clamped
to be equal to or greater than zero. 'skip_rsv' is set to 8 (8th bits) if total is greater than
8, otherwise it is zero. Total is then decremented by skip_rsv. This reserves space for the
final skipping flag.</t>
<t>If the current frame is stereo, intensity_rsv is set to the conservative log2 in 8th bits
of the number of coded bands for this frame (given by the table LOG2_FRAC_TABLE in rate.c). If
intensity_rsv is greater than total then intensity_rsv is set to zero. Otherwise total is
decremented by intensity_rsv, and if total is still greater than 8, dual_stereo_rsv is
set to 8 and total is decremented by dual_stereo_rsv.</t>
<t>The allocation process then computes a vector representing the hard minimum amounts allocation
any band will receive for shape. This minimum is higher than the technical limit of the PVQ
process, but very low rate allocations produce an excessively sparse spectrum and these bands
are better served by having no allocation at all. For each coded band, set thresh[band] to
twenty-four times the number of MDCT bins in the band and divide by 16. If 8 times the number
of channels is greater, use that instead. This sets the minimum allocation to one bit per channel
or 48 128th bits per MDCT bin, whichever is greater. The band-size dependent part of this
value is not scaled by the channel count, because at the very low rates where this limit is
applicable there will usually be no bits allocated to the side.</t>
<t>The previously decoded allocation trim is used to derive a vector of per-band adjustments,
'trim_offsets[]'. For each coded band take the alloc_trim and subtract 5 and LM. Then multiply
the result by the number of channels, the number of MDCT bins in the shortest frame size for this mode,
the number of remaining bands, 2**LM, and 8. Then divide this value by 64. Finally, if the
number of MDCT bins in the band per channel is only one, 8 times the number of channels is subtracted
in order to diminish the allocation by one bit, because width 1 bands receive greater benefit
from the coarse energy coding.</t>
</section>
<section anchor="PVQ-decoder" title="Shape Decoding">
<t>
In each band, the normalized "shape" is encoded
using a vector quantization scheme called a "pyramid vector quantizer".
</t>
<t>In
the simplest case, the number of bits allocated in
<xref target="allocation"></xref> is converted to a number of pulses as described
by <xref target="bits-pulses"></xref>. Knowing the number of pulses and the
number of samples in the band, the decoder calculates the size of the codebook
as detailed in <xref target="cwrs-decoder"></xref>. The size is used to decode
an unsigned integer (uniform probability model), which is the codeword index.
This index is converted into the corresponding vector as explained in
<xref target="cwrs-decoder"></xref>. This vector is then scaled to unit norm.
</t>
<section anchor="bits-pulses" title="Bits to Pulses">
<t>
Although the allocation is performed in 1/8th bit units, the quantization requires
an integer number of pulses K. To do this, the encoder searches for the value
of K that produces the number of bits nearest to the allocated value
(rounding down if exactly halfway between two values), not to exceed
the total number of bits available. For efficiency reasons, the search is performed against a
precomputed allocation table which only permits some K values for each N. The number of
codebook entries can be computed as explained in <xref target="cwrs-decoder"></xref>. The difference
between the number of bits allocated and the number of bits used is accumulated to a
"balance" (initialized to zero) that helps adjust the
allocation for the next bands. One third of the balance is applied to the
bit allocation of each band to help achieve the target allocation. The only
exceptions are the band before the last and the last band, for which half the balance
and the whole balance are applied, respectively.
</t>
</section>
<section anchor="cwrs-decoder" title="PVQ Decoding">
<t>
Decoding of PVQ vectors is implemented in decode_pulses() (cwrs.c).
The unique codeword index is decoded as a uniformly-distributed integer value between 0 and
V(N,K)-1, where V(N,K) is the number of possible combinations of K pulses in
N samples. The index is then converted to a vector in the same way specified in
<xref target="PVQ"></xref>. The indexing is based on the calculation of V(N,K)
(denoted N(L,K) in <xref target="PVQ"></xref>).
</t>
<t>
The number of combinations can be computed recursively as
V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), with V(N,0) = 1 and V(0,K) = 0, K != 0.
There are many different ways to compute V(N,K), including precomputed tables and direct
use of the recursive formulation. The reference implementation applies the recursive
formulation one line (or column) at a time to save on memory use,
along with an alternate,
univariate recurrence to initialize an arbitrary line, and direct
polynomial solutions for small N. All of these methods are
equivalent, and have different trade-offs in speed, memory usage, and
code size. Implementations MAY use any methods they like, as long as
they are equivalent to the mathematical definition.
</t>
<t>
The decoded vector X is recovered as follows.
Let i be the index decoded with the procedure in <xref target="ec_dec_uint"/>
with ft = V(N,K), so that 0 <= i < V(N,K).
Let k = K.
Then for j = 0 to (N - 1), inclusive, do:
<list style="numbers">
<t>Let p = (V(N-j-1,k) + V(N-j,k))/2.</t>
<t>
If i < p, then let sgn = 1, else let sgn = -1
and set i = i - p.
</t>
<t>Let k0 = k and set p = p - V(N-j-1,k).</t>
<t>
While p > i, set k = k - 1 and
p = p - V(N-j-1,k).
</t>
<t>
Set X[j] = sgn*(k0 - k) and i = i - p.
</t>
</list>
</t>
<t>
The decoded vector X is then normalized such that its
L2-norm equals one.
</t>
</section>
<section anchor="spreading" title="Spreading">
<t>
The normalized vector decoded in <xref target="cwrs-decoder"/> is then rotated
for the purpose of avoiding tonal artifacts. The rotation gain is equal to
<figure align="center">
<artwork align="center"><![CDATA[
g_r = N / (N + f_r*K)
]]></artwork>
</figure>
where N is the number of dimensions, K is the number of pulses, and f_r depends on
the value of the "spread" parameter in the bit-stream.
</t>
<texttable anchor="spread values" title="Spreading Values">
<ttcol>Spread value</ttcol>
<ttcol>f_r</ttcol>
<c>0</c> <c>infinite (no rotation)</c>
<c>1</c> <c>15</c>
<c>2</c> <c>10</c>
<c>3</c> <c>5</c>
</texttable>
<t>
The rotation angle is then calculated as
<figure align="center">
<artwork align="center"><![CDATA[
2
pi * g_r
theta = ----------
4
]]></artwork>
</figure>
A 2-D rotation R(i,j) between points x_i and x_j is defined as:
<figure align="center">
<artwork align="center"><![CDATA[
x_i' = cos(theta)*x_i + sin(theta)*x_j
x_j' = -sin(theta)*x_i + cos(theta)*x_j
]]></artwork>
</figure>
An N-D rotation is then achieved by applying a series of 2-D rotations back and forth, in the
following order: R(x_1, x_2), R(x_2, x_3), ..., R(x_N-2, X_N-1), R(x_N-1, X_N),
R(x_N-2, X_N-1), ..., R(x_1, x_2).
</t>
<t>
If the decoded vector represents more
than one time block, then this spreading process is applied separately on each time block.
Also, if each block represents 8 samples or more, then another N-D rotation, by
(pi/2-theta), is applied <spanx style="emph">before</spanx> the rotation described above. This
extra rotation is applied in an interleaved manner with a stride equal to round(sqrt(N/nb_blocks)),
i.e., it is applied independently for each set of sample S_k = {stride*n + k}, n=0..N/stride-1.
</t>
</section>
<section anchor="split" title="Split decoding">
<t>
To avoid the need for multi-precision calculations when decoding PVQ codevectors,
the maximum size allowed for codebooks is 32 bits. When larger codebooks are
needed, the vector is instead split in two sub-vectors of size N/2.
A quantized gain parameter with precision
derived from the current allocation is entropy coded to represent the relative
gains of each side of the split, and the entire decoding process is recursively
applied. Multiple levels of splitting may be applied up to a limit of LM+1 splits.
The same recursive mechanism is applied for the joint coding
of stereo audio.
</t>
</section>
<section anchor="tf-change" title="Time-Frequency change">
<t>
The time-frequency (TF) parameters are used to control the time-frequency resolution tradeoff
in each coded band. For each band, there are two possible TF choices. For the first
band coded, the PDF is {3, 1}/4 for frames marked as transient and {15, 1}/16 for
the other frames. For subsequent bands, the TF choice is coded relative to the
previous TF choice with probability {15, 1}/15 for transient frames and {31, 1}/32
otherwise. The mapping between the decoded TF choices and the adjustment in TF
resolution is shown in the tables below.
</t>
<texttable anchor='tf_00'
title="TF Adjustments for Non-transient Frames and tf_select=0">
<ttcol align='center'>Frame size (ms)</ttcol>
<ttcol align='center'>0</ttcol>
<ttcol align='center'>1</ttcol>
<c>2.5</c> <c>0</c> <c>-1</c>
<c>5</c> <c>0</c> <c>-1</c>
<c>10</c> <c>0</c> <c>-2</c>
<c>20</c> <c>0</c> <c>-2</c>
</texttable>
<texttable anchor='tf_01'
title="TF Adjustments for Non-transient Frames and tf_select=1">
<ttcol align='center'>Frame size (ms)</ttcol>
<ttcol align='center'>0</ttcol>
<ttcol align='center'>1</ttcol>
<c>2.5</c> <c>0</c> <c>-1</c>
<c>5</c> <c>0</c> <c>-2</c>
<c>10</c> <c>0</c> <c>-3</c>
<c>20</c> <c>0</c> <c>-3</c>
</texttable>
<texttable anchor='tf_10'
title="TF Adjustments for Transient Frames and tf_select=0">
<ttcol align='center'>Frame size (ms)</ttcol>
<ttcol align='center'>0</ttcol>
<ttcol align='center'>1</ttcol>
<c>2.5</c> <c>0</c> <c>-1</c>
<c>5</c> <c>1</c> <c>0</c>
<c>10</c> <c>2</c> <c>0</c>
<c>20</c> <c>3</c> <c>0</c>
</texttable>
<texttable anchor='tf_11'
title="TF Adjustments for Transient Frames and tf_select=1">
<ttcol align='center'>Frame size (ms)</ttcol>
<ttcol align='center'>0</ttcol>
<ttcol align='center'>1</ttcol>
<c>2.5</c> <c>0</c> <c>-1</c>
<c>5</c> <c>1</c> <c>-1</c>
<c>10</c> <c>1</c> <c>-1</c>
<c>20</c> <c>1</c> <c>-1</c>
</texttable>
<t>
A negative TF adjustment means that the temporal resolution is increased,
while a positive TF adjustment means that the frequency resolution is increased.
Changes in TF resolution are implemented using the Hadamard transform <xref target="Hadamard"/>. To increase
the time resolution by N, N "levels" of the Hadamard transform are applied to the
decoded vector for each interleaved MDCT vector. To increase the frequency resolution
(assumes a transient frame), then N levels of the Hadamard transform are applied
<spanx style="emph">across</spanx> the interleaved MDCT vector. In the case of increased
time resolution the decoder uses the "sequency order" because the input vector
is sorted in time.
</t>
</section>
</section>
<section anchor="anti-collapse" title="Anti-Collapse Processing">
<t>
The anti-collapse feature is designed to avoid the situation where the use of multiple
short MDCTs causes the energy in one or more of the MDCTs to be zero for
some bands, causing unpleasant artifacts.
When the frame has the transient bit set, an anti-collapse bit is decoded.
When anti-collapse is set, the energy in each small MDCT is prevented
from collapsing to zero. For each band of each MDCT where a collapse is
detected, a pseudo-random signal is inserted with an energy corresponding
to the minimum energy over the two previous frames. A renormalization step is
then required to ensure that the anti-collapse step did not alter the
energy preservation property.
</t>
</section>
<section anchor="denormalization" title="Denormalization">
<t>
Just as each band was normalized in the encoder, the last step of the decoder before
the inverse MDCT is to denormalize the bands. Each decoded normalized band is
multiplied by the square root of the decoded energy. This is done by denormalise_bands()
(bands.c).
</t>
</section>
<section anchor="inverse-mdct" title="Inverse MDCT">
<t>The inverse MDCT implementation has no special characteristics. The
input is N frequency-domain samples and the output is 2*N time-domain
samples, while scaling by 1/2. A "low-overlap" window reduces the algorithmic delay.
It is derived from a basic (full overlap) 240-sample version of the window used by the Vorbis codec:
<figure align="center">
<artwork align="center"><![CDATA[
2
/ /pi /pi n + 1/2\ \ \
W(n) = |sin|-- * sin|-- * -------| | | .
\ \2 \2 L / / /
]]></artwork>
</figure>
The low-overlap window is created by zero-padding the basic window and inserting ones in the
middle, such that the resulting window still satisfies power complementarity <xref target='Princen86'/>.
The IMDCT and
windowing are performed by mdct_backward (mdct.c).
</t>
<section anchor="post-filter" title="Post-filter">
<t>
The output of the inverse MDCT (after weighted overlap-add) is sent to the
post-filter. Although the post-filter is applied at the end, the post-filter
parameters are encoded at the beginning, just after the silence flag.
The post-filter can be switched on or off using one bit (logp=1).
