1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
|
import inspect
import itertools
from collections.abc import Iterable
import re
import warnings
from typing import Callable, Optional, NamedTuple, Type
import numpy as np
import scipy
from Orange.data import Table, Storage, Instance, Value, Domain
from Orange.data.filter import HasClass
from Orange.data.table import DomainTransformationError
from Orange.data.util import one_hot
from Orange.misc.environ import cache_dir
from Orange.misc.wrapper_meta import WrapperMeta
from Orange.preprocess import Continuize, RemoveNaNColumns, SklImpute, Normalize
from Orange.statistics.util import all_nan
from Orange.util import Reprable, OrangeDeprecationWarning, wrap_callback, \
dummy_callback
__all__ = ["Learner", "Model", "SklLearner", "SklModel",
"ReprableWithPreprocessors"]
class ReprableWithPreprocessors(Reprable):
def _reprable_omit_param(self, name, default, value):
if name == "preprocessors":
default_cls = type(self).preprocessors
if value is default or value is default_cls:
return True
else:
try:
return all(p1 is p2 for p1, p2 in
itertools.zip_longest(value, default_cls))
except (ValueError, TypeError):
return False
else:
return super()._reprable_omit_param(name, default, value)
class Learner(ReprableWithPreprocessors):
"""The base learner class.
Preprocessors can behave in a number of different ways, all of which are
described here.
If the user does not pass a preprocessor argument into the Learner
constructor, the default learner preprocessors are used. We assume the user
would simply like to get things done without having to worry about
preprocessors.
If the user chooses to pass in their own preprocessors, we assume they know
what they are doing. In this case, only the user preprocessors are used and
the default preprocessors are ignored.
In case the user would like to use the default preprocessors as well as
their own ones, the `use_default_preprocessors` flag should be set.
Parameters
----------
preprocessors : Preprocessor or tuple[Preprocessor], optional
User defined preprocessors. If the user specifies their own
preprocessors, the default ones will not be used, unless the
`use_default_preprocessors` flag is set.
Attributes
----------
preprocessors : tuple[Preprocessor] (default None)
The used defined preprocessors that will be used on any data.
use_default_preprocessors : bool (default False)
This flag indicates whether to use the default preprocessors that are
defined on the Learner class. Since preprocessors can be applied in a
number of ways
active_preprocessors : tuple[Preprocessor]
The processors that will be used when data is passed to the learner.
This depends on whether the user has passed in their own preprocessors
and whether the `use_default_preprocessors` flag is set.
This property is needed mainly because of the `Fitter` class, which can
not know in advance, which preprocessors it will need to use. Therefore
this resolves the active preprocessors using a lazy approach.
params : dict
The params that the learner is constructed with.
"""
supports_multiclass = False
supports_weights = False
#: A sequence of data preprocessors to apply on data prior to
#: fitting the model
preprocessors = ()
class FittedParameter(NamedTuple):
name: str
label: str
type: Type
min: Optional[int] = None
max: Optional[int] = None
# Note: Do not use this class attribute.
# It remains here for compatibility reasons.
learner_adequacy_err_msg = ''
def __init__(self, preprocessors=None):
self.use_default_preprocessors = False
if isinstance(preprocessors, Iterable):
self.preprocessors = tuple(preprocessors)
elif preprocessors:
self.preprocessors = (preprocessors,)
# pylint: disable=R0201
def fit(self, X, Y, W=None):
raise RuntimeError(
"Descendants of Learner must overload method fit or fit_storage")
def fit_storage(self, data):
"""Default implementation of fit_storage defaults to calling fit.
Derived classes must define fit_storage or fit"""
X, Y, W = data.X, data.Y, data.W if data.has_weights() else None
return self.fit(X, Y, W)
def __call__(self, data, progress_callback=None):
reason = self.incompatibility_reason(data.domain)
if reason is not None:
raise ValueError(reason)
origdomain = data.domain
if isinstance(data, Instance):
data = Table(data.domain, [data])
origdata = data
if progress_callback is None:
progress_callback = dummy_callback
progress_callback(0, "Preprocessing...")
try:
cb = wrap_callback(progress_callback, end=0.1)
data = self.preprocess(data, progress_callback=cb)
except TypeError:
data = self.preprocess(data)
warnings.warn("A keyword argument 'progress_callback' has been "
"added to the preprocess() signature. Implementing "
"the method without the argument is deprecated and "
"will result in an error in the future.",
OrangeDeprecationWarning)
if len(data.domain.class_vars) > 1 and not self.supports_multiclass:
raise TypeError("%s doesn't support multiple class variables" %
self.__class__.__name__)
progress_callback(0.1, "Fitting...")
model = self._fit_model(data)
model.used_vals = [np.unique(y).astype(int) for y in data.Y[:, None].T]
if not hasattr(model, "domain") or model.domain is None:
# some models set domain themself and it should be respected
# e.g. calibration learners set the base_learner's domain which
# would be wrongly overwritten if we set it here for any model
model.domain = data.domain
model.supports_multiclass = self.supports_multiclass
model.name = self.name
model.original_domain = origdomain
model.original_data = origdata
progress_callback(1)
return model
def _fit_model(self, data):
if type(self).fit is Learner.fit:
return self.fit_storage(data)
else:
X, Y, W = data.X, data.Y, data.W if data.has_weights() else None
return self.fit(X, Y, W)
def preprocess(self, data, progress_callback=None):
"""Apply the `preprocessors` to the data"""
if progress_callback is None:
progress_callback = dummy_callback
n_pps = len(list(self.active_preprocessors))
for i, pp in enumerate(self.active_preprocessors):
progress_callback(i / n_pps)
data = pp(data)
progress_callback(1)
return data
@property
def active_preprocessors(self):
yield from self.preprocessors
if (self.use_default_preprocessors and
self.preprocessors is not type(self).preprocessors):
yield from type(self).preprocessors
@property
def fitted_parameters(self) -> list:
return []
# pylint: disable=no-self-use
def incompatibility_reason(self, _: Domain) -> Optional[str]:
"""Return None if a learner can fit domain or string explaining why it can not."""
return None
@property
def name(self):
"""Return a short