1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/* Copyright (c) 2002-2008 Jean-Marc Valin
Copyright (c) 2007-2008 CSIRO
Copyright (c) 2007-2009 Xiph.Org Foundation
Copyright (c) 2024 Arm Limited
Written by Jean-Marc Valin */
/**
@file mathops.h
@brief Various math functions
*/
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "float_cast.h"
#include "mathops.h"
/*Compute floor(sqrt(_val)) with exact arithmetic.
_val must be greater than 0.
This has been tested on all possible 32-bit inputs greater than 0.*/
unsigned isqrt32(opus_uint32 _val){
unsigned b;
unsigned g;
int bshift;
/*Uses the second method from
http://www.azillionmonkeys.com/qed/sqroot.html
The main idea is to search for the largest binary digit b such that
(g+b)*(g+b) <= _val, and add it to the solution g.*/
g=0;
bshift=(EC_ILOG(_val)-1)>>1;
b=1U<<bshift;
do{
opus_uint32 t;
t=(((opus_uint32)g<<1)+b)<<bshift;
if(t<=_val){
g+=b;
_val-=t;
}
b>>=1;
bshift--;
}
while(bshift>=0);
return g;
}
#ifdef FIXED_POINT
opus_val32 frac_div32_q29(opus_val32 a, opus_val32 b)
{
opus_val16 rcp;
opus_val32 result, rem;
int shift = celt_ilog2(b)-29;
a = VSHR32(a,shift);
b = VSHR32(b,shift);
/* 16-bit reciprocal */
rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
result = MULT16_32_Q15(rcp, a);
rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
return result;
}
opus_val32 frac_div32(opus_val32 a, opus_val32 b) {
opus_val32 result = frac_div32_q29(a,b);
if (result >= 536870912) /* 2^29 */
return 2147483647; /* 2^31 - 1 */
else if (result <= -536870912) /* -2^29 */
return -2147483647; /* -2^31 */
else
return SHL32(result, 2);
}
/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
opus_val16 celt_rsqrt_norm(opus_val32 x)
{
opus_val16 n;
opus_val16 r;
opus_val16 r2;
opus_val16 y;
/* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
n = x-32768;
/* Get a rough initial guess for the root.
The optimal minimax quadratic approximation (using relative error) is
r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
Coefficients here, and the final result r, are Q14.*/
r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
/* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
We can compute the result from n and r using Q15 multiplies with some
adjustment, carefully done to avoid overflow.
Range of y is [-1564,1594]. */
r2 = MULT16_16_Q15(r, r);
y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
/* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
This yields the Q14 reciprocal square root of the Q16 x, with a maximum
relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
peak absolute error of 2.26591/16384. */
return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
SUB16(MULT16_16_Q15(y, 12288), 16384))));
}
/** Reciprocal sqrt approximation in the range [0.25,1) (Q31 in, Q29 out) */
opus_val32 celt_rsqrt_norm32(opus_val32 x)
{
opus_int32 tmp;
/* Use the first-order Newton-Raphson method to refine the root estimate.
* r = r * (1.5 - 0.5*x*r*r) */
opus_int32 r_q29 = SHL32(celt_rsqrt_norm(SHR32(x, 31-16)), 15);
/* Split evaluation in steps to avoid exploding macro expansion. */
tmp = MULT32_32_Q31(r_q29, r_q29);
tmp = MULT32_32_Q31(1073741824 /* Q31 */, tmp);
tmp = MULT32_32_Q31(x, tmp);
return SHL32(MULT32_32_Q31(r_q29, SUB32(201326592 /* Q27 */, tmp)), 4);
}
/** Sqrt approximation (QX input, QX/2 output) */
opus_val32 celt_sqrt(opus_val32 x)
{
int k;
opus_val16 n;
opus_val32 rt;
/* These coeffs are optimized in fixed-point to minimize both RMS and max error
of sqrt(x) over .25<x<1 without exceeding 32767.
The RMS error is 3.4e-5 and the max is 8.2e-5. */
static const opus_val16 C[6] = {23171, 11574, -2901, 1592, -1002, 336};
if (x==0)
return 0;
else if (x>=1073741824)
return 32767;
k = (celt_ilog2(x)>>1)-7;
x = VSHR32(x, 2*k);
n = x-32768;
rt = ADD32(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, ADD16(C[4], MULT16_16_Q15(n, (C[5])))))))))));
rt = VSHR32(rt,7-k);
return rt;
}
/* Perform fixed-point arithmetic to approximate the square root. When the input
* is in Qx format, the output will be in Q(x/2 + 16) format. */
opus_val32 celt_sqrt32(opus_val32 x)
{
int k;
opus_int32 x_frac;
if (x==0)
return 0;
else if (x>=1073741824)
return 2147483647; /* 2^31 -1 */
k = (celt_ilog2(x)>>1);
x_frac = VSHR32(x, 2*(k-14)-1);
x_frac = MULT32_32_Q31(celt_rsqrt_norm32(x_frac), x_frac);
if (k < 12) return PSHR32(x_frac, 12-k);