If the post-filter is enabled, then the octave is decoded as an integer value
between 0 and 6 of uniform probability. Once the octave is known, the fine pitch
within the octave is decoded using 4+octave raw bits. The final pitch period
is equal to (16<<octave)+fine_pitch-1 so it is bounded between 15 and 1022,
inclusively. Next, the gain is decoded as three raw bits and is equal to
G=3*(int_gain+1)/32. The set of post-filter taps is decoded last, using
a pdf equal to {2, 1, 1}/4. Tapset zero corresponds to the filter coefficients
g0 = 0.3066406250, g1 = 0.2170410156, g2 = 0.1296386719. Tapset one
corresponds to the filter coefficients g0 = 0.4638671875, g1 = 0.2680664062,
g2 = 0, and tapset two uses filter coefficients g0 = 0.7998046875,
g1 = 0.1000976562, g2 = 0.
</t>
<t>
The post-filter response is thus computed as:
<figure align="center">
<artwork align="center">
<![CDATA[
y(n) = x(n) + G*(g0*y(n-T) + g1*(y(n-T+1)+y(n-T+1))
+ g2*(y(n-T+2)+y(n-T+2)))
]]>
</artwork>
</figure>
During a transition between different gains, a smooth transition is calculated
using the square of the MDCT window. It is important that values of y(n) be
interpolated one at a time such that the past value of y(n) used is interpolated.
</t>
</section>
<section anchor="deemphasis" title="De-emphasis">
<t>
After the post-filter,
the signal is de-emphasized using the inverse of the pre-emphasis filter
used in the encoder:
<figure align="center">
<artwork align="center"><![CDATA[
1 1
---- = --------------- ,
A(z) -1
1 - alpha_p*z
]]></artwork>
</figure>
where alpha_p=0.8500061035.
</t>
</section>
</section>
</section>
<section anchor="Packet Loss Concealment" title="Packet Loss Concealment (PLC)">
<t>
Packet loss concealment (PLC) is an optional decoder-side feature that
SHOULD be included when receiving from an unreliable channel. Because
PLC is not part of the bitstream, there are many acceptable ways to
implement PLC with different complexity/quality trade-offs.
</t>
<t>
The PLC in
the reference implementation depends on the mode of last packet received.
In CELT mode, the PLC finds a periodicity in the decoded
signal and repeats the windowed waveform using the pitch offset. The windowed
waveform is overlapped in such a way as to preserve the time-domain aliasing
cancellation with the previous frame and the next frame. This is implemented
in celt_decode_lost() (mdct.c). In SILK mode, the PLC uses LPC extrapolation
from the previous frame, implemented in silk_PLC() (PLC.c).
</t>
<section anchor="clock-drift" title="Clock Drift Compensation">
<t>
Clock drift refers to the gradual desynchronization of two endpoints
whose sample clocks run at different frequencies while they are streaming
live audio. Differences in clock frequencies are generally attributable to
manufacturing variation in the endpoints' clock hardware. For long-lived
streams, the time difference between sender and receiver can grow without
bound.
</t>
<t>
When the sender's clock runs slower than the receiver's, the effect is similar
to packet loss: too few packets are received. The receiver can distinguish
between drift and loss if the transport provides packet timestamps. A receiver
for live streams SHOULD conceal the effects of drift, and MAY do so by invoking
the PLC.
</t>
<t>
When the sender's clock runs faster than the receiver's, too many packets will
be received. The receiver MAY respond by skipping any packet (i.e., not
submitting the packet for decoding). This is likely to produce a less severe
artifact than if the frame were dropped after decoding.
</t>
<t>
A decoder MAY employ a more sophisticated drift compensation method. For
example, the
<xref target='Google-NetEQ'>NetEQ component</xref>
of the
<xref target='Google-WebRTC'>Google WebRTC codebase</xref>
compensates for drift by adding or removing
one period when the signal is highly periodic. The reference implementation of
Opus allows a caller to learn whether the current frame's signal is highly
periodic, and if so what the period is, using the OPUS_GET_PITCH() request.
</t>
</section>
</section>
<section anchor="switching" title="Configuration Switching">
<t>
Switching between the Opus coding modes, audio bandwidths, and channel counts
requires careful consideration to avoid audible glitches.
Switching between any two configurations of the CELT-only mode, any two
configurations of the Hybrid mode, or from WB SILK to Hybrid mode does not
require any special treatment in the decoder, as the MDCT overlap will smooth
the transition.
Switching from Hybrid mode to WB SILK requires adding in the final contents
of the CELT overlap buffer to the first SILK-only packet.
This can be done by decoding a 2.5 ms silence frame with the CELT decoder
using the channel count of the SILK-only packet (and any choice of audio
bandwidth), which will correctly handle the cases when the channel count
changes as well.
</t>
<t>
When changing the channel count for SILK-only or Hybrid packets, the encoder
can avoid glitches by smoothly varying the stereo width of the input signal
before or after the transition, and SHOULD do so.
However, other transitions between SILK-only packets or between NB or MB SILK
and Hybrid packets may cause glitches, because neither the LSF coefficients
nor the LTP, LPC, stereo unmixing, and resampler buffers are available at the
new sample rate.
These switches SHOULD be delayed by the encoder until quiet periods or
transients, where the inevitable glitches will be less audible. Additionally,
the bit-stream MAY include redundant side information ("redundancy"), in the
form of additional CELT frames embedded in each of the Opus frames around the
transition.
</t>
<t>
The other transitions that cannot be easily handled are those where the lower
frequencies switch between the SILK LP-based model and the CELT MDCT model.
However, an encoder may not have an opportunity to delay such a switch to a
convenient point.
For example, if the content switches from speech to music, and the encoder does
not have enough latency in its analysis to detect this in advance, there may
be no convenient silence period during which to make the transition for quite
some time.
To avoid or reduce glitches during these problematic mode transitions, and
also between audio bandwidth changes in the SILK-only modes, transitions MAY
include redundant side information ("redundancy"), in the form of an
additional CELT frame embedded in the Opus frame.
</t>
<t>
A transition between coding the lower frequencies with the LP model and the
MDCT model or a transition that involves changing the SILK bandwidth
is only normatively specified when it includes redundancy.
For those without redundancy, it is RECOMMENDED that the decoder use a
concealment technique (e.g., make use of a PLC algorithm) to "fill in" the
gap or discontinuity caused by the mode transition.
Therefore, PLC MUST NOT be applied during any normative transition, i.e., when
<list style="symbols">
<t>A packet includes redundancy for this transition (as described below),</t>
<t>The transition is between any WB SILK packet and any Hybrid packet, or vice
versa,</t>
<t>The transition is between any two Hybrid mode packets, or</t>
<t>The transition is between any two CELT mode packets,</t>
</list>
unless there is actual packet loss.
</t>
<section anchor="side-info" title="Transition Side Information (Redundancy)">
<t>
Transitions with side information include an extra 5 ms "redundant" CELT
frame within the Opus frame.
This frame is designed to fill in the gap or discontinuity in the different
layers without requiring the decoder to conceal it.
For transitions from CELT-only to SILK-only or Hybrid, the redundant frame is
inserted in the first Opus frame after the transition (i.e., the first
SILK-only or Hybrid frame).
For transitions from SILK-only or Hybrid to CELT-only, the redundant frame is
inserted in the last Opus frame before the transition (i.e., the last
SILK-only or Hybrid frame).
</t>
<section anchor="opus_redundancy_flag" title="Redundancy Flag">
<t>
The presence of redundancy is signaled in all SILK-only and Hybrid frames, not
just those involved in a mode transition.
This allows the frames to be decoded correctly even if an adjacent frame is
lost.
For SILK-only frames, this signaling is implicit, based on the size of the
of the Opus frame and the number of bits consumed decoding the SILK portion of
it.
After decoding the SILK portion of the Opus frame, the decoder uses ec_tell()
(see <xref target="ec_tell"/>) to check if there are at least 17 bits
remaining.
If so, then the frame contains redundancy.
</t>
<t>
For Hybrid frames, this signaling is explicit.
After decoding the SILK portion of the Opus frame, the decoder uses ec_tell()
(see <xref target="ec_tell"/>) to ensure there are at least 37 bits remaining.
If so, it reads a symbol with the PDF in
<xref target="opus_redundancy_flag_pdf"/>, and if the value is 1, then the
frame contains redundancy.
Otherwise (if there were fewer than 37 bits left or the value was 0), the frame
does not contain redundancy.
</t>
<texttable anchor="opus_redundancy_flag_pdf" title="Redundancy Flag PDF">
<ttcol>PDF</ttcol>
<c>{4095, 1}/4096</c>
</texttable>
</section>
<section anchor="opus_redundancy_pos" title="Redundancy Position Flag">
<t>
Since the current frame is a SILK-only or a Hybrid frame, it must be at least
10 ms.
Therefore, it needs an additional flag to indicate whether the redundant
5 ms CELT frame should be mixed into the beginning of the current frame,
or the end.
After determining that a frame contains redundancy, the decoder reads a
1 bit symbol with a uniform PDF
(<xref target="opus_redundancy_pos_pdf"/>).
</t>
<texttable anchor="opus_redundancy_pos_pdf" title="Redundancy Position PDF">
<ttcol>PDF</ttcol>
<c>{1, 1}/2</c>
</texttable>
<t>
If the value is zero, this is the first frame in the transition, and the
redundancy belongs at the end.
If the value is one, this is the second frame in the transition, and the
redundancy belongs at the beginning.
There is no way to specify that an Opus frame contains separate redundant CELT
frames at both the beginning and the end.
</t>
</section>
<section anchor="opus_redundancy_size" title="Redundancy Size">
<t>
Unlike the CELT portion of a Hybrid frame, the redundant CELT frame does not
use the same entropy coder state as the rest of the Opus frame, because this
would break the CELT bit allocation mechanism in Hybrid frames.
Thus, a redundant CELT frame always starts and ends on a byte boundary, even in
SILK-only frames, where this is not strictly necessary.
</t>
<t>
For SILK-only frames, the number of bytes in the redundant CELT frame is simply
the number of whole bytes remaining, which must be at least 2, due to the
space check in <xref target="opus_redundancy_flag"/>.
For Hybrid frames, the number of bytes is equal to 2, plus a decoded unsigned
integer less than 256 (see <xref target="ec_dec_uint"/>).
This may be more than the number of whole bytes remaining in the Opus frame,
in which case the frame is invalid.
However, a decoder is not required to ignore the entire frame, as this may be
the result of a bit error that desynchronized the range coder.
There may still be useful data before the error, and a decoder MAY keep any
audio decoded so far instead of invoking the PLC, but it is RECOMMENDED that
the decoder stop decoding and discard the rest of the current Opus frame.
</t>
<t>
It would have been possible to avoid these invalid states in the design of Opus
by limiting the range of the explicit length decoded from Hybrid frames by the
actual number of whole bytes remaining.
However, this would require an encoder to determine the rate allocation for the
MDCT layer up front, before it began encoding that layer.
By allowing some invalid sizes, the encoder is able to defer that decision
until much later.
When encoding Hybrid frames which do not include redundancy, the encoder must
still decide up-front if it wishes to use the minimum 37 bits required to
trigger encoding of the redundancy flag, but this is a much looser
restriction.
</t>
<t>
After determining the size of the redundant CELT frame, the decoder reduces
the size of the buffer currently in use by the range coder by that amount.
The CELT layer read any raw bits from the end of this reduced buffer, and all
calculations of the number of bits remaining in the buffer must be done using
this new, reduced size, rather than the original size of the Opus frame.
</t>
</section>
<section anchor="opus_redundancy_decoding" title="Decoding the Redundancy">
<t>
The redundant frame is decoded like any other CELT-only frame, with the
exception that it does not contain a TOC byte.
The frame size is fixed at 5 ms, the channel count is set to that of the
current frame, and the audio bandwidth is also set to that of the current
frame, with the exception that for MB SILK frames, it is set to WB.
</t>
<t>
If the redundancy belongs at the beginning (in a CELT-only to SILK-only or
Hybrid transition), the final reconstructed output uses the first 2.5 ms
of audio output by the decoder for the redundant frame as-is, discarding
the corresponding output from the SILK-only or Hybrid portion of the frame.
The remaining 2.5 ms is cross-lapped with the decoded SILK/Hybrid signal
using the CELT's power-complementary MDCT window to ensure a smooth
transition.
</t>
<t>
If the redundancy belongs at the end (in a SILK-only or Hybrid to CELT-only
transition), only the second half (2.5 ms) of the audio output by the
decoder for the redundant frame is used.
In that case, the second half of the redundant frame is cross-lapped with the
end of the SILK/Hybrid signal, again using CELT's power-complementary MDCT
window to ensure a smooth transition.
</t>
</section>
</section>
<section anchor="decoder-reset" title="State Reset">
<t>
When a transition occurs, the state of the SILK or the CELT decoder (or both)
may need to be reset before decoding a frame in the new mode.
This avoids reusing "out of date" memory, which may not have been updated in
some time or may not be in a well-defined state due to, e.g., PLC.
The SILK state is reset before every SILK-only or Hybrid frame where the
previous frame was CELT-only.
The CELT state is reset every time the operating mode changes and the new mode
is either Hybrid or CELT-only, except when the transition uses redundancy as
described above.
When switching from SILK-only or Hybrid to CELT-only with redundancy, the CELT
state is reset before decoding the redundant CELT frame embedded in the
SILK-only or Hybrid frame, but it is not reset before decoding the following
CELT-only frame.
When switching from CELT-only mode to SILK-only or Hybrid mode with redundancy,
the CELT decoder is not reset for decoding the redundant CELT frame.
