1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/* Copyright (c) 2023 Amazon */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "fargan.h"
#include "os_support.h"
#include "freq.h"
#include "fargan_data.h"
#include "lpcnet.h"
#include "pitch.h"
#include "nnet.h"
#include "lpcnet_private.h"
#include "cpu_support.h"
#define FARGAN_FEATURES (NB_FEATURES)
static void compute_fargan_cond(FARGANState *st, float *cond, const float *features, int period)
{
FARGAN *model;
float dense_in[NB_FEATURES+COND_NET_PEMBED_OUT_SIZE];
float conv1_in[COND_NET_FCONV1_IN_SIZE];
float fdense2_in[COND_NET_FCONV1_OUT_SIZE];
model = &st->model;
celt_assert(FARGAN_FEATURES+COND_NET_PEMBED_OUT_SIZE == model->cond_net_fdense1.nb_inputs);
celt_assert(COND_NET_FCONV1_IN_SIZE == model->cond_net_fdense1.nb_outputs);
celt_assert(COND_NET_FCONV1_OUT_SIZE == model->cond_net_fconv1.nb_outputs);
OPUS_COPY(&dense_in[NB_FEATURES], &model->cond_net_pembed.float_weights[IMAX(0,IMIN(period-32, 223))*COND_NET_PEMBED_OUT_SIZE], COND_NET_PEMBED_OUT_SIZE);
OPUS_COPY(dense_in, features, NB_FEATURES);
compute_generic_dense(&model->cond_net_fdense1, conv1_in, dense_in, ACTIVATION_TANH, st->arch);
compute_generic_conv1d(&model->cond_net_fconv1, fdense2_in, st->cond_conv1_state, conv1_in, COND_NET_FCONV1_IN_SIZE, ACTIVATION_TANH, st->arch);
compute_generic_dense(&model->cond_net_fdense2, cond, fdense2_in, ACTIVATION_TANH, st->arch);
}
static void fargan_deemphasis(float *pcm, float *deemph_mem) {
int i;
for (i=0;i<FARGAN_SUBFRAME_SIZE;i++) {
pcm[i] += FARGAN_DEEMPHASIS * *deemph_mem;
*deemph_mem = pcm[i];
}
}
static void run_fargan_subframe(FARGANState *st, float *pcm, const float *cond, int period)
{
int i, pos;
float fwc0_in[SIG_NET_INPUT_SIZE];
float gru1_in[SIG_NET_FWC0_CONV_OUT_SIZE+2*FARGAN_SUBFRAME_SIZE];
float gru2_in[SIG_NET_GRU1_OUT_SIZE+2*FARGAN_SUBFRAME_SIZE];
float gru3_in[SIG_NET_GRU2_OUT_SIZE+2*FARGAN_SUBFRAME_SIZE];
float pred[FARGAN_SUBFRAME_SIZE+4];
float prev[FARGAN_SUBFRAME_SIZE];
float pitch_gate[4];
float gain;
float gain_1;
float skip_cat[10000];
float skip_out[SIG_NET_SKIP_DENSE_OUT_SIZE];
FARGAN *model;
celt_assert(st->cont_initialized);
model = &st->model;
compute_generic_dense(&model->sig_net_cond_gain_dense, &gain, cond, ACTIVATION_LINEAR, st->arch);
gain = exp(gain);
gain_1 = 1.f/(1e-5f + gain);
pos = PITCH_MAX_PERIOD-period-2;
for (i=0;i<FARGAN_SUBFRAME_SIZE+4;i++) {
pred[i] = MIN32(1.f, MAX32(-1.f, gain_1*st->pitch_buf[IMAX(0, pos)]));
pos++;
if (pos == PITCH_MAX_PERIOD) pos -= period;
}
for (i=0;i<FARGAN_SUBFRAME_SIZE;i++) prev[i] = MAX32(-1.f, MIN16(1.f, gain_1*st->pitch_buf[PITCH_MAX_PERIOD-FARGAN_SUBFRAME_SIZE+i]));
