1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
/* Copyright (c) 2002-2008 Jean-Marc Valin
Copyright (c) 2007-2008 CSIRO
Copyright (c) 2007-2009 Xiph.Org Foundation
Copyright (c) 2024 Arm Limited
Written by Jean-Marc Valin, and Yunho Huh */
/**
@file mathops.h
@brief Various math functions
*/
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MATHOPS_H
#define MATHOPS_H
#include "arch.h"
#include "entcode.h"
#include "os_support.h"
#if defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
#include "arm/mathops_arm.h"
#endif
#define PI 3.1415926535897931
/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
unsigned isqrt32(opus_uint32 _val);
/* CELT doesn't need it for fixed-point, by analysis.c does. */
#if !defined(FIXED_POINT) || defined(ANALYSIS_C)
#define cA 0.43157974f
#define cB 0.67848403f
#define cC 0.08595542f
#define cE ((float)PI/2)
static OPUS_INLINE float fast_atan2f(float y, float x) {
float x2, y2;
x2 = x*x;
y2 = y*y;
/* For very small values, we don't care about the answer, so
we can just return 0. */
if (x2 + y2 < 1e-18f)
{
return 0;
}
if(x2<y2){
float den = (y2 + cB*x2) * (y2 + cC*x2);
return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
}else{
float den = (x2 + cB*y2) * (x2 + cC*y2);
return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
}
}
#undef cA
#undef cB
#undef cC
#undef cE
#endif
#ifndef OVERRIDE_CELT_MAXABS16
static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
{
int i;
opus_val16 maxval = 0;
opus_val16 minval = 0;
for (i=0;i<len;i++)
{
maxval = MAX16(maxval, x[i]);
minval = MIN16(minval, x[i]);
}
return MAX32(EXTEND32(maxval),-EXTEND32(minval));
}
#endif
#if defined(ENABLE_RES24) && defined(FIXED_POINT)
static OPUS_INLINE opus_res celt_maxabs_res(const opus_res *x, int len)
{
int i;
opus_res maxval = 0;
opus_res minval = 0;
for (i=0;i<len;i++)
{
maxval = MAX32(maxval, x[i]);
minval = MIN32(minval, x[i]);
}
/* opus_res should never reach such amplitude, so we should be safe. */
celt_sig_assert(minval != -2147483648);
return MAX32(maxval,-minval);
}
#else
#define celt_maxabs_res celt_maxabs16
#endif
#ifndef OVERRIDE_CELT_MAXABS32
#ifdef FIXED_POINT
static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
{
int i;
opus_val32 maxval = 0;
opus_val32 minval = 0;
for (i=0;i<len;i++)
{
maxval = MAX32(maxval, x[i]);
minval = MIN32(minval, x[i]);
}
return MAX32(maxval, -minval);
}
#else
#define celt_maxabs32(x,len) celt_maxabs16(x,len)
#endif
#endif
#ifndef FIXED_POINT
/* Calculates the arctangent of x using a Remez approximation of order 15,
* incorporating only odd-powered terms. */
static OPUS_INLINE float celt_atan_norm(float x)
{
#define ATAN2_2_OVER_PI 0.636619772367581f
float x_sq = x * x;
/* Polynomial coefficients approximated in the [0, 1] range.
* Lolremez command: lolremez --degree 6 --range "0:1"
* "(atan(sqrt(x))-sqrt(x))/(x*sqrt(x))" "1/(sqrt(x)*x)"
* Please note that ATAN2_COEFF_A01 is fixed to 1.0f. */
#define ATAN2_COEFF_A03 -3.3331659436225891113281250000e-01f
#define ATAN2_COEFF_A05 1.99627041816711425781250000000e-01f
#define ATAN2_COEFF_A07 -1.3976582884788513183593750000e-01f
#define ATAN2_COEFF_A09 9.79423448443412780761718750000e-02f
#define ATAN2_COEFF_A11 -5.7773590087890625000000000000e-02f
#define ATAN2_COEFF_A13 2.30401363223791122436523437500e-02f
#define ATAN2_COEFF_A15 -4.3554059229791164398193359375e-03f
return ATAN2_2_OVER_PI * (x + x * x_sq * (ATAN2_COEFF_A03
+ x_sq * (ATAN2_COEFF_A05
+ x_sq * (ATAN2_COEFF_A07
+ x_sq * (ATAN2_COEFF_A09
+ x_sq * (ATAN2_COEFF_A11
+ x_sq * (ATAN2_COEFF_A13
+ x_sq * (ATAN2_COEFF_A15))))))));
}
/* Calculates the arctangent of y/x, returning an approximate value in radians.