</t>
</section>
<section title="Summary of Transitions">
<t>
<xref target="normative_transitions"/> illustrates all of the normative
transitions involving a mode change, an audio bandwidth change, or both.
Each one uses an S, H, or C to represent an Opus frame in the corresponding
mode.
In addition, an R indicates the presence of redundancy in the Opus frame it is
cross-lapped with.
Its location in the first or last 5 ms is assumed to correspond to whether
it is the frame before or after the transition.
Other uses of redundancy are non-normative.
Finally, a c indicates the contents of the CELT overlap buffer after the
previously decoded frame (i.e., as extracted by decoding a silence frame).
<figure align="center" anchor="normative_transitions"
title="Normative Transitions">
<artwork align="center"><![CDATA[
SILK to SILK with Redundancy: S -> S -> S
&
!R -> R
&
;S -> S -> S
NB or MB SILK to Hybrid with Redundancy: S -> S -> S
&
!R ->;H -> H -> H
WB SILK to Hybrid: S -> S -> S ->!H -> H -> H
SILK to CELT with Redundancy: S -> S -> S
&
!R -> C -> C -> C
Hybrid to NB or MB SILK with Redundancy: H -> H -> H
&
!R -> R
&
;S -> S -> S
Hybrid to WB SILK: H -> H -> H -> c
\ +
> S -> S -> S
Hybrid to CELT with Redundancy: H -> H -> H
&
!R -> C -> C -> C
CELT to SILK with Redundancy: C -> C -> C -> R
&
;S -> S -> S
CELT to Hybrid with Redundancy: C -> C -> C -> R
&
|H -> H -> H
Key:
S SILK-only frame ; SILK decoder reset
H Hybrid frame | CELT and SILK decoder resets
C CELT-only frame ! CELT decoder reset
c CELT overlap + Direct mixing
R Redundant CELT frame & Windowed cross-lap
]]></artwork>
</figure>
The first two and the last two Opus frames in each example are illustrative,
i.e., there is no requirement that a stream remain in the same configuration
for three consecutive frames before or after a switch.
</t>
<t>
The behavior of transitions without redundancy where PLC is allowed is non-normative.
An encoder might still wish to use these transitions if, for example, it
doesn't want to add the extra bitrate required for redundancy or if it makes
a decision to switch after it has already transmitted the frame that would
have had to contain the redundancy.
<xref target="nonnormative_transitions"/> illustrates the recommended
cross-lapping and decoder resets for these transitions.
<figure align="center" anchor="nonnormative_transitions"
title="Recommended Non-Normative Transitions">
<artwork align="center"><![CDATA[
SILK to SILK (audio bandwidth change): S -> S -> S ;S -> S -> S
NB or MB SILK to Hybrid: S -> S -> S |H -> H -> H
SILK to CELT without Redundancy: S -> S -> S -> P
&
!C -> C -> C
Hybrid to NB or MB SILK: H -> H -> H -> c
+
;S -> S -> S
Hybrid to CELT without Redundancy: H -> H -> H -> P
&
!C -> C -> C
CELT to SILK without Redundancy: C -> C -> C -> P
&
;S -> S -> S
CELT to Hybrid without Redundancy: C -> C -> C -> P
&
|H -> H -> H
Key:
S SILK-only frame ; SILK decoder reset
H Hybrid frame | CELT and SILK decoder resets
C CELT-only frame ! CELT decoder reset
c CELT overlap + Direct mixing
P Packet Loss Concealment & Windowed cross-lap
]]></artwork>
</figure>
Encoders SHOULD NOT use other transitions, e.g., those that involve redundancy
in ways not illustrated in <xref target="normative_transitions"/>.
</t>
</section>
</section>
</section>
<!-- ******************************************************************* -->
<!-- ************************** OPUS ENCODER *********************** -->
<!-- ******************************************************************* -->
<section title="Opus Encoder">
<t>
Just like the decoder, the Opus encoder also normally consists of two main blocks: the
SILK encoder and the CELT encoder. However, unlike the case of the decoder, a valid
(though potentially suboptimal) Opus encoder is not required to support all modes and
may thus only include a SILK encoder module or a CELT encoder module.
The output bit-stream of the Opus encoding contains bits from the SILK and CELT
encoders, though these are not separable due to the use of a range coder.
A block diagram of the encoder is illustrated below.
<figure align="center" anchor="opus-encoder-figure" title="Opus Encoder">
<artwork>
<![CDATA[
+------------+ +---------+
| Sample | | SILK |------+
+->| Rate |--->| Encoder | V
+-----------+ | | Conversion | | | +---------+
| Optional | | +------------+ +---------+ | Range |
->| High-pass |--+ | Encoder |---->
| Filter | | +--------------+ +---------+ | | Bit-
+-----------+ | | Delay | | CELT | +---------+ stream
+->| Compensation |->| Encoder | ^
| | | |------+
+--------------+ +---------+
]]>
</artwork>
</figure>
</t>
<t>
For a normal encoder where both the SILK and the CELT modules are included, an optimal
encoder should select which coding mode to use at run-time depending on the conditions.
In the reference implementation, the frame size is selected by the application, but the
other configuration parameters (number of channels, bandwidth, mode) are automatically
selected (unless explicitly overridden by the application) depend on the following:
<list style="symbols">
<t>Requested bitrate</t>
<t>Input sampling rate</t>
<t>Type of signal (speech vs music)</t>
<t>Frame size in use</t>
</list>
The type of signal currently needs to be provided by the application (though it can be
changed in real-time). An Opus encoder implementation could also do automatic detection,
but since Opus is an interactive codec, such an implementation would likely have to either
delay the signal (for non-interactive applications) or delay the mode switching decisions (for
interactive applications).
</t>
<t>
When the encoder is configured for voice over IP applications, the input signal is
filtered by a high-pass filter to remove the lowest part of the spectrum
that contains little speech energy and may contain background noise. This is a second order
Auto Regressive Moving Average (i.e., with poles and zeros) filter with a cut-off frequency around 50 Hz.
In the future, a music detector may also be used to lower the cut-off frequency when the
input signal is detected to be music rather than speech.
</t>
<section anchor="range-encoder" title="Range Encoder">
<t>
The range coder acts as the bit-packer for Opus.
It is used in three different ways: to encode
<list style="symbols">
<t>
Entropy-coded symbols with a fixed probability model using ec_encode()
(entenc.c),
</t>
<t>
Integers from 0 to (2**M - 1) using ec_enc_uint() or ec_enc_bits()
(entenc.c),</t>
<t>
Integers from 0 to (ft - 1) (where ft is not a power of two) using
ec_enc_uint() (entenc.c).
</t>
</list>
</t>
<t>
The range encoder maintains an internal state vector composed of the four-tuple
(val, rng, rem, ext) representing the low end of the current
range, the size of the current range, a single buffered output byte, and a
count of additional carry-propagating output bytes.
Both val and rng are 32-bit unsigned integer values, rem is a byte value or
less than 255 or the special value -1, and ext is an unsigned integer with at
least 11 bits.
This state vector is initialized at the start of each each frame to the value
(0, 2**31, -1, 0).
After encoding a sequence of symbols, the value of rng in the encoder should
exactly match the value of rng in the decoder after decoding the same sequence
of symbols.
This is a powerful tool for detecting errors in either an encoder or decoder
implementation.
The value of val, on the other hand, represents different things in the encoder
and decoder, and is not expected to match.
</t>
<t>
The decoder has no analog for rem and ext.
These are used to perform carry propagation in the renormalization loop below.
Each iteration of this loop produces 9 bits of output, consisting of 8 data
bits and a carry flag.
The encoder cannot determine the final value of the output bytes until it
propagates these carry flags.
Therefore the reference implementation buffers a single non-propagating output
byte (i.e., one less than 255) in rem and keeps a count of additional
propagating (i.e., 255) output bytes in ext.
An implementation may choose to use any mathematically equivalent scheme to
perform carry propagation.
</t>
<section anchor="encoding-symbols" title="Encoding Symbols">
<t>
The main encoding function is ec_encode() (entenc.c), which encodes symbol k in
the current context using the same three-tuple (fl[k], fh[k], ft)
as the decoder to describe the range of the symbol (see
<xref target="range-decoder"/>).
</t>
<t>
ec_encode() updates the state of the encoder as follows.
If fl[k] is greater than zero, then
<figure align="center">
<artwork align="center"><![CDATA[
rng
val = val + rng - --- * (ft - fl) ,
ft
rng
rng = --- * (fh - fl) .
ft
]]></artwork>
</figure>
Otherwise, val is unchanged and
<figure align="center">
<artwork align="center"><![CDATA[
rng
rng = rng - --- * (fh - fl) .
ft
]]></artwork>
</figure>
The divisions here are integer division.
</t>
<section anchor="range-encoder-renorm" title="Renormalization">
<t>
After this update, the range is normalized using a procedure very similar to
that of <xref target="range-decoder-renorm"/>, implemented by
ec_enc_normalize() (entenc.c).
The following process is repeated until rng > 2**23.
First, the top 9 bits of val, (val>>23), are sent to the carry buffer,
described in <xref target="ec_enc_carry_out"/>.
Then, the encoder sets
<figure align="center">
<artwork align="center"><![CDATA[
val = (val<<8) & 0x7FFFFFFF ,
rng = rng<<8 .
]]></artwork>
</figure>
</t>
</section>
<section anchor="ec_enc_carry_out"
title="Carry Propagation and Output Buffering">
<t>
The function ec_enc_carry_out() (entenc.c) implements carry propagation and
output buffering.
It takes as input a 9-bit value, c, consisting of 8 data bits and an additional
carry bit.
If c is equal to the value 255, then ext is simply incremented, and no other
state updates are performed.
Otherwise, let b = (c>>8) be the carry bit.
Then,
<list style="symbols">
<t>
If the buffered byte rem contains a value other than -1, the encoder outputs
the byte (rem + b).
Otherwise, if rem is -1, no byte is output.
</t>
<t>
If ext is non-zero, then the encoder outputs ext bytes---all with a value of 0
if b is set, or 255 if b is unset---and sets ext to 0.
</t>
<t>
rem is set to the 8 data bits:
<figure align="center">
<artwork align="center"><![CDATA[
rem = c & 255 .
]]></artwork>
</figure>
</t>
</list>
</t>
</section>
</section>
<section anchor="encoding-alternate" title="Alternate Encoding Methods">
<t>
The reference implementation uses three additional encoding methods that are
exactly equivalent to the above, but make assumptions and simplifications that
allow for a more efficient implementation.
</t>
<section anchor="ec_encode_bin" title="ec_encode_bin()">
<t>
The first is ec_encode_bin() (entenc.c), defined using the parameter ftb
instead of ft.
It is mathematically equivalent to calling ec_encode() with
ft = (1<<ftb), but avoids using division.
</t>
</section>
<section anchor="ec_enc_bit_logp" title="ec_enc_bit_logp()">
<t>
The next is ec_enc_bit_logp() (entenc.c), which encodes a single binary symbol.
The context is described by a single parameter, logp, which is the absolute
value of the base-2 logarithm of the probability of a "1".
It is mathematically equivalent to calling ec_encode() with the 3-tuple
(fl[k] = 0, fh[k] = (1<<logp) - 1,
ft = (1<<logp)) if k is 0 and with
(fl[k] = (1<<logp) - 1,
fh[k] = ft = (1<<logp)) if k is 1.
The implementation requires no multiplications or divisions.
</t>
</section>
<section anchor="ec_enc_icdf" title="ec_enc_icdf()">
<t>
The last is ec_enc_icdf() (entenc.c), which encodes a single binary symbol with
a table-based context of up to 8 bits.
This uses the same icdf table as ec_dec_icdf() from
<xref target="ec_dec_icdf"/>.
The function is mathematically equivalent to calling ec_encode() with
fl[k] = (1<<ftb) - icdf[k-1] (or 0 if
k == 0), fh[k] = (1<<ftb) - icdf[k], and
ft = (1<<ftb).
This only saves a few arithmetic operations over ec_encode_bin(), but allows
the encoder to use the same icdf tables as the decoder.
</t>
</section>
</section>
<section anchor="encoding-bits" title="Encoding Raw Bits">
<t>
The raw bits used by the CELT layer are packed at the end of the buffer using
ec_enc_bits() (entenc.c).
Because the raw bits may continue into the last byte output by the range coder
if there is room in the low-order bits, the encoder must be prepared to merge
these values into a single byte.
The procedure in <xref target="encoder-finalizing"/> does this in a way that
ensures both the range coded data and the raw bits can be decoded
successfully.
</t>
</section>
<section anchor="encoding-ints" title="Encoding Uniformly Distributed Integers">
<t>
The function ec_enc_uint() (entenc.c) encodes one of ft equiprobable symbols in
the range 0 to (ft - 1), inclusive, each with a frequency of 1,
where ft may be as large as (2**32 - 1).
Like the decoder (see <xref target="ec_dec_uint"/>), it splits up the
value into a range coded symbol representing up to 8 of the high bits, and, if
necessary, raw bits representing the remainder of the value.
</t>
<t>
ec_enc_uint() takes a two-tuple (t, ft), where t is the value to be
encoded, 0 <= t < ft, and ft is not necessarily a
power of two.
Let ftb = ilog(ft - 1), i.e., the number of bits required
to store (ft - 1) in two's complement notation.