OPUS_COPY(&fwc0_in[0], &cond[0], FARGAN_COND_SIZE);
OPUS_COPY(&fwc0_in[FARGAN_COND_SIZE], pred, FARGAN_SUBFRAME_SIZE+4);
OPUS_COPY(&fwc0_in[FARGAN_COND_SIZE+FARGAN_SUBFRAME_SIZE+4], prev, FARGAN_SUBFRAME_SIZE);
compute_generic_conv1d(&model->sig_net_fwc0_conv, gru1_in, st->fwc0_mem, fwc0_in, SIG_NET_INPUT_SIZE, ACTIVATION_TANH, st->arch);
celt_assert(SIG_NET_FWC0_GLU_GATE_OUT_SIZE == model->sig_net_fwc0_glu_gate.nb_outputs);
compute_glu(&model->sig_net_fwc0_glu_gate, gru1_in, gru1_in, st->arch);
compute_generic_dense(&model->sig_net_gain_dense_out, pitch_gate, gru1_in, ACTIVATION_SIGMOID, st->arch);
for (i=0;i<FARGAN_SUBFRAME_SIZE;i++) gru1_in[SIG_NET_FWC0_GLU_GATE_OUT_SIZE+i] = pitch_gate[0]*pred[i+2];
OPUS_COPY(&gru1_in[SIG_NET_FWC0_GLU_GATE_OUT_SIZE+FARGAN_SUBFRAME_SIZE], prev, FARGAN_SUBFRAME_SIZE);
compute_generic_gru(&model->sig_net_gru1_input, &model->sig_net_gru1_recurrent, st->gru1_state, gru1_in, st->arch);
compute_glu(&model->sig_net_gru1_glu_gate, gru2_in, st->gru1_state, st->arch);
for (i=0;i<FARGAN_SUBFRAME_SIZE;i++) gru2_in[SIG_NET_GRU1_OUT_SIZE+i] = pitch_gate[1]*pred[i+2];
OPUS_COPY(&gru2_in[SIG_NET_GRU1_OUT_SIZE+FARGAN_SUBFRAME_SIZE], prev, FARGAN_SUBFRAME_SIZE);
compute_generic_gru(&model->sig_net_gru2_input, &model->sig_net_gru2_recurrent, st->gru2_state, gru2_in, st->arch);
compute_glu(&model->sig_net_gru2_glu_gate, gru3_in, st->gru2_state, st->arch);
for (i=0;i<FARGAN_SUBFRAME_SIZE;i++) gru3_in[SIG_NET_GRU2_OUT_SIZE+i] = pitch_gate[2]*pred[i+2];
OPUS_COPY(&gru3_in[SIG_NET_GRU2_OUT_SIZE+FARGAN_SUBFRAME_SIZE], prev, FARGAN_SUBFRAME_SIZE);
compute_generic_gru(&model->sig_net_gru3_input, &model->sig_net_gru3_recurrent, st->gru3_state, gru3_in, st->arch);
compute_glu(&model->sig_net_gru3_glu_gate, &skip_cat[SIG_NET_GRU1_OUT_SIZE+SIG_NET_GRU2_OUT_SIZE], st->gru3_state, st->arch);
OPUS_COPY(skip_cat, gru2_in, SIG_NET_GRU1_OUT_SIZE);
OPUS_COPY(&skip_cat[SIG_NET_GRU1_OUT_SIZE], gru3_in, SIG_NET_GRU2_OUT_SIZE);
OPUS_COPY(&skip_cat[SIG_NET_GRU1_OUT_SIZE+SIG_NET_GRU2_OUT_SIZE+SIG_NET_GRU3_OUT_SIZE], gru1_in, SIG_NET_FWC0_CONV_OUT_SIZE);
for (i=0;i<FARGAN_SUBFRAME_SIZE;i++) skip_cat[SIG_NET_GRU1_OUT_SIZE+SIG_NET_GRU2_OUT_SIZE+SIG_NET_GRU3_OUT_SIZE+SIG_NET_FWC0_CONV_OUT_SIZE+i] = pitch_gate[3]*pred[i+2];
OPUS_COPY(&skip_cat[SIG_NET_GRU1_OUT_SIZE+SIG_NET_GRU2_OUT_SIZE+SIG_NET_GRU3_OUT_SIZE+SIG_NET_FWC0_CONV_OUT_SIZE+FARGAN_SUBFRAME_SIZE], prev, FARGAN_SUBFRAME_SIZE);
compute_generic_dense(&model->sig_net_skip_dense, skip_out, skip_cat, ACTIVATION_TANH, st->arch);
compute_glu(&model->sig_net_skip_glu_gate, skip_out, skip_out, st->arch);
compute_generic_dense(&model->sig_net_sig_dense_out, pcm, skip_out, ACTIVATION_TANH, st->arch);