* Please refer to the linked wiki page (https://en.wikipedia.org/wiki/Atan2)
* to learn how atan2 results are computed. */
static OPUS_INLINE float celt_atan2p_norm(float y, float x)
{
celt_sig_assert(x>=0 && y>=0);
/* For very small values, we don't care about the answer. */
if ((x*x + y*y) < 1e-18f)
{
return 0;
}
if (y < x)
{
return celt_atan_norm(y / x);
} else {
return 1.f - celt_atan_norm(x / y);
}
}
#endif
#if !defined(FIXED_POINT) || defined(ENABLE_QEXT)
/* Computes estimated cosine values for (PI/2 * x) using only terms with even
* exponents. */
static OPUS_INLINE float celt_cos_norm2(float x)
{
float x_norm_sq;
int output_sign;
/* Restrict x to [-1, 3]. */
x -= 4*floor(.25*(x+1));
/* Negative sign for [1, 3]. */
output_sign = 1 - 2*(x>1);
/* Restrict to [-1, 1]. */
x -= 2*(x>1);
/* The cosine function, cos(x), has a Taylor series representation consisting
* exclusively of even-powered polynomial terms. */
x_norm_sq = x * x;
/* Polynomial coefficients approximated in the [0, 1] range using only terms
* with even exponents.
* Lolremez command: lolremez --degree 4 --range 0:1 "cos(sqrt(x)*pi*0.5)" */
#define COS_COEFF_A0 9.999999403953552246093750000000e-01f
#define COS_COEFF_A2 -1.233698248863220214843750000000000f
#define COS_COEFF_A4 2.536507546901702880859375000000e-01f
#define COS_COEFF_A6 -2.08106283098459243774414062500e-02f
#define COS_COEFF_A8 8.581906440667808055877685546875e-04f
return output_sign * (COS_COEFF_A0 + x_norm_sq * (COS_COEFF_A2 +
x_norm_sq * (COS_COEFF_A4 +
x_norm_sq * (COS_COEFF_A6 +
x_norm_sq * (COS_COEFF_A8)))));
}
#endif
#ifndef FIXED_POINT
#define celt_sqrt(x) ((float)sqrt(x))
#define celt_sqrt32(x) ((float)sqrt(x))
#define celt_rsqrt(x) (1.f/celt_sqrt(x))
#define celt_rsqrt_norm(x) (celt_rsqrt(x))
#define celt_rsqrt_norm32(x) (celt_rsqrt(x))
#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
#define celt_rcp(x) (1.f/(x))
#define celt_div(a,b) ((a)/(b))
#define frac_div32(a,b) ((float)(a)/(b))
#define frac_div32_q29(a,b) frac_div32(a,b)
#ifdef FLOAT_APPROX
/* Calculates the base-2 logarithm (log2(x)) of a number. It is designed for
* systems using radix-2 floating-point representation, with the exponent
* located at bits 23 to 30 and an offset of 127. Note that special cases like
* denormalized numbers, positive/negative infinity, and NaN are not handled.
* log2(x) = log2(x^exponent * mantissa)
* = exponent + log2(mantissa) */
/* Log2 x normalization single precision coefficients calculated by
* 1 / (1 + 0.125 * index).
* Coefficients in Double Precision
* double log2_x_norm_coeff[8] = {
* 1.0000000000000000000, 8.888888888888888e-01,
* 8.000000000000000e-01, 7.272727272727273e-01,
* 6.666666666666666e-01, 6.153846153846154e-01,
* 5.714285714285714e-01, 5.333333333333333e-01} */
static const float log2_x_norm_coeff[8] = {
1.000000000000000000000000000f, 8.88888895511627197265625e-01f,
8.00000000000000000000000e-01f, 7.27272748947143554687500e-01f,
6.66666686534881591796875e-01f, 6.15384638309478759765625e-01f,
5.71428596973419189453125e-01f, 5.33333361148834228515625e-01f};
/* Log2 y normalization single precision coefficients calculated by
* log2(1 + 0.125 * index).