If ftb is 8 or less, then t is encoded directly using ec_encode() with the
three-tuple (t, t + 1, ft).
</t>
<t>
If ftb is greater than 8, then the top 8 bits of t are encoded using the
three-tuple (t>>(ftb - 8),
(t>>(ftb - 8)) + 1,
((ft - 1)>>(ftb - 8)) + 1), and the
remaining bits,
(t & ((1<<(ftb - 8)) - 1),
are encoded as raw bits with ec_enc_bits().
</t>
</section>
<section anchor="encoder-finalizing" title="Finalizing the Stream">
<t>
After all symbols are encoded, the stream must be finalized by outputting a
value inside the current range.
Let end be the integer in the interval [val, val + rng) with the
largest number of trailing zero bits, b, such that
(end + (1<<b) - 1) is also in the interval
[val, val + rng).
This choice of end allows the maximum number of trailing bits to be set to
arbitrary values while still ensuring the range coded part of the buffer can
be decoded correctly.
Then, while end is not zero, the top 9 bits of end, i.e., (end>>23), are
passed to the carry buffer in accordance with the procedure in
<xref target="ec_enc_carry_out"/>, and end is updated via
<figure align="center">
<artwork align="center"><![CDATA[
end = (end<<8) & 0x7FFFFFFF .
]]></artwork>
</figure>
Finally, if the buffered output byte, rem, is neither zero nor the special
value -1, or the carry count, ext, is greater than zero, then 9 zero bits are
sent to the carry buffer to flush it to the output buffer.
When outputting the final byte from the range coder, if it would overlap any
raw bits already packed into the end of the output buffer, they should be ORed
into the same byte.
The bit allocation routines in the CELT layer should ensure that this can be
done without corrupting the range coder data so long as end is chosen as
described above.
If there is any space between the end of the range coder data and the end of
the raw bits, it is padded with zero bits.
This entire process is implemented by ec_enc_done() (entenc.c).
</t>
</section>
<section anchor="encoder-tell" title="Current Bit Usage">
<t>
The bit allocation routines in Opus need to be able to determine a
conservative upper bound on the number of bits that have been used
to encode the current frame thus far. This drives allocation
decisions and ensures that the range coder and raw bits will not
overflow the output buffer. This is computed in the
reference implementation to whole-bit precision by
the function ec_tell() (entcode.h) and to fractional 1/8th bit
precision by the function ec_tell_frac() (entcode.c).
Like all operations in the range coder, it must be implemented in a
bit-exact manner, and must produce exactly the same value returned by
the same functions in the decoder after decoding the same symbols.
</t>
</section>
</section>
<section title='SILK Encoder'>
<t>
In many respects the SILK encoder mirrors the SILK decoder described
in <xref target='silk_decoder_outline'/>.
Details such as the quantization and range coder tables can be found
there, while this section describes the high-level design choices that
were made.
The diagram below shows the basic modules of the SILK encoder.
<figure align="center" anchor="silk_encoder_figure" title="SILK Encoder">
<artwork>
<![CDATA[
+----------+ +--------+ +---------+
| Sample | | Stereo | | SILK |
------>| Rate |--->| Mixing |--->| Core |---------->
Input |Conversion| | | | Encoder | Bitstream
+----------+ +--------+ +---------+
]]>
</artwork>
</figure>
</t>
<section title='Sample Rate Conversion'>
<t>
The input signal's sampling rate is adjusted by a sample rate conversion
module so that it matches the SILK internal sampling rate.
The input to the sample rate converter is delayed by a number of samples
depending on the sample rate ratio, such that the overall delay is constant
for all input and output sample rates.
</t>
</section>
<section title='Stereo Mixing'>
<t>
The stereo mixer is only used for stereo input signals.
It converts a stereo left/right signal into an adaptive
mid/side representation.
The first step is to compute non-adaptive mid/side signals
as half the sum and difference between left and right signals.
The side signal is then minimized in energy by subtracting a
prediction of it based on the mid signal.
This prediction works well when the left and right signals
exhibit linear dependency, for instance for an amplitude-panned
input signal.
Like in the decoder, the prediction coefficients are linearly
interpolated during the first 8 ms of the frame.
The mid signal is always encoded, whereas the residual
side signal is only encoded if it has sufficient
energy compared to the mid signal's energy.
If it has not,
the "mid_only_flag" is set without encoding the side signal.
</t>
<t>
The predictor coefficients are coded regardless of whether
the side signal is encoded.
For each frame, two predictor coefficients are computed, one
that predicts between low-passed mid and side channels, and
one that predicts between high-passed mid and side channels.
The low-pass filter is a simple three-tap filter
and creates a delay of one sample.
The high-pass filtered signal is the difference between
the mid signal delayed by one sample and the low-passed
signal. Instead of explicitly computing the high-passed
signal, it is computationally more efficient to transform
the prediction coefficients before applying them to the
filtered mid signal, as follows
<figure align="center">
<artwork align="center">
<![CDATA[
pred(n) = LP(n) * w0 + HP(n) * w1
= LP(n) * w0 + (mid(n-1) - LP(n)) * w1
= LP(n) * (w0 - w1) + mid(n-1) * w1
]]>
</artwork>
</figure>
where w0 and w1 are the low-pass and high-pass prediction
coefficients, mid(n-1) is the mid signal delayed by one sample,
LP(n) and HP(n) are the low-passed and high-passed
signals and pred(n) is the prediction signal that is subtracted
from the side signal.
</t>
</section>
<section title='SILK Core Encoder'>
<t>
What follows is a description of the core encoder and its components.
For simplicity, the core encoder is referred to simply as the encoder in
the remainder of this section. An overview of the encoder is given in
<xref target="encoder_figure" />.
</t>
<figure align="center" anchor="encoder_figure" title="SILK Core Encoder">
<artwork align="center">
<![CDATA[
+---+
+--------------------------------->| |
+---------+ | +---------+ | |
|Voice | | |LTP |12 | |
+-->|Activity |--+ +----->|Scaling |-----------+---->| |
| |Detector |3 | | |Control |<--+ | | |
| +---------+ | | +---------+ | | | |
| | | +---------+ | | | |
| | | |Gains | | | | |
| | | +-->|Processor|---|---+---|---->| R |
| | | | | |11 | | | | a |
| \/ | | +---------+ | | | | n |
| +---------+ | | +---------+ | | | | g |
| |Pitch | | | |LSF | | | | | e |
| +->|Analysis |---+ | |Quantizer|---|---|---|---->| |
| | | |4 | | | |8 | | | | E |-->
| | +---------+ | | +---------+ | | | | n | 2
| | | | 9/\ 10| | | | | c |
| | | | | \/ | | | | o |
| | +---------+ | | +----------+ | | | | d |
| | |Noise | +--|-->|Prediction|--+---|---|---->| e |
| +->|Shaping |---|--+ |Analysis |7 | | | | r |
| | |Analysis |5 | | | | | | | | |
| | +---------+ | | +----------+ | | | | |
| | | | /\ | | | | |
| | +----------|--|--------+ | | | | |
| | | \/ \/ \/ \/ \/ | |
| | | +---------+ +------------+ | |
| | | | | |Noise | | |
-+-------+-----+------>|Prefilter|--------->|Shaping |-->| |
1 | | 6 |Quantization|13 | |
+---------+ +------------+ +---+
1: Input speech signal
2: Range encoded bitstream
3: Voice activity estimate
4: Pitch lags (per 5 ms) and voicing decision (per 20 ms)
5: Noise shaping quantization coefficients
- Short term synthesis and analysis
noise shaping coefficients (per 5 ms)
- Long term synthesis and analysis noise
shaping coefficients (per 5 ms and for voiced speech only)
- Noise shaping tilt (per 5 ms)
- Quantizer gain/step size (per 5 ms)
6: Input signal filtered with analysis noise shaping filters
7: Short and long term prediction coefficients
LTP (per 5 ms) and LPC (per 20 ms)
8: LSF quantization indices
9: LSF coefficients
10: Quantized LSF coefficients
11: Processed gains, and synthesis noise shape coefficients
12: LTP state scaling coefficient. Controlling error propagation
/ prediction gain trade-off
13: Quantized signal
]]>
</artwork>
</figure>
<section title='Voice Activity Detection'>
<t>
The input signal is processed by a Voice Activity Detector (VAD) to produce
a measure of voice activity, spectral tilt, and signal-to-noise estimates for
each frame. The VAD uses a sequence of half-band filterbanks to split the
signal into four subbands: 0...Fs/16, Fs/16...Fs/8, Fs/8...Fs/4, and
Fs/4...Fs/2, where Fs is the sampling frequency (8, 12, 16, or 24 kHz).
The lowest subband, from 0 - Fs/16, is high-pass filtered with a first-order
moving average (MA) filter (with transfer function H(z) = 1-z**(-1)) to
reduce the energy at the lowest frequencies. For each frame, the signal
energy per subband is computed.
In each subband, a noise level estimator tracks the background noise level
and a Signal-to-Noise Ratio (SNR) value is computed as the logarithm of the
ratio of energy to noise level.
Using these intermediate variables, the following parameters are calculated
for use in other SILK modules:
<list style="symbols">
<t>
Average SNR. The average of the subband SNR values.
</t>
<t>
Smoothed subband SNRs. Temporally smoothed subband SNR values.
</t>
<t>
Speech activity level. Based on the average SNR and a weighted average of the
subband energies.
</t>
<t>
Spectral tilt. A weighted average of the subband SNRs, with positive weights
for the low subbands and negative weights for the high subbands.
</t>
</list>
</t>
</section>
<section title='Pitch Analysis' anchor='pitch_estimator_overview_section'>
<t>
The input signal is processed by the open loop pitch estimator shown in
<xref target='pitch_estimator_figure' />.
<figure align="center" anchor="pitch_estimator_figure"
title="Block diagram of the pitch estimator">
<artwork align="center">
<![CDATA[
+--------+ +----------+
|2 x Down| |Time- |
+->|sampling|->|Correlator| |
| | | | | |4
| +--------+ +----------+ \/
| | 2 +-------+
| | +-->|Speech |5
+---------+ +--------+ | \/ | |Type |->
|LPC | |Down | | +----------+ | |
+->|Analysis | +->|sample |-+------------->|Time- | +-------+
| | | | |to 8 kHz| |Correlator|----------->
| +---------+ | +--------+ |__________| 6
| | | |3
| \/ | \/
| +---------+ | +----------+
| |Whitening| | |Time- |
-+->|Filter |-+--------------------------->|Correlator|----------->
1 | | | | 7
+---------+ +----------+
1: Input signal
2: Lag candidates from stage 1
3: Lag candidates from stage 2
4: Correlation threshold
5: Voiced/unvoiced flag
6: Pitch correlation
7: Pitch lags
]]>
</artwork>
</figure>
The pitch analysis finds a binary voiced/unvoiced classification, and, for
frames classified as voiced, four pitch lags per frame - one for each
5 ms subframe - and a pitch correlation indicating the periodicity of
the signal.
The input is first whitened using a Linear Prediction (LP) whitening filter,
where the coefficients are computed through standard Linear Prediction Coding
(LPC) analysis. The order of the whitening filter is 16 for best results, but
is reduced to 12 for medium complexity and 8 for low complexity modes.
The whitened signal is analyzed to find pitch lags for which the time
correlation is high.
The analysis consists of three stages for reducing the complexity:
<list style="symbols">
<t>In the first stage, the whitened signal is downsampled to 4 kHz
(from 8 kHz) and the current frame is correlated to a signal delayed
by a range of lags, starting from a shortest lag corresponding to
500 Hz, to a longest lag corresponding to 56 Hz.</t>
<t>
The second stage operates on an 8 kHz signal (downsampled from 12, 16,
or 24 kHz) and measures time correlations only near the lags
corresponding to those that had sufficiently high correlations in the first
stage. The resulting correlations are adjusted for a small bias towards
short lags to avoid ending up with a multiple of the true pitch lag.
The highest adjusted correlation is compared to a threshold depending on:
<list style="symbols">
<t>
Whether the previous frame was classified as voiced
</t>
<t>
The speech activity level
</t>
<t>
The spectral tilt.
</t>
</list>
If the threshold is exceeded, the current frame is classified as voiced and
the lag with the highest adjusted correlation is stored for a final pitch
analysis of the highest precision in the third stage.
</t>
<t>
The last stage operates directly on the whitened input signal to compute time
correlations for each of the four subframes independently in a narrow range
around the lag with highest correlation from the second stage.
</t>
</list>
</t>
</section>
<section title='Noise Shaping Analysis' anchor='noise_shaping_analysis_overview_section'>
<t>
The noise shaping analysis finds gains and filter coefficients used in the
prefilter and noise shaping quantizer. These parameters are chosen such that
they will fulfill several requirements:
<list style="symbols">
<t>
Balancing quantization noise and bitrate.
The quantization gains determine the step size between reconstruction levels
of the excitation signal. Therefore, increasing the quantization gain
amplifies quantization noise, but also reduces the bitrate by lowering
the entropy of the quantization indices.
</t>
<t>
Spectral shaping of the quantization noise; the noise shaping quantizer is
capable of reducing quantization noise in some parts of the spectrum at the
cost of increased noise in other parts without substantially changing the
bitrate.
By shaping the noise such that it follows the signal spectrum, it becomes
less audible. In practice, best results are obtained by making the shape
of the noise spectrum slightly flatter than the signal spectrum.