else return SHL32(x_frac, k-12);
}
#define L1 32767
#define L2 -7651
#define L3 8277
#define L4 -626
static OPUS_INLINE opus_val16 _celt_cos_pi_2(opus_val16 x)
{
opus_val16 x2;
x2 = MULT16_16_P15(x,x);
return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
))))))));
}
#undef L1
#undef L2
#undef L3
#undef L4
opus_val16 celt_cos_norm(opus_val32 x)
{
x = x&0x0001ffff;
if (x>SHL32(EXTEND32(1), 16))
x = SUB32(SHL32(EXTEND32(1), 17),x);
if (x&0x00007fff)
{
if (x<SHL32(EXTEND32(1), 15))
{
return _celt_cos_pi_2(EXTRACT16(x));
} else {
return NEG16(_celt_cos_pi_2(EXTRACT16(65536-x)));
}
} else {
if (x&0x0000ffff)
return 0;
else if (x&0x0001ffff)
return -32767;
else
return 32767;
}
}
/* Calculates the cosine of (PI*0.5*x) where the input x ranges from -1 to 1 and
* is in Q30 format. The output will also be in Q31 format. */
opus_val32 celt_cos_norm32(opus_val32 x)
{
static const opus_val32 COS_NORM_COEFF_A0 = 134217720; /* Q27 */
static const opus_val32 COS_NORM_COEFF_A1 = -662336704; /* Q29 */
static const opus_val32 COS_NORM_COEFF_A2 = 544710848; /* Q31 */
static const opus_val32 COS_NORM_COEFF_A3 = -178761936; /* Q33 */
static const opus_val32 COS_NORM_COEFF_A4 = 29487206; /* Q35 */
opus_int32 x_sq_q29, tmp;
/* The expected x is in the range of [-1.0f, 1.0f] */
celt_sig_assert((x >= -1073741824) && (x <= 1073741824));
/* Make cos(+/- pi/2) exactly zero. */
if (ABS32(x) == 1<<30) return 0;
x_sq_q29 = MULT32_32_Q31(x, x);
/* Split evaluation in steps to avoid exploding macro expansion. */
tmp = ADD32(COS_NORM_COEFF_A3, MULT32_32_Q31(x_sq_q29, COS_NORM_COEFF_A4));
tmp = ADD32(COS_NORM_COEFF_A2, MULT32_32_Q31(x_sq_q29, tmp));
tmp = ADD32(COS_NORM_COEFF_A1, MULT32_32_Q31(x_sq_q29, tmp));
return SHL32(ADD32(COS_NORM_COEFF_A0, MULT32_32_Q31(x_sq_q29, tmp)), 4);
}
/* Computes a 16 bit approximate reciprocal (1/x) for a normalized Q15 input,
* resulting in a Q15 output. */
opus_val16 celt_rcp_norm16(opus_val16 x)
{
opus_val16 r;
/* Start with a linear approximation:
r = 1.8823529411764706-0.9411764705882353*n.
The coefficients and the result are Q14 in the range [15420,30840].*/
r = ADD16(30840, MULT16_16_Q15(-15420, x));
/* Perform two Newton iterations:
r -= r*((r*n)+(r-1.Q15))
= r*((r*n)+(r-1.Q15)). */
r = SUB16(r, MULT16_16_Q15(r,
ADD16(MULT16_16_Q15(r, x), ADD16(r, -32768))));
/* We subtract an extra 1 in the second iteration to avoid overflow; it also
neatly compensates for truncation error in the rest of the process. */
return SUB16(r, ADD16(1, MULT16_16_Q15(r,
ADD16(MULT16_16_Q15(r, x), ADD16(r, -32768)))));
}
/* Computes a 32 bit approximated reciprocal (1/x) for a normalized Q31 input,
* resulting in a Q30 output. The expected input range is [0.5f, 1.0f) in Q31
* and the expected output range is [1.0f, 2.0f) in Q30. */
opus_val32 celt_rcp_norm32(opus_val32 x)
{
opus_val32 r_q30;
celt_sig_assert(x >= 1073741824);
r_q30 = SHL32(EXTEND32(celt_rcp_norm16(SHR32(x, 15)-32768)), 16);
/* Solving f(y) = a - 1/y using the Newton Method
* Note: f(y)' = 1/y^2
* r = r - f(r)/f(r)' = r - (x * r*r - r)
* = r - r*(r*x - 1)
* where
* - r means 1/y's approximation.
* - x means a, the input of function.
* Please note that:
* - It adds 1 to avoid overflow
* - -1.0f in Q30 is -1073741824. */
return SUB32(r_q30, ADD32(SHL32(
MULT32_32_Q31(ADD32(MULT32_32_Q31(r_q30, x), -1073741824),
r_q30), 1), 1));
}
/** Reciprocal approximation (Q15 input, Q16 output) */
opus_val32 celt_rcp(opus_val32 x)
{
int i;
opus_val16 r;
celt_sig_assert(x>0);
i = celt_ilog2(x);
/* Compute the reciprocal of a Q15 number in the range [0, 1). */
r = celt_rcp_norm16(VSHR32(x,i-15)-32768);
/* r is now the Q15 solution to 2/(n+1), with a maximum relative error
of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
error of 1.24665/32768. */
return VSHR32(EXTEND32(r),i-16);
}
#endif
#ifndef DISABLE_FLOAT_API
void celt_float2int16_c(const float * OPUS_RESTRICT in, short * OPUS_RESTRICT out, int cnt)
{
int i;
for (i = 0; i < cnt; i++)
{
out[i] = FLOAT2INT16(in[i]);
}
}
int opus_limit2_checkwithin1_c(float * samples, int cnt)
{
int i;
if (cnt <= 0)
{
return 1;
}
for (i = 0; i < cnt; i++)
{
float clippedVal = samples[i];
clippedVal = FMAX(-2.0f, clippedVal);
clippedVal = FMIN(2.0f, clippedVal);
samples[i] = clippedVal;
}
/* C implementation can't provide quick hint. Assume it might exceed -1/+1. */
return 0;
}
#endif /* DISABLE_FLOAT_API */
|