* Coefficients in Double Precision
* double log2_y_norm_coeff[8] = {
* 0.0000000000000000000, 1.699250014423124e-01,
* 3.219280948873623e-01, 4.594316186372973e-01,
* 5.849625007211562e-01, 7.004397181410922e-01,
* 8.073549220576041e-01, 9.068905956085185e-01}; */
static const float log2_y_norm_coeff[8] = {
0.0000000000000000000000000000f, 1.699250042438507080078125e-01f,
3.219280838966369628906250e-01f, 4.594316184520721435546875e-01f,
5.849624872207641601562500e-01f, 7.004396915435791015625000e-01f,
8.073549270629882812500000e-01f, 9.068905711174011230468750e-01f};
static OPUS_INLINE float celt_log2(float x)
{
opus_int32 integer;
opus_int32 range_idx;
union {
float f;
opus_uint32 i;
} in;
in.f = x;
integer = (opus_int32)(in.i>>23)-127;
in.i = (opus_int32)in.i - (opus_int32)((opus_uint32)integer<<23);
/* Normalize the mantissa range from [1, 2] to [1,1.125], and then shift x
* by 1.0625 to [-0.0625, 0.0625]. */
range_idx = (in.i >> 20) & 0x7;
in.f = in.f * log2_x_norm_coeff[range_idx] - 1.0625f;
/* Polynomial coefficients approximated in the [1, 1.125] range.
* Lolremez command: lolremez --degree 4 --range -0.0625:0.0625
* "log(x+1.0625)/log(2)"
* Coefficients in Double Precision
* A0: 8.7462840624502679e-2 A1: 1.3578296070972002
* A2: -6.3897703690210047e-1 A3: 4.0197125617419959e-1
* A4: -2.8415445877832832e-1 */
#define LOG2_COEFF_A0 8.74628424644470214843750000e-02f
#define LOG2_COEFF_A1 1.357829570770263671875000000000f
#define LOG2_COEFF_A2 -6.3897705078125000000000000e-01f
#define LOG2_COEFF_A3 4.01971250772476196289062500e-01f
#define LOG2_COEFF_A4 -2.8415444493293762207031250e-01f
in.f = LOG2_COEFF_A0 + in.f * (LOG2_COEFF_A1
+ in.f * (LOG2_COEFF_A2
+ in.f * (LOG2_COEFF_A3
+ in.f * (LOG2_COEFF_A4))));
return integer + in.f + log2_y_norm_coeff[range_idx];
}
/* Calculates an approximation of 2^x. The approximation was achieved by
* employing a base-2 exponential function and utilizing a Remez approximation
* of order 5, ensuring a controlled relative error.
* exp2(x) = exp2(integer + fraction)
* = exp2(integer) * exp2(fraction) */
static OPUS_INLINE float celt_exp2(float x)
{
opus_int32 integer;
float frac;
union {
float f;
opus_uint32 i;
} res;
integer = (int)floor(x);
if (integer < -50)
return 0;
frac = x-integer;
/* Polynomial coefficients approximated in the [0, 1] range.