</t>
<t>
De-emphasizing spectral valleys; by using different coefficients in the
analysis and synthesis part of the prefilter and noise shaping quantizer,
the levels of the spectral valleys can be decreased relative to the levels
of the spectral peaks such as speech formants and harmonics.
This reduces the entropy of the signal, which is the difference between the
coded signal and the quantization noise, thus lowering the bitrate.
</t>
<t>
Matching the levels of the decoded speech formants to the levels of the
original speech formants; an adjustment gain and a first order tilt
coefficient are computed to compensate for the effect of the noise
shaping quantization on the level and spectral tilt.
</t>
</list>
</t>
<t>
<figure align="center" anchor="noise_shape_analysis_spectra_figure"
title="Noise shaping and spectral de-emphasis illustration">
<artwork align="center">
<![CDATA[
/ \ ___
| // \\
| // \\ ____
|_// \\___// \\ ____
| / ___ \ / \\ // \\
P |/ / \ \_/ \\_____// \\
o | / \ ____ \ / \\
w | / \___/ \ \___/ ____ \\___ 1
e |/ \ / \ \
r | \_____/ \ \__ 2
| \
| \___ 3
|
+---------------------------------------->
Frequency
1: Input signal spectrum
2: De-emphasized and level matched spectrum
3: Quantization noise spectrum
]]>
</artwork>
</figure>
<xref target='noise_shape_analysis_spectra_figure' /> shows an example of an
input signal spectrum (1).
After de-emphasis and level matching, the spectrum has deeper valleys (2).
The quantization noise spectrum (3) more or less follows the input signal
spectrum, while having slightly less pronounced peaks.
The entropy, which provides a lower bound on the bitrate for encoding the
excitation signal, is proportional to the area between the de-emphasized
spectrum (2) and the quantization noise spectrum (3). Without de-emphasis,
the entropy is proportional to the area between input spectrum (1) and
quantization noise (3) - clearly higher.
</t>
<t>
The transformation from input signal to de-emphasized signal can be
described as a filtering operation with a filter
<figure align="center">
<artwork align="center">
<![CDATA[
-1 Wana(z)
H(z) = G * ( 1 - c_tilt * z ) * -------
Wsyn(z),
]]>
</artwork>
</figure>
having an adjustment gain G, a first order tilt adjustment filter with
tilt coefficient c_tilt, and where
<figure align="center">
<artwork align="center">
<![CDATA[
16 d
__ -k -L __ -k
Wana(z) = (1 - \ (a_ana(k) * z )*(1 - z * \ b_ana(k) * z ),
/_ /_
k=1 k=-d
]]>
</artwork>
</figure>
is the analysis part of the de-emphasis filter, consisting of the short-term
shaping filter with coefficients a_ana(k), and the long-term shaping filter
with coefficients b_ana(k) and pitch lag L.
The parameter d determines the number of long-term shaping filter taps.
</t>
<t>
Similarly, but without the tilt adjustment, the synthesis part can be written as
<figure align="center">
<artwork align="center">
<![CDATA[
16 d
__ -k -L __ -k
Wsyn(z) = (1 - \ (a_syn(k) * z )*(1 - z * \ b_syn(k) * z ).
/_ /_
k=1 k=-d
]]>
</artwork>
</figure>
</t>
<t>
All noise shaping parameters are computed and applied per subframe of 5 ms.
First, an LPC analysis is performed on a windowed signal block of 15 ms.
The signal block has a look-ahead of 5 ms relative to the current subframe,
and the window is an asymmetric sine window. The LPC analysis is done with the
autocorrelation method, with an order of between 8, in lowest-complexity mode,
and 16, for best quality.
</t>
<t>
Optionally the LPC analysis and noise shaping filters are warped by replacing
the delay elements by first-order allpass filters.
This increases the frequency resolution at low frequencies and reduces it at
high ones, which better matches the human auditory system and improves
quality.
The warped analysis and filtering comes at a cost in complexity
and is therefore only done in higher complexity modes.
</t>
<t>
The quantization gain is found by taking the square root of the residual energy
from the LPC analysis and multiplying it by a value inversely proportional
to the coding quality control parameter and the pitch correlation.
</t>
<t>
Next the two sets of short-term noise shaping coefficients a_ana(k) and
a_syn(k) are obtained by applying different amounts of bandwidth expansion to the
coefficients found in the LPC analysis.
This bandwidth expansion moves the roots of the LPC polynomial towards the
origin, using the formulas
<figure align="center">
<artwork align="center">
<![CDATA[
k
a_ana(k) = a(k)*g_ana , and
k
a_syn(k) = a(k)*g_syn ,
]]>
</artwork>
</figure>
where a(k) is the k'th LPC coefficient, and the bandwidth expansion factors
g_ana and g_syn are calculated as
<figure align="center">
<artwork align="center">
<![CDATA[
g_ana = 0.95 - 0.01*C, and
g_syn = 0.95 + 0.01*C,
]]>
</artwork>
</figure>
where C is the coding quality control parameter between 0 and 1.
Applying more bandwidth expansion to the analysis part than to the synthesis
part gives the desired de-emphasis of spectral valleys in between formants.
</t>
<t>
The long-term shaping is applied only during voiced frames.
It uses three filter taps, described by
<figure align="center">
<artwork align="center">
<![CDATA[
b_ana = F_ana * [0.25, 0.5, 0.25], and
b_syn = F_syn * [0.25, 0.5, 0.25].
]]>
</artwork>
</figure>
For unvoiced frames these coefficients are set to 0. The multiplication factors
F_ana and F_syn are chosen between 0 and 1, depending on the coding quality
control parameter, as well as the calculated pitch correlation and smoothed
subband SNR of the lowest subband. By having F_ana less than F_syn,
the pitch harmonics are emphasized relative to the valleys in between the
harmonics.
</t>
<t>
The tilt coefficient c_tilt is for unvoiced frames chosen as
<figure align="center">
<artwork align="center">
<![CDATA[
c_tilt = 0.25,
]]>
</artwork>
</figure>
and as
<figure align="center">
<artwork align="center">
<![CDATA[
c_tilt = 0.25 + 0.2625 * V
]]>
</artwork>
</figure>
for voiced frames, where V is the voice activity level between 0 and 1.
</t>
<t>
The adjustment gain G serves to correct any level mismatch between the original
and decoded signals that might arise from the noise shaping and de-emphasis.
This gain is computed as the ratio of the prediction gain of the short-term
analysis and synthesis filter coefficients. The prediction gain of an LPC
synthesis filter is the square root of the output energy when the filter is
excited by a unit-energy impulse on the input.
An efficient way to compute the prediction gain is by first computing the
reflection coefficients from the LPC coefficients through the step-down
algorithm, and extracting the prediction gain from the reflection coefficients
as
<figure align="center">
<artwork align="center">
<![CDATA[
K
___ 2 -0.5
predGain = ( | | 1 - (r_k) ) ,
k=1
]]>
</artwork>
</figure>
where r_k is the k'th reflection coefficient.
</t>
<t>
Initial values for the quantization gains are computed as the square-root of
the residual energy of the LPC analysis, adjusted by the coding quality control
parameter.
These quantization gains are later adjusted based on the results of the
prediction analysis.
</t>
</section>
<section title='Prediction Analysis' anchor='pred_ana_overview_section'>
<t>
The prediction analysis is performed in one of two ways depending on how
the pitch estimator classified the frame.
The processing for voiced and unvoiced speech is described in
<xref target='pred_ana_voiced_overview_section' /> and
<xref target='pred_ana_unvoiced_overview_section' />, respectively.
Inputs to this function include the pre-whitened signal from the
pitch estimator (see <xref target='pitch_estimator_overview_section'/>).
</t>
<section title='Voiced Speech' anchor='pred_ana_voiced_overview_section'>
<t>
For a frame of voiced speech the pitch pulses will remain dominant in the
pre-whitened input signal.
Further whitening is desirable as it leads to higher quality at the same
available bitrate.
To achieve this, a Long-Term Prediction (LTP) analysis is carried out to
estimate the coefficients of a fifth-order LTP filter for each of four
subframes.
The LTP coefficients are quantized using the method described in
<xref target='ltp_quantizer_overview_section'/>, and the quantized LTP
coefficients are used to compute the LTP residual signal.
This LTP residual signal is the input to an LPC analysis where the LPC coefficients are
estimated using Burg's method <xref target="Burg"/>, such that the residual energy is minimized.
The estimated LPC coefficients are converted to a Line Spectral Frequency (LSF) vector
and quantized as described in <xref target='lsf_quantizer_overview_section'/>.
After quantization, the quantized LSF vector is converted back to LPC
coefficients using the full procedure in <xref target="silk_nlsfs"/>.
By using quantized LTP coefficients and LPC coefficients derived from the
quantized LSF coefficients, the encoder remains fully synchronized with the
decoder.
The quantized LPC and LTP coefficients are also used to filter the input
signal and measure residual energy for each of the four subframes.
</t>
</section>
<section title='Unvoiced Speech' anchor='pred_ana_unvoiced_overview_section'>
<t>
For a speech signal that has been classified as unvoiced, there is no need
for LTP filtering, as it has already been determined that the pre-whitened
input signal is not periodic enough within the allowed pitch period range
for LTP analysis to be worth the cost in terms of complexity and bitrate.
The pre-whitened input signal is therefore discarded, and instead the input
signal is used for LPC analysis using Burg's method.
The resulting LPC coefficients are converted to an LSF vector and quantized
as described in the following section.
They are then transformed back to obtain quantized LPC coefficients, which
are then used to filter the input signal and measure residual energy for
each of the four subframes.
</t>
<section title="Burg's Method">
<t>
The main purpose of linear prediction in SILK is to reduce the bitrate by
minimizing the residual energy.
At least at high bitrates, perceptual aspects are handled
independently by the noise shaping filter.
Burg's method is used because it provides higher prediction gain
than the autocorrelation method and, unlike the covariance method,
produces stable filters (assuming numerical errors don't spoil
that). SILK's implementation of Burg's method is also computationally
faster than the autocovariance method.
The implementation of Burg's method differs from traditional
implementations in two aspects.
The first difference is that it
operates on autocorrelations, similar to the Schur algorithm <xref target="Schur"/>, but
with a simple update to the autocorrelations after finding each
reflection coefficient to make the result identical to Burg's method.
This brings down the complexity of Burg's method to near that of
the autocorrelation method.
The second difference is that the signal in each subframe is scaled
by the inverse of the residual quantization step size. Subframes with
a small quantization step size will on average spend more bits for a
given amount of residual energy than subframes with a large step size.
Without scaling, Burg's method minimizes the total residual energy in
all subframes, which doesn't necessarily minimize the total number of
bits needed for coding the quantized residual. The residual energy
of the scaled subframes is a better measure for that number of
bits.
</t>
</section>
</section>
</section>
<section title='LSF Quantization' anchor='lsf_quantizer_overview_section'>
<t>
Unlike many other speech codecs, SILK uses variable bitrate coding
for the LSFs.
This improves the average rate-distortion (R-D) tradeoff and reduces outliers.
The variable bitrate coding minimizes a linear combination of the weighted
quantization errors and the bitrate.
The weights for the quantization errors are the Inverse
Harmonic Mean Weighting (IHMW) function proposed by Laroia et al.
(see <xref target="laroia-icassp" />).
These weights are referred to here as Laroia weights.
</t>
<t>
The LSF quantizer consists of two stages.
The first stage is an (unweighted) vector quantizer (VQ), with a
codebook size of 32 vectors.
The quantization errors for the codebook vector are sorted, and
for the N best vectors a second stage quantizer is run.
By varying the number N a tradeoff is made between R-D performance
and computational efficiency.
For each of the N codebook vectors the Laroia weights corresponding
to that vector (and not to the input vector) are calculated.
Then the residual between the input LSF vector and the codebook
vector is scaled by the square roots of these Laroia weights.
This scaling partially normalizes error sensitivity for the
residual vector, so that a uniform quantizer with fixed
step sizes can be used in the second stage without too much
performance loss.
And by scaling with Laroia weights determined from the first-stage
codebook vector, the process can be reversed in the decoder.
</t>
<t>
The second stage uses predictive delayed decision scalar
quantization.
The quantization error is weighted by Laroia weights determined
from the LSF input vector.
The predictor multiplies the previous quantized residual value
by a prediction coefficient that depends on the vector index from the
first stage VQ and on the location in the LSF vector.
The prediction is subtracted from the LSF residual value before
quantizing the result, and added back afterwards.
This subtraction can be interpreted as shifting the quantization levels
of the scalar quantizer, and as a result the quantization error of
each value depends on the quantization decision of the previous value.
This dependency is exploited by the delayed decision mechanism to
search for a quantization sequency with best R-D performance
with a Viterbi-like algorithm <xref target="Viterbi"/>.
The quantizer processes the residual LSF vector in reverse order
(i.e., it starts with the highest residual LSF value).
This is done because the prediction works slightly
better in the reverse direction.
</t>
<t>
The quantization index of the first stage is entropy coded.
The quantization sequence from the second stage is also entropy
coded, where for each element the probability table is chosen
depending on the vector index from the first stage and the location
of that element in the LSF vector.