for (i=0;i<FARGAN_SUBFRAME_SIZE;i++) pcm[i] *= gain;
OPUS_MOVE(st->pitch_buf, &st->pitch_buf[FARGAN_SUBFRAME_SIZE], PITCH_MAX_PERIOD-FARGAN_SUBFRAME_SIZE);
OPUS_COPY(&st->pitch_buf[PITCH_MAX_PERIOD-FARGAN_SUBFRAME_SIZE], pcm, FARGAN_SUBFRAME_SIZE);
fargan_deemphasis(pcm, &st->deemph_mem);
}
void fargan_cont(FARGANState *st, const float *pcm0, const float *features0)
{
int i;
float cond[COND_NET_FDENSE2_OUT_SIZE];
float x0[FARGAN_CONT_SAMPLES];
float dummy[FARGAN_SUBFRAME_SIZE];
int period=0;
/* Pre-load features. */
for (i=0;i<5;i++) {
const float *features = &features0[i*NB_FEATURES];
st->last_period = period;
period = (int)floor(.5+256./pow(2.f,((1./60.)*((features[NB_BANDS]+1.5)*60))));
compute_fargan_cond(st, cond, features, period);
}
x0[0] = 0;
for (i=1;i<FARGAN_CONT_SAMPLES;i++) {
x0[i] = pcm0[i] - FARGAN_DEEMPHASIS*pcm0[i-1];
}
OPUS_COPY(&st->pitch_buf[PITCH_MAX_PERIOD-FARGAN_FRAME_SIZE], x0, FARGAN_FRAME_SIZE);
st->cont_initialized = 1;
for (i=0;i<FARGAN_NB_SUBFRAMES;i++) {
run_fargan_subframe(st, dummy, &cond[i*FARGAN_COND_SIZE], st->last_period);
OPUS_COPY(&st->pitch_buf[PITCH_MAX_PERIOD-FARGAN_SUBFRAME_SIZE], &x0[FARGAN_FRAME_SIZE+i*FARGAN_SUBFRAME_SIZE], FARGAN_SUBFRAME_SIZE);
}
st->deemph_mem = pcm0[FARGAN_CONT_SAMPLES-1];
}
void fargan_init(FARGANState *st)
{
int ret;
OPUS_CLEAR(st, 1);
st->arch = opus_select_arch();
#ifndef USE_WEIGHTS_FILE
ret = init_fargan(&st->model, fargan_arrays);
#else
ret = 0;
#endif
celt_assert(ret == 0);
}
int fargan_load_model(FARGANState *st, const void *data, int len) {
WeightArray *list;
int ret;
parse_weights(&list, data, len);
ret = init_fargan(&st->model, list);
opus_free(list);
if (ret == 0) return 0;
else return -1;
}
static void fargan_synthesize_impl(FARGANState *st, float *pcm, const float *features)
{
int subframe;
float cond[COND_NET_FDENSE2_OUT_SIZE];
int period;
celt_assert(st->cont_initialized);
period = (int)floor(.5+256./pow(2.f,((1./60.)*((features[NB_BANDS]+1.5)*60))));
compute_fargan_cond(st, cond, features, period);
for (subframe=0;subframe<FARGAN_NB_SUBFRAMES;subframe++) {
float *sub_cond;
sub_cond = &cond[subframe*FARGAN_COND_SIZE];
run_fargan_subframe(st, &pcm[subframe*FARGAN_SUBFRAME_SIZE], sub_cond, st->last_period);
}
st->last_period = period;
}
void fargan_synthesize(FARGANState *st, float *pcm, const float *features)
{
fargan_synthesize_impl(st, pcm, features);
}
void fargan_synthesize_int(FARGANState *st, opus_int16 *pcm, const float *features)
{
int i;
float fpcm[FARGAN_FRAME_SIZE];
fargan_synthesize(st, fpcm, features);
for (i=0;i<LPCNET_FRAME_SIZE;i++) pcm[i] = (int)floor(.5 + MIN32(32767, MAX32(-32767, 32768.f*fpcm[i])));
}
|