* Lolremez command: lolremez --degree 5 --range 0:1
* "exp(x*0.693147180559945)" "exp(x*0.693147180559945)"
* NOTE: log(2) ~ 0.693147180559945 */
#define EXP2_COEFF_A0 9.999999403953552246093750000000e-01f
#define EXP2_COEFF_A1 6.931530833244323730468750000000e-01f
#define EXP2_COEFF_A2 2.401536107063293457031250000000e-01f
#define EXP2_COEFF_A3 5.582631751894950866699218750000e-02f
#define EXP2_COEFF_A4 8.989339694380760192871093750000e-03f
#define EXP2_COEFF_A5 1.877576694823801517486572265625e-03f
res.f = EXP2_COEFF_A0 + frac * (EXP2_COEFF_A1
+ frac * (EXP2_COEFF_A2
+ frac * (EXP2_COEFF_A3
+ frac * (EXP2_COEFF_A4
+ frac * (EXP2_COEFF_A5)))));
res.i = (opus_uint32)((opus_int32)res.i + (opus_int32)((opus_uint32)integer<<23)) & 0x7fffffff;
return res.f;
}
#else
#define celt_log2(x) ((float)(1.442695040888963387*log(x)))
#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
#endif
#define celt_exp2_db celt_exp2
#define celt_log2_db celt_log2
#define celt_sin(x) celt_cos_norm2((0.5f*PI) * (x) - 1.0f)
#define celt_log(x) (celt_log2(x) * 0.6931471805599453f)
#define celt_exp(x) (celt_exp2((x) * 1.4426950408889634f))
#endif
#ifdef FIXED_POINT
#include "os_support.h"
#ifndef OVERRIDE_CELT_ILOG2
/** Integer log in base2. Undefined for zero and negative numbers */
static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
{
celt_sig_assert(x>0);
return EC_ILOG(x)-1;
}
#endif
/** Integer log in base2. Defined for zero, but not for negative numbers */
static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
{
return x <= 0 ? 0 : celt_ilog2(x);
}
opus_val16 celt_rsqrt_norm(opus_val32 x);
opus_val32 celt_rsqrt_norm32(opus_val32 x);
opus_val32 celt_sqrt(opus_val32 x);
opus_val32 celt_sqrt32(opus_val32 x);
opus_val16 celt_cos_norm(opus_val32 x);
opus_val32 celt_cos_norm32(opus_val32 x);
/** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
{
int i;
opus_val16 n, frac;
/* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
0.15530808010959576, -0.08556153059057618 */
static const opus_val16 C[5] = {-6801+(1<<(13-10)), 15746, -5217, 2545, -1401};
if (x==0)
return -32767;
i = celt_ilog2(x);
n = VSHR32(x,i-15)-32768-16384;
frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
return SHL32(i-13,10)+SHR32(frac,14-10);
}
/*
K0 = 1
K1 = log(2)
K2 = 3-4*log(2)
K3 = 3*log(2) - 2
*/
#define D0 16383
#define D1 22804
#define D2 14819
#define D3 10204
static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
{
opus_val16 frac;
frac = SHL16(x, 4);
return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
}
#undef D0
#undef D1
#undef D2
#undef D3
/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
{
int integer;
opus_val16 frac;
integer = SHR16(x,10);
if (integer>14)
return 0x7f000000;
else if (integer < -15)
return 0;
frac = celt_exp2_frac(x-SHL16(integer,10));
return VSHR32(EXTEND32(frac), -integer-2);
}
#ifdef ENABLE_QEXT
/* Calculates the base-2 logarithm of a Q14 input value. The result is returned
* in Q(DB_SHIFT). If the input value is 0, the function will output -32.0f. */
static OPUS_INLINE opus_val32 celt_log2_db(opus_val32 x) {
/* Q30 */
static const opus_val32 log2_x_norm_coeff[8] = {
1073741824, 954437184, 858993472, 780903168,
715827904, 660764224, 613566784, 572662336};
/* Q24 */
static const opus_val32 log2_y_norm_coeff[8] = {
0, 2850868, 5401057, 7707983,
9814042, 11751428, 13545168, 15215099};
static const opus_val32 LOG2_COEFF_A0 = 1467383; /* Q24 */
static const opus_val32 LOG2_COEFF_A1 = 182244800; /* Q27 */