</t>
<section title='LSF Stabilization' anchor='lsf_stabilizer_overview_section'>
<t>
If the input is stable, finding the best candidate usually results in a
quantized vector that is also stable. Because of the two-stage approach,
however, it is possible that the best quantization candidate is unstable.
The encoder applies the same stabilization procedure applied by the decoder
(see <xref target="silk_nlsf_stabilization"/> to ensure the LSF parameters
are within their valid range, increasingly sorted, and have minimum
distances between each other and the border values.
</t>
</section>
</section>
<section title='LTP Quantization' anchor='ltp_quantizer_overview_section'>
<t>
For voiced frames, the prediction analysis described in
<xref target='pred_ana_voiced_overview_section' /> resulted in four sets
(one set per subframe) of five LTP coefficients, plus four weighting matrices.
The LTP coefficients for each subframe are quantized using entropy constrained
vector quantization.
A total of three vector codebooks are available for quantization, with
different rate-distortion trade-offs. The three codebooks have 10, 20, and
40 vectors and average rates of about 3, 4, and 5 bits per vector, respectively.
Consequently, the first codebook has larger average quantization distortion at
a lower rate, whereas the last codebook has smaller average quantization
distortion at a higher rate.
Given the weighting matrix W_ltp and LTP vector b, the weighted rate-distortion
measure for a codebook vector cb_i with rate r_i is give by
<figure align="center">
<artwork align="center">
<![CDATA[
RD = u * (b - cb_i)' * W_ltp * (b - cb_i) + r_i,
]]>
</artwork>
</figure>
where u is a fixed, heuristically-determined parameter balancing the distortion
and rate.
Which codebook gives the best performance for a given LTP vector depends on the
weighting matrix for that LTP vector.
For example, for a low valued W_ltp, it is advantageous to use the codebook
with 10 vectors as it has a lower average rate.
For a large W_ltp, on the other hand, it is often better to use the codebook
with 40 vectors, as it is more likely to contain the best codebook vector.
The weighting matrix W_ltp depends mostly on two aspects of the input signal.
The first is the periodicity of the signal; the more periodic, the larger W_ltp.
The second is the change in signal energy in the current subframe, relative to
the signal one pitch lag earlier.
A decaying energy leads to a larger W_ltp than an increasing energy.
Both aspects fluctuate relatively slowly, which causes the W_ltp matrices for
different subframes of one frame often to be similar.
Because of this, one of the three codebooks typically gives good performance
for all subframes, and therefore the codebook search for the subframe LTP
vectors is constrained to only allow codebook vectors to be chosen from the
same codebook, resulting in a rate reduction.
</t>
<t>
To find the best codebook, each of the three vector codebooks is
used to quantize all subframe LTP vectors and produce a combined
weighted rate-distortion measure for each vector codebook.
The vector codebook with the lowest combined rate-distortion
over all subframes is chosen. The quantized LTP vectors are used
in the noise shaping quantizer, and the index of the codebook
plus the four indices for the four subframe codebook vectors
are passed on to the range encoder.
</t>
</section>
<section title='Prefilter'>
<t>
In the prefilter the input signal is filtered using the spectral valley
de-emphasis filter coefficients from the noise shaping analysis
(see <xref target='noise_shaping_analysis_overview_section'/>).
By applying only the noise shaping analysis filter to the input signal,
it provides the input to the noise shaping quantizer.
</t>
</section>
<section title='Noise Shaping Quantizer'>
<t>
The noise shaping quantizer independently shapes the signal and coding noise
spectra to obtain a perceptually higher quality at the same bitrate.
</t>
<t>
The prefilter output signal is multiplied with a compensation gain G computed
in the noise shaping analysis. Then the output of a synthesis shaping filter
is added, and the output of a prediction filter is subtracted to create a
residual signal.
The residual signal is multiplied by the inverse quantized quantization gain
from the noise shaping analysis, and input to a scalar quantizer.
The quantization indices of the scalar quantizer represent a signal of pulses
that is input to the pyramid range encoder.
The scalar quantizer also outputs a quantization signal, which is multiplied
by the quantized quantization gain from the noise shaping analysis to create
an excitation signal.
The output of the prediction filter is added to the excitation signal to form
the quantized output signal y(n).
The quantized output signal y(n) is input to the synthesis shaping and
prediction filters.
</t>
<t>
Optionally the noise shaping quantizer operates in a delayed decision
mode.
In this mode it uses a Viterbi algorithm to keep track of
multiple rounding choices in the quantizer and select the best
one after a delay of 32 samples. This improves the rate/distortion
performance of the quantizer.
</t>
</section>
<section title='Constant Bitrate Mode'>
<t>
SILK was designed to run in Variable Bitrate (VBR) mode. However
the reference implementation also has a Constant Bitrate (CBR) mode
for SILK. In CBR mode SILK will attempt to encode each packet with
no more than the allowed number of bits. The Opus wrapper code
then pads the bitstream if any unused bits are left in SILK mode, or
encodes the high band with the remaining number of bits in Hybrid mode.
The number of payload bits is adjusted by changing
the quantization gains and the rate/distortion tradeoff in the noise
shaping quantizer, in an iterative loop
around the noise shaping quantizer and entropy coding.
Compared to the SILK VBR mode, the CBR mode has lower
audio quality at a given average bitrate, and also has higher
computational complexity.
</t>
</section>
</section>
</section>
<section title="CELT Encoder">
<t>
Most of the aspects of the CELT encoder can be directly derived from the description
of the decoder. For example, the filters and rotations in the encoder are simply the
inverse of the operation performed by the decoder. Similarly, the quantizers generally
optimize for the mean square error (because noise shaping is part of the bit-stream itself),
so no special search is required. For this reason, only the less straightforward aspects of the
encoder are described here.
</t>
<section anchor="pitch-prefilter" title="Pitch Prefilter">
<t>The pitch prefilter is applied after the pre-emphasis. It is applied
in such a way as to be the inverse of the decoder's post-filter. The main non-obvious aspect of the
prefilter is the selection of the pitch period. The pitch search should be optimized for the
following criteria:
<list style="symbols">
<t>continuity: it is important that the pitch period
does not change abruptly between frames; and</t>
<t>avoidance of pitch multiples: when the period used is a multiple of the real period
(lower frequency fundamental), the post-filter loses most of its ability to reduce noise</t>
</list>
</t>
</section>
<section anchor="normalization" title="Bands and Normalization">
<t>
The MDCT output is divided into bands that are designed to match the ear's critical
bands for the smallest (2.5 ms) frame size. The larger frame sizes use integer
multiples of the 2.5 ms layout. For each band, the encoder
computes the energy that will later be encoded. Each band is then normalized by the
square root of the <spanx style="strong">unquantized</spanx> energy, such that each band now forms a unit vector X.
The energy and the normalization are computed by compute_band_energies()
and normalise_bands() (bands.c), respectively.
</t>
</section>
<section anchor="energy-quantization" title="Energy Envelope Quantization">
<t>
Energy quantization (both coarse and fine) can be easily understood from the decoding process.
For all useful bitrates, the coarse quantizer always chooses the quantized log energy value that
minimizes the error for each band. Only at very low rate does the encoder allow larger errors to
minimize the rate and avoid using more bits than are available. When the
available CPU requirements allow it, it is best to try encoding the coarse energy both with and without
inter-frame prediction such that the best prediction mode can be selected. The optimal mode depends on
the coding rate, the available bitrate, and the current rate of packet loss.
</t>
<t>The fine energy quantizer always chooses the quantized log energy value that
minimizes the error for each band because the rate of the fine quantization depends only
on the bit allocation and not on the values that are coded.
</t>
</section> <!-- Energy quant -->
<section title="Bit Allocation">
<t>The encoder must use exactly the same bit allocation process as used by the decoder
and described in <xref target="allocation"/>. The three mechanisms that can be used by the
encoder to adjust the bitrate on a frame-by-frame basis are band boost, allocation trim,
and band skipping.
</t>
<section title="Band Boost">
<t>The reference encoder makes a decision to boost a band when the energy of that band is significantly
higher than that of the neighboring bands. Let E_j be the log-energy of band j, we define
<list>
<t>D_j = 2*E_j - E_j-1 - E_j+1 </t>
</list>
The allocation of band j is boosted once if D_j > t1 and twice if D_j > t2. For LM>=1, t1=2 and t2=4,
while for LM<1, t1=3 and t2=5.
</t>
</section>
<section title="Allocation Trim">
<t>The allocation trim is a value between 0 and 10 (inclusively) that controls the allocation
balance between the low and high frequencies. The encoder starts with a safe "default" of 5
and deviates from that default in two different ways. First the trim can deviate by +/- 2
depending on the spectral tilt of the input signal. For signals with more low frequencies, the
trim is increased by up to 2, while for signals with more high frequencies, the trim is
decreased by up to 2.
For stereo inputs, the trim value can
be decreased by up to 4 when the inter-channel correlation at low frequency (first 8 bands)
is high. </t>
</section>
<section title="Band Skipping">
<t>The encoder uses band skipping to ensure that the shape of the bands is only coded
if there is at least 1/2 bit per sample available for the PVQ. If not, then no bit is allocated
and folding is used instead. To ensure continuity in the allocation, some amount of hysteresis is
added to the process, such that a band that received PVQ bits in the previous frame only needs 7/16
bit/sample to be coded for the current frame, while a band that did not receive PVQ bits in the
previous frames needs at least 9/16 bit/sample to be coded.</t>
</section>
</section>
<section title="Stereo Decisions">
<t>Because CELT applies mid-side stereo coupling in the normalized domain, it does not suffer from
important stereo image problems even when the two channels are completely uncorrelated. For this reason
it is always safe to use stereo coupling on any audio frame. That being said, there are some frames
for which dual (independent) stereo is still more efficient. This decision is made by comparing the estimated
entropy with and without coupling over the first 13 bands, taking into account the fact that all bands with
more than two MDCT bins require one extra degree of freedom when coded in mid-side. Let L1_ms and L1_lr
be the L1-norm of the mid-side vector and the L1-norm of the left-right vector, respectively. The decision
to use mid-side is made if and only if
<figure align="center">
<artwork align="center"><![CDATA[
L1_ms L1_lr
-------- < -----
bins + E bins
]]></artwork>
</figure>
where bins is the number of MDCT bins in the first 13 bands and E is the number of extra degrees of
freedom for mid-side coding. For LM>1, E=13, otherwise E=5.
</t>
<t>The reference encoder decides on the intensity stereo threshold based on the bitrate alone. After
taking into account the frame size by subtracting 80 bits per frame for coarse energy, the first
band using intensity coding is as follows:
</t>
<texttable anchor="intensity-thresholds"
title="Thresholds for Intensity Stereo">
<ttcol align='center'>bitrate (kb/s)</ttcol>
<ttcol align='center'>start band</ttcol>
<c><35</c> <c>8</c>
<c>35-50</c> <c>12</c>
<c>50-68</c> <c>16</c>
<c>84-84</c> <c>18</c>
<c>84-102</c> <c>19</c>
<c>102-130</c> <c>20</c>
<c>>130</c> <c>disabled</c>
</texttable>
</section>
<section title="Time-Frequency Decision">
<t>
The choice of time-frequency resolution used in <xref target="tf-change"></xref> is based on
R-D optimization. The distortion is the L1-norm (sum of absolute values) of each band
after each TF resolution under consideration. The L1 norm is used because it represents the entropy
for a Laplacian source. The number of bits required to code a change in TF resolution between
two bands is higher than the cost of having those two bands use the same resolution, which is
what requires the R-D optimization. The optimal decision is computed using the Viterbi algorithm.
See tf_analysis() in celt/celt.c.
</t>
</section>
<section title="Spreading Values Decision">
<t>
The choice of the spreading value in <xref target="spread values"></xref> has an
impact on the nature of the coding noise introduced by CELT. The larger the f_r value, the
lower the impact of the rotation, and the more tonal the coding noise. The
more tonal the signal, the more tonal the noise should be, so the CELT encoder determines
the optimal value for f_r by estimating how tonal the signal is. The tonality estimate
is based on discrete pdf (4-bin histogram) of each band. Bands that have a large number of small
values are considered more tonal and a decision is made by combining all bands with more than
8 samples. See spreading_decision() in celt/bands.c.
</t>
</section>
<section anchor="pvq" title="Spherical Vector Quantization">
<t>CELT uses a Pyramid Vector Quantization (PVQ) <xref target="PVQ"></xref>
codebook for quantizing the details of the spectrum in each band that have not
been predicted by the pitch predictor. The PVQ codebook consists of all sums
of K signed pulses in a vector of N samples, where two pulses at the same position
are required to have the same sign. Thus the codebook includes
all integer codevectors y of N dimensions that satisfy sum(abs(y(j))) = K.
</t>
<t>
In bands where there are sufficient bits allocated PVQ is used to encode
the unit vector that results from the normalization in
<xref target="normalization"></xref> directly. Given a PVQ codevector y,
the unit vector X is obtained as X = y/||y||, where ||.|| denotes the
L2 norm.
</t>
<section anchor="pvq-search" title="PVQ Search">
<t>
The search for the best codevector y is performed by alg_quant()
(vq.c). There are several possible approaches to the
search, with a trade-off between quality and complexity. The method used in the reference
implementation computes an initial codeword y1 by projecting the normalized spectrum
X onto the codebook pyramid of K-1 pulses:
</t>
<t>
y0 = truncate_towards_zero( (K-1) * X / sum(abs(X)))
</t>
<t>
Depending on N, K and the input data, the initial codeword y0 may contain from
0 to K-1 non-zero values. All the remaining pulses, with the exception of the last one,
are found iteratively with a greedy search that minimizes the normalized correlation
between y and X:
<figure align="center">
<artwork align="center"><![CDATA[
T
J = -X * y / ||y||
]]></artwork>
</figure>
</t>
<t>
The search described above is considered to be a good trade-off between quality
and computational cost. However, there are other possible ways to search the PVQ
codebook and the implementers MAY use any other search methods. See alg_quant() in celt/vq.c.
</t>
</section>
<section anchor="cwrs-encoder" title="PVQ Encoding">
<t>
The vector to encode, X, is converted into an index i such that
0 <= i < V(N,K) as follows.
Let i = 0 and k = 0.
Then for j = (N - 1) down to 0, inclusive, do:
<list style="numbers">
<t>
If k > 0, set
i = i + (V(N-j-1,k-1) + V(N-j,k-1))/2.
</t>
<t>Set k = k + abs(X[j]).</t>
<t>
If X[j] < 0, set
i = i + (V(N-j-1,k) + V(N-j,k))/2.
</t>
</list>
</t>
<t>
The index i is then encoded using the procedure in
<xref target="encoding-ints"/> with ft = V(N,K).
</t>
</section>
</section>
</section>
</section>
<section anchor="conformance" title="Conformance">
<t>
It is our intention to allow the greatest possible choice of freedom in
implementing the specification. For this reason, outside of the exceptions
noted in this section, conformance is defined through the reference
implementation of the decoder provided in <xref target="ref-implementation"/>.
Although this document includes an English description of the codec, should
the description contradict the source code of the reference implementation,
the latter shall take precedence.
</t>
<t>
Compliance with this specification means that in addition to following the normative keywords in this document,
a decoder's output MUST also be
within the thresholds specified by the opus_compare.c tool (included
with the code) when compared to the reference implementation for each of the
test vectors provided (see <xref target="test-vectors"></xref>) and for each output
sampling rate and channel count supported. In addition, a compliant
decoder implementation MUST have the same final range decoder state as that of the
reference decoder. It is therefore RECOMMENDED that the
decoder implement the same functional behavior as the reference.
A decoder implementation is not required to support all output sampling
rates or all output channel counts.
</t>
<section title="Testing">
<t>
Using the reference code provided in <xref target="ref-implementation"></xref>,
a test vector can be decoded with
<list>
<t>opus_demo -d <rate> <channels> testvectorX.bit testX.out</t>
</list>
where <rate> is the sampling rate and can be 8000, 12000, 16000, 24000, or 48000, and
<channels> is 1 for mono or 2 for stereo.
</t>
<t>
If the range decoder state is incorrect for one of the frames, the decoder will exit with
"Error: Range coder state mismatch between encoder and decoder". If the decoder succeeds, then
the output can be compared with the "reference" output with
<list>
<t>opus_compare -s -r <rate> testvectorX.dec testX.out</t>
</list>
for stereo or
<list>
<t>opus_compare -r <rate> testvectorX.dec testX.out</t>
</list>
for mono.
</t>
<t>In addition to indicating whether the test vector comparison passes, the opus_compare tool
outputs an "Opus quality metric" that indicates how well the tested decoder matches the
reference implementation. A quality of 0 corresponds to the passing threshold, while
a quality of 100 is the highest possible value and means that the output of the tested decoder is identical to the reference
implementation. The passing threshold (quality 0) was calibrated in such a way that it corresponds to
additive white noise with a 48 dB SNR (similar to what can be obtained on a cassette deck).
It is still possible for an implementation to sound very good with such a low quality measure
(e.g. if the deviation is due to inaudible phase distortion), but unless this is verified by
listening tests, it is RECOMMENDED that implementations achieve a quality above 90 for 48 kHz
decoding. For other sampling rates, it is normal for the quality metric to be lower
(typically as low as 50 even for a good implementation) because of harmless mismatch with
the delay and phase of the internal sampling rate conversion.
</t>
<t>
On POSIX environments, the run_vectors.sh script can be used to verify all test
vectors. This can be done with
<list>
<t>run_vectors.sh <exec path> <vector path> <rate></t>
</list>
where <exec path> is the directory where the opus_demo and opus_compare executables
are built and <vector path> is the directory containing the test vectors.
</t>
</section>
<section anchor="opus-custom" title="Opus Custom">
<t>
Opus Custom is an OPTIONAL part of the specification that is defined to
handle special sample rates and frame rates that are not supported by the
main Opus specification. Use of Opus Custom is discouraged for all but very
special applications for which a frame size different from 2.5, 5, 10, or 20 ms is
needed (for either complexity or latency reasons). Because Opus Custom is
optional, streams encoded using Opus Custom cannot be expected to be decodable by all Opus
implementations. Also, because no in-band mechanism exists for specifying the sampling
rate and frame size of Opus Custom streams, out-of-band signaling is required.
In Opus Custom operation, only the CELT layer is available, using the opus_custom_* function
calls in opus_custom.h.
</t>
</section>
</section>
<section anchor="security" title="Security Considerations">
<t>
Implementations of the Opus codec need to take appropriate security considerations
into account, as outlined in <xref target="DOS"/>.
It is extremely important for the decoder to be robust against malicious
payloads.
Malicious payloads must not cause the decoder to overrun its allocated memory
or to take an excessive amount of resources to decode.
Although problems
in encoders are typically rarer, the same applies to the encoder. Malicious
audio streams must not cause the encoder to misbehave because this would
allow an attacker to attack transcoding gateways.
</t>
<t>
The reference implementation contains no known buffer overflow or cases where
a specially crafted packet or audio segment could cause a significant increase
in CPU load.
However, on certain CPU architectures where denormalized floating-point
operations are much slower than normal floating-point operations, it is
possible for some audio content (e.g., silence or near-silence) to cause an
increase in CPU load.
Denormals can be introduced by reordering operations in the compiler and depend
on the target architecture, so it is difficult to guarantee that an implementation
avoids them.
For architectures on which denormals are problematic, adding very small
floating-point offsets to the affected signals to prevent significant numbers
of denormalized operations is RECOMMENDED.
Alternatively, it is often possible to configure the hardware to treat
denormals as zero (DAZ).
No such issue exists for the fixed-point reference implementation.
</t>
<t>The reference implementation was validated in the following conditions:
<list style="numbers">
<t>
Sending the decoder valid packets generated by the reference encoder and
verifying that the decoder's final range coder state matches that of the
encoder.
</t>
<t>
Sending the decoder packets generated by the reference encoder and then
subjected to random corruption.
</t>
<t>Sending the decoder random packets.</t>
<t>
Sending the decoder packets generated by a version of the reference encoder
modified to make random coding decisions (internal fuzzing), including mode
switching, and verifying that the range coder final states match.
</t>
</list>
In all of the conditions above, both the encoder and the decoder were run
inside the <xref target="Valgrind">Valgrind</xref> memory
debugger, which tracks reads and writes to invalid memory regions as well as
the use of uninitialized memory.
There were no errors reported on any of the tested conditions.
</t>
</section>
<section title="IANA Considerations">
<t>
This document has no actions for IANA.
</t>
</section>
<section anchor="Acknowledgements" title="Acknowledgements">
<t>
Thanks to all other developers, including Raymond Chen, Soeren Skak Jensen, Gregory Maxwell,
Christopher Montgomery, and Karsten Vandborg Soerensen. We would also
like to thank Igor Dyakonov, Jan Skoglund, and Christian Hoene for their help with subjective testing of the
Opus codec. Thanks to Ralph Giles, John Ridges, Ben Schwartz, Keith Yan, Christian Hoene, Kat Walsh, and many others on the Opus and CELT mailing lists
for their bug reports and feedback.
</t>
</section>
<section title="Copying Conditions">
<t>The authors agree to grant third parties the irrevocable right to copy, use and distribute
the work (excluding Code Components available under the simplified BSD license), with or
without modification, in any medium, without royalty, provided that, unless separate
permission is granted, redistributed modified works do not contain misleading author, version,
name of work, or endorsement information.</t>
</section>
</middle>
<back>
<references title="Normative References">
<reference anchor="rfc2119">
<front>
<title>Key words for use in RFCs to Indicate Requirement Levels </title>
<author initials="S." surname="Bradner" fullname="Scott Bradner"></author>
</front>
<seriesInfo name="RFC" value="2119" />
</reference>
</references>
<references title="Informative References">
<reference anchor='requirements'>
<front>
<title>Requirements for an Internet Audio Codec</title>
<author initials='J.-M.' surname='Valin' fullname='J.-M. Valin'>
<organization /></author>
<author initials='K.' surname='Vos' fullname='K. Vos'>
<organization /></author>
<author>
<organization>IETF</organization></author>
<date year='2011' month='August' />
<abstract>
<t>This document provides specific requirements for an Internet audio
codec. These requirements address quality, sample rate, bitrate,
and packet-loss robustness, as well as other desirable properties.
</t></abstract></front>
<seriesInfo name='RFC' value='6366' />
<format type='TXT' target='http://tools.ietf.org/rfc/rfc6366.txt' />
</reference>
<?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.3550.xml"?>
<?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.3533.xml"?>
<reference anchor='SILK' target='http://developer.skype.com/silk'>
<front>
<title>SILK Speech Codec</title>
<author initials='K.' surname='Vos' fullname='K. Vos'>
<organization /></author>
<author initials='S.' surname='Jensen' fullname='S. Jensen'>
<organization /></author>
<author initials='K.' surname='Soerensen' fullname='K. Soerensen'>
<organization /></author>
<date year='2010' month='March' />
<abstract>
<t></t>
</abstract></front>
<seriesInfo name='Internet-Draft' value='draft-vos-silk-01' />
<format type='TXT' target='http://tools.ietf.org/html/draft-vos-silk-01' />
</reference>
<reference anchor="laroia-icassp">
<front>
<title abbrev="Robust and Efficient Quantization of Speech LSP">
Robust and Efficient Quantization of Speech LSP Parameters Using Structured Vector Quantization
</title>
<author initials="R.L." surname="Laroia" fullname="R.">
<organization/>
</author>
<author initials="N.P." surname="Phamdo" fullname="N.">
<organization/>
</author>
<author initials="N.F." surname="Farvardin" fullname="N.">
<organization/>
</author>
</front>
<seriesInfo name="ICASSP-1991, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 641-644, October" value="1991"/>
</reference>
<reference anchor='CELT' target='http://celt-codec.org/'>
<front>
<title>Constrained-Energy Lapped Transform (CELT) Codec</title>
<author initials='J-M.' surname='Valin' fullname='J-M. Valin'>
<organization /></author>
<author initials='T.B.' surname='Terriberry' fullname='Timothy B. Terriberry'>
<organization /></author>
<author initials='G.' surname='Maxwell' fullname='G. Maxwell'>
<organization /></author>
<author initials='C.' surname='Montgomery' fullname='C. Montgomery'>
<organization /></author>
<date year='2010' month='July' />
<abstract>
<t></t>
</abstract></front>
<seriesInfo name='Internet-Draft' value='draft-valin-celt-codec-02' />
<format type='TXT' target='http://tools.ietf.org/html/draft-valin-celt-codec-02' />
</reference>
<reference anchor='SRTP-VBR'>
<front>
<title>Guidelines for the use of Variable Bit Rate Audio with Secure RTP</title>
<author initials='C.' surname='Perkins' fullname='K. Vos'>
<organization /></author>
<author initials='J.M.' surname='Valin' fullname='J.M. Valin'>
<organization /></author>
<date year='2011' month='July' />
<abstract>
<t></t>
</abstract></front>
<seriesInfo name='RFC' value='6562' />
<format type='TXT' target='http://tools.ietf.org/html/rfc6562' />
</reference>
<reference anchor='DOS'>
<front>
<title>Internet Denial-of-Service Considerations</title>
<author initials='M.' surname='Handley' fullname='M. Handley'>
<organization /></author>
<author initials='E.' surname='Rescorla' fullname='E. Rescorla'>
<organization /></author>
<author>
<organization>IAB</organization></author>
<date year='2006' month='December' />
<abstract>
<t>This document provides an overview of possible avenues for denial-of-service (DoS) attack on Internet systems. The aim is to encourage protocol designers and network engineers towards designs that are more robust. We discuss partial solutions that reduce the effectiveness of attacks, and how some solutions might inadvertently open up alternative vulnerabilities. This memo provides information for the Internet community.</t></abstract></front>
<seriesInfo name='RFC' value='4732' />
<format type='TXT' octets='91844' target='ftp://ftp.isi.edu/in-notes/rfc4732.txt' />
</reference>
<reference anchor="Martin79">
<front>
<title>Range encoding: An algorithm for removing redundancy from a digitised message</title>
<author initials="G.N.N." surname="Martin" fullname="G. Nigel N. Martin"><organization/></author>
<date year="1979" />
</front>
<seriesInfo name="Proc. Institution of Electronic and Radio Engineers International Conference on Video and Data Recording" value="" />
</reference>
<reference anchor="coding-thesis">
<front>
<title>Source coding algorithms for fast data compression</title>
<author initials="R." surname="Pasco" fullname=""><organization/></author>