static const opus_val32 LOG2_COEFF_A2 = -21440512; /* Q25 */
static const opus_val32 LOG2_COEFF_A3 = 107903336; /* Q28 */
static const opus_val32 LOG2_COEFF_A4 = -610217024; /* Q31 */
opus_int32 integer, norm_coeff_idx, tmp;
opus_val32 mantissa;
if (x==0) {
return -536870912; /* -32.0f */
}
integer = SUB32(celt_ilog2(x), 14); /* Q0 */
mantissa = VSHR32(x, integer + 14 - 29); /* Q29 */
norm_coeff_idx = SHR32(mantissa, 29 - 3) & 0x7;
/* mantissa is in Q28 (29 + Q_NORM_CONST - 31 where Q_NORM_CONST is Q30)
* 285212672 (Q28) is 1.0625f. */
mantissa = SUB32(MULT32_32_Q31(mantissa, log2_x_norm_coeff[norm_coeff_idx]),
285212672);
/* q_a3(Q28): q_mantissa + q_a4 - 31
* q_a2(Q25): q_mantissa + q_a3 - 31
* q_a1(Q27): q_mantissa + q_a2 - 31 + 5
* q_a0(Q24): q_mantissa + q_a1 - 31
* where q_mantissa is Q28 */
/* Split evaluation in steps to avoid exploding macro expansion. */
tmp = MULT32_32_Q31(mantissa, LOG2_COEFF_A4);
tmp = MULT32_32_Q31(mantissa, ADD32(LOG2_COEFF_A3, tmp));
tmp = SHL32(MULT32_32_Q31(mantissa, ADD32(LOG2_COEFF_A2, tmp)), 5 /* SHL32 for LOG2_COEFF_A1 */);
tmp = MULT32_32_Q31(mantissa, ADD32(LOG2_COEFF_A1, tmp));
return ADD32(log2_y_norm_coeff[norm_coeff_idx],
ADD32(SHL32(integer, DB_SHIFT),
ADD32(LOG2_COEFF_A0, tmp)));
}
/* Calculates exp2 for Q28 within a specific range (0 to 1.0) using fixed-point
* arithmetic. The input number must be adjusted for Q DB_SHIFT. */
static OPUS_INLINE opus_val32 celt_exp2_db_frac(opus_val32 x)
{
/* Approximation constants. */
static const opus_int32 EXP2_COEFF_A0 = 268435440; /* Q28 */
static const opus_int32 EXP2_COEFF_A1 = 744267456; /* Q30 */
static const opus_int32 EXP2_COEFF_A2 = 1031451904; /* Q32 */
static const opus_int32 EXP2_COEFF_A3 = 959088832; /* Q34 */
static const opus_int32 EXP2_COEFF_A4 = 617742720; /* Q36 */
static const opus_int32 EXP2_COEFF_A5 = 516104352; /* Q38 */
opus_int32 tmp;
/* Converts input value from Q24 to Q29. */
opus_val32 x_q29 = SHL32(x, 29 - 24);
/* Split evaluation in steps to avoid exploding macro expansion. */
tmp = ADD32(EXP2_COEFF_A4, MULT32_32_Q31(x_q29, EXP2_COEFF_A5));
tmp = ADD32(EXP2_COEFF_A3, MULT32_32_Q31(x_q29, tmp));
tmp = ADD32(EXP2_COEFF_A2, MULT32_32_Q31(x_q29, tmp));
tmp = ADD32(EXP2_COEFF_A1, MULT32_32_Q31(x_q29, tmp));
return ADD32(EXP2_COEFF_A0, MULT32_32_Q31(x_q29, tmp));
}
/* Calculates exp2 for Q16 using fixed-point arithmetic. The input number must
* be adjusted for Q DB_SHIFT. */
static OPUS_INLINE opus_val32 celt_exp2_db(opus_val32 x)
{
int integer;
opus_val32 frac;
integer = SHR32(x,DB_SHIFT);
if (integer>14)
return 0x7f000000;
else if (integer <= -17)
return 0;
frac = celt_exp2_db_frac(x-SHL32(integer, DB_SHIFT)); /* Q28 */
return VSHR32(frac, -integer + 28 - 16); /* Q16 */
}
#else
#define celt_log2_db(x) SHL32(EXTEND32(celt_log2(x)), DB_SHIFT-10)
#define celt_exp2_db_frac(x) SHL32(celt_exp2_frac(PSHR32(x, DB_SHIFT-10)), 14)
#define celt_exp2_db(x) celt_exp2(PSHR32(x, DB_SHIFT-10))
#endif
opus_val32 celt_rcp(opus_val32 x);
opus_val32 celt_rcp_norm32(opus_val32 x);
#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
opus_val32 frac_div32_q29(opus_val32 a, opus_val32 b);
opus_val32 frac_div32(opus_val32 a, opus_val32 b);
/* Computes atan(x) multiplied by 2/PI. The input value (x) should be within the
* range of -1 to 1 and represented in Q30 format. The function will return the
* result in Q30 format. */
static OPUS_INLINE opus_val32 celt_atan_norm(opus_val32 x)
{
/* Approximation constants. */