<date month="May" year="1976" />
</front>
<seriesInfo name="Ph.D. thesis" value="Dept. of Electrical Engineering, Stanford University" />
</reference>
<reference anchor="PVQ">
<front>
<title>A Pyramid Vector Quantizer</title>
<author initials="T." surname="Fischer" fullname=""><organization/></author>
<date month="July" year="1986" />
</front>
<seriesInfo name="IEEE Trans. on Information Theory, Vol. 32" value="pp. 568-583" />
</reference>
<reference anchor="Kabal86">
<front>
<title>The Computation of Line Spectral Frequencies Using Chebyshev Polynomials</title>
<author initials="P." surname="Kabal" fullname="P. Kabal"><organization/></author>
<author initials="R." surname="Ramachandran" fullname="R. P. Ramachandran"><organization/></author>
<date month="December" year="1986" />
</front>
<seriesInfo name="IEEE Trans. Acoustics, Speech, Signal Processing, vol. 34, no. 6" value="pp. 1419-1426" />
</reference>
<reference anchor="Valgrind" target="http://valgrind.org/">
<front>
<title>Valgrind website</title>
<author></author>
</front>
</reference>
<reference anchor="Google-NetEQ" target="http://code.google.com/p/webrtc/source/browse/trunk/src/modules/audio_coding/NetEQ/main/source/?r=583">
<front>
<title>Google NetEQ code</title>
<author></author>
</front>
</reference>
<reference anchor="Google-WebRTC" target="http://code.google.com/p/webrtc/">
<front>
<title>Google WebRTC code</title>
<author></author>
</front>
</reference>
<reference anchor="Opus-git" target="git://git.xiph.org/opus.git">
<front>
<title>Opus Git Repository</title>
<author></author>
</front>
</reference>
<reference anchor="Opus-website" target="http://opus-codec.org/">
<front>
<title>Opus website</title>
<author></author>
</front>
</reference>
<reference anchor="Vorbis-website" target="http://xiph.org/vorbis/">
<front>
<title>Vorbis website</title>
<author></author>
</front>
</reference>
<reference anchor="Matroska-website" target="http://matroska.org/">
<front>
<title>Matroska website</title>
<author></author>
</front>
</reference>
<reference anchor="Vectors-website" target="http://opus-codec.org/testvectors/">
<front>
<title>Opus Testvectors (webside)</title>
<author></author>
</front>
</reference>
<reference anchor="Vectors-proc" target="http://www.ietf.org/proceedings/83/slides/slides-83-codec-0.gz">
<front>
<title>Opus Testvectors (proceedings)</title>
<author></author>
</front>
</reference>
<reference anchor="line-spectral-pairs" target="http://en.wikipedia.org/wiki/Line_spectral_pairs">
<front>
<title>Line Spectral Pairs</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="range-coding" target="http://en.wikipedia.org/wiki/Range_coding">
<front>
<title>Range Coding</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="Hadamard" target="http://en.wikipedia.org/wiki/Hadamard_transform">
<front>
<title>Hadamard Transform</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="Viterbi" target="http://en.wikipedia.org/wiki/Viterbi_algorithm">
<front>
<title>Viterbi Algorithm</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="Whitening" target="http://en.wikipedia.org/wiki/White_noise">
<front>
<title>White Noise</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="LPC" target="http://en.wikipedia.org/wiki/Linear_prediction">
<front>
<title>Linear Prediction</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="MDCT" target="http://en.wikipedia.org/wiki/Modified_discrete_cosine_transform">
<front>
<title>Modified Discrete Cosine Transform</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="FFT" target="http://en.wikipedia.org/wiki/Fast_Fourier_transform">
<front>
<title>Fast Fourier Transform</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="z-transform" target="http://en.wikipedia.org/wiki/Z-transform">
<front>
<title>Z-transform</title>
<author><organization>Wikipedia</organization></author>
</front>
</reference>
<reference anchor="Burg">
<front>
<title>Maximum Entropy Spectral Analysis</title>
<author initials="JP." surname="Burg" fullname="J.P. Burg"><organization/></author>
</front>
</reference>
<reference anchor="Schur">
<front>
<title>A fixed point computation of partial correlation coefficients</title>
<author initials="J." surname="Le Roux" fullname="J. Le Roux"><organization/></author>
<author initials="C." surname="Gueguen" fullname="C. Gueguen"><organization/></author>
</front>
<seriesInfo name="ICASSP-1977, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 257-259, October" value="1977"/>
</reference>
<reference anchor="Princen86">
<front>
<title>Analysis/synthesis filter bank design based on time domain aliasing cancellation</title>
<author initials="J." surname="Princen" fullname="John P. Princen"><organization/></author>
<author initials="A." surname="Bradley" fullname="Alan B. Bradley"><organization/></author>
</front>
<seriesInfo name="IEEE Trans. Acoust. Speech Sig. Proc. ASSP-34 (5), 1153-1161" value="1986"/>
</reference>
<reference anchor="Valin2010">
<front>
<title>A High-Quality Speech and Audio Codec With Less Than 10 ms delay</title>
<author initials="JM" surname="Valin" fullname="Jean-Marc Valin"><organization/>
</author>
<author initials="T. B." surname="Terriberry" fullname="Timothy Terriberry"><organization/></author>
<author initials="C." surname="Montgomery" fullname="Christopher Montgomery"><organization/></author>
<author initials="G." surname="Maxwell" fullname="Gregory Maxwell"><organization/></author>
</front>
<seriesInfo name="IEEE Trans. on Audio, Speech and Language Processing, Vol. 18, No. 1, pp. 58-67" value="2010" />
</reference>
<reference anchor="Zwicker61">
<front>
<title>Subdivision of the audible frequency range into critical bands</title>
<author initials="E." surname="Zwicker" fullname="E. Zwicker"><organization/></author>
<date month="February" year="1961" />
</front>
<seriesInfo name="The Journal of the Acoustical Society of America, Vol. 33, No 2" value="p. 248" />
</reference>
</references>
<section anchor="ref-implementation" title="Reference Implementation">
<t>This appendix contains the complete source code for the
reference implementation of the Opus codec written in C. By default,
this implementation relies on floating-point arithmetic, but it can be
compiled to use only fixed-point arithmetic by defining the FIXED_POINT
macro. Information on building and using the reference implementation is
available in the README file.
</t>
<t>The implementation can be compiled with either a C89 or a C99
compiler. It is reasonably optimized for most platforms such that
only architecture-specific optimizations are likely to be useful.
The FFT <xref target="FFT"/> used is a slightly modified version of the KISS-FFT library,
but it is easy to substitute any other FFT library.
</t>
<t>
While the reference implementation does not rely on any
<spanx style="emph">undefined behavior</spanx> as defined by C89 or C99,
it relies on common <spanx style="emph">implementation-defined behavior</spanx>
for two's complement architectures:
<list style="symbols">
<t>Right shifts of negative values are consistent with two's complement arithmetic, so that a>>b is equivalent to floor(a/(2**b)),</t>
<t>For conversion to a signed integer of N bits, the value is reduced modulo 2**N to be within range of the type,</t>
<t>The result of integer division of a negative value is truncated towards zero, and</t>
<t>The compiler provides a 64-bit integer type (a C99 requirement which is supported by most C89 compilers).</t>
</list>
</t>
<t>
In its current form, the reference implementation also requires the following
architectural characteristics to obtain acceptable performance:
<list style="symbols">
<t>Two's complement arithmetic,</t>
<t>At least a 16 bit by 16 bit integer multiplier (32-bit result), and</t>
<t>At least a 32-bit adder/accumulator.</t>
</list>
</t>
<section title="Extracting the source">
<t>
The complete source code can be extracted from this draft, by running the
following command line:
<list style="symbols">
<t><![CDATA[
cat draft-ietf-codec-opus.txt | grep '^\ \ \ ###' | sed -e 's/...###//' | base64 -d > opus_source.tar.gz
]]></t>
<t>
tar xzvf opus_source.tar.gz
</t>
<t>cd opus_source</t>
<t>make</t>
</list>
On systems where the provided Makefile does not work, the following command line may be used to compile
the source code:
<list style="symbols">
<t><![CDATA[
cc -O2 -g -o opus_demo src/opus_demo.c `cat *.mk | grep -v fixed | sed -e 's/.*=//' -e 's/\\\\//'` -DOPUS_BUILD -Iinclude -Icelt -Isilk -Isilk/float -DUSE_ALLOCA -Drestrict= -lm
]]></t></list>
</t>
<t>
On systems where the base64 utility is not present, the following commands can be used instead:
<list style="symbols">
<t><![CDATA[
cat draft-ietf-codec-opus.txt | grep '^\ \ \ ###' | sed -e 's/...###//' > opus.b64
]]></t>
<t>openssl base64 -d -in opus.b64 > opus_source.tar.gz</t>
</list>
</t>
</section>
<section title="Up-to-date Implementation">
<t>
As of the time of publication of this memo, an up-to-date implementation conforming to
this standard is available in a
<xref target='Opus-git'>Git repository</xref>.
Releases and other resources are available at
<xref target='Opus-website'/>. However, although that implementation is expected to
remain conformant with the standard, it is the code in this document that shall
remain normative.
</t>
</section>
<section title="Base64-encoded Source Code">
<t>
<?rfc include="opus_source.base64"?>
</t>
</section>
<section anchor="test-vectors" title="Test Vectors">
<t>
Because of size constraints, the Opus test vectors are not distributed in this
draft. They are available in the proceedings of the 83th IETF meeting (Paris) <xref target="Vectors-proc"/> and from the Opus codec website at
<xref target="Vectors-website"/>. These test vectors were created specifically to exercise
all aspects of the decoder and therefore the audio quality of the decoded output is
significantly lower than what Opus can achieve in normal operation.
</t>
<t>
The SHA1 hash of the files in the test vector package are
<?rfc include="testvectors_sha1"?>
</t>
</section>
</section>
<section anchor="self-delimiting-framing" title="Self-Delimiting Framing">
<t>
To use the internal framing described in <xref target="modes"/>, the decoder
must know the total length of the Opus packet, in bytes.
This section describes a simple variation of that framing which can be used
when the total length of the packet is not known.
Nothing in the encoding of the packet itself allows a decoder to distinguish
between the regular, undelimited framing and the self-delimiting framing
described in this appendix.
Which one is used and where must be established by context at the transport
layer.
It is RECOMMENDED that a transport layer choose exactly one framing scheme,
rather than allowing an encoder to signal which one it wants to use.
</t>
<t>
For example, although a regular Opus stream does not support more than two
channels, a multi-channel Opus stream may be formed from several one- and
two-channel streams.
To pack an Opus packet from each of these streams together in a single packet
at the transport layer, one could use the self-delimiting framing for all but
the last stream, and then the regular, undelimited framing for the last one.
Reverting to the undelimited framing for the last stream saves overhead
(because the total size of the transport-layer packet will still be known),
and ensures that a "multi-channel" stream which only has a single Opus stream
uses the same framing as a regular Opus stream does.
This avoids the need for signaling to distinguish these two cases.
</t>
<t>
The self-delimiting framing is identical to the regular, undelimited framing
from <xref target="modes"/>, except that each Opus packet contains one extra
length field, encoded using the same one- or two-byte scheme from
<xref target="frame-length-coding"/>.
This extra length immediately precedes the compressed data of the first Opus
frame in the packet, and is interpreted in the various modes as follows:
<list style="symbols">
<t>
Code 0 packets: It is the length of the single Opus frame (see
<xref target="sd_code0_packet"/>).
</t>
<t>
Code 1 packets: It is the length used for both of the Opus frames (see
<xref target="sd_code1_packet"/>).
</t>
<t>
Code 2 packets: It is the length of the second Opus frame (see
<xref target="sd_code2_packet"/>).</t>
<t>
CBR Code 3 packets: It is the length used for all of the Opus frames (see
<xref target="sd_code3cbr_packet"/>).
</t>
<t>VBR Code 3 packets: It is the length of the last Opus frame (see
<xref target="sd_code3vbr_packet"/>).
</t>
</list>
</t>
<figure anchor="sd_code0_packet" title="A Self-Delimited Code 0 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|0|0| N1 (1-2 bytes): |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Compressed frame 1 (N1 bytes)... :
: |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<figure anchor="sd_code1_packet" title="A Self-Delimited Code 1 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|0|1| N1 (1-2 bytes): |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 1 (N1 bytes)... |
: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 2 (N1 bytes)... |
: +-+-+-+-+-+-+-+-+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<figure anchor="sd_code2_packet" title="A Self-Delimited Code 2 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|1|0| N1 (1-2 bytes): N2 (1-2 bytes : |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :
| Compressed frame 1 (N1 bytes)... |
: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Compressed frame 2 (N2 bytes)... :
: |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<figure anchor="sd_code3cbr_packet" title="A Self-Delimited CBR Code 3 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|1|1|0|p| M | Pad len (Opt) : N1 (1-2 bytes):
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 1 (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 2 (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame M (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Opus Padding (Optional)... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
<figure anchor="sd_code3vbr_packet" title="A Self-Delimited VBR Code 3 Packet"
align="center">
<artwork align="center"><![CDATA[
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| config |s|1|1|1|p| M | Padding length (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: N1 (1-2 bytes): ... : N[M-1] | N[M] :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 1 (N1 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame 2 (N2 bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: ... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Compressed frame M (N[M] bytes)... :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Opus Padding (Optional)... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
</figure>
</section>
</back>
</rfc>
|