static const opus_int32 ATAN_2_OVER_PI = 1367130551; /* Q31 */
static const opus_int32 ATAN_COEFF_A03 = -715791936; /* Q31 */
static const opus_int32 ATAN_COEFF_A05 = 857391616; /* Q32 */
static const opus_int32 ATAN_COEFF_A07 = -1200579328; /* Q33 */
static const opus_int32 ATAN_COEFF_A09 = 1682636672; /* Q34 */
static const opus_int32 ATAN_COEFF_A11 = -1985085440; /* Q35 */
static const opus_int32 ATAN_COEFF_A13 = 1583306112; /* Q36 */
static const opus_int32 ATAN_COEFF_A15 = -598602432; /* Q37 */
opus_int32 x_sq_q30;
opus_int32 x_q31;
opus_int32 tmp;
/* The expected x is in the range of [-1.0f, 1.0f] */
celt_sig_assert((x <= 1073741824) && (x >= -1073741824));
/* If x = 1.0f, returns 0.5f */
if (x == 1073741824)
{
return 536870912; /* 0.5f (Q30) */
}
/* If x = 1.0f, returns 0.5f */
if (x == -1073741824)
{
return -536870912; /* -0.5f (Q30) */
}
x_q31 = SHL32(x, 1);
x_sq_q30 = MULT32_32_Q31(x_q31, x);
/* Split evaluation in steps to avoid exploding macro expansion. */
tmp = MULT32_32_Q31(x_sq_q30, ATAN_COEFF_A15);
tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A13, tmp));
tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A11, tmp));
tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A09, tmp));
tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A07, tmp));
tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A05, tmp));
tmp = MULT32_32_Q31(x_sq_q30, ADD32(ATAN_COEFF_A03, tmp));
tmp = ADD32(x, MULT32_32_Q31(x_q31, tmp));
return MULT32_32_Q31(ATAN_2_OVER_PI, tmp);
}
/* Calculates the arctangent of y/x, multiplies the result by 2/pi, and returns
* the value in Q30 format. Both input values (x and y) must be within the range
* of 0 to 1 and represented in Q30 format. Inputs must be zero or greater, and
* at least one input must be non-zero. */
static OPUS_INLINE opus_val32 celt_atan2p_norm(opus_val32 y, opus_val32 x)
{
celt_sig_assert(x>=0 && y>=0);
if (y==0 && x==0) {
return 0;
} else if (y < x) {
return celt_atan_norm(SHR32(frac_div32(y, x), 1));
} else {
celt_sig_assert(y > 0);
return 1073741824 /* 1.0f Q30 */ -
celt_atan_norm(SHR32(frac_div32(x, y), 1));
}
}
#define M1 32767
#define M2 -21
#define M3 -11943
#define M4 4936
/* Atan approximation using a 4th order polynomial. Input is in Q15 format
and normalized by pi/4. Output is in Q15 format */
static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
{
return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
}
#undef M1
#undef M2
#undef M3
#undef M4
/* atan2() approximation valid for positive input values */
static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
{
if (x==0 && y==0) {
return 0;
} else if (y < x)
{
opus_val32 arg;
arg = celt_div(SHL32(EXTEND32(y),15),x);
if (arg >= 32767)
arg = 32767;
return SHR16(celt_atan01(EXTRACT16(arg)),1);
} else {
opus_val32 arg;
arg = celt_div(SHL32(EXTEND32(x),15),y);
if (arg >= 32767)
arg = 32767;
return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
}
}
#endif /* FIXED_POINT */
#ifndef DISABLE_FLOAT_API
void celt_float2int16_c(const float * OPUS_RESTRICT in, short * OPUS_RESTRICT out, int cnt);
#ifndef OVERRIDE_FLOAT2INT16
#define celt_float2int16(in, out, cnt, arch) ((void)(arch), celt_float2int16_c(in, out, cnt))
#endif
int opus_limit2_checkwithin1_c(float *samples, int cnt);
#ifndef OVERRIDE_LIMIT2_CHECKWITHIN1
#define opus_limit2_checkwithin1(samples, cnt, arch) ((void)(arch), opus_limit2_checkwithin1_c(samples, cnt))
#endif
#endif /* DISABLE_FLOAT_API */
#endif /* MATHOPS_H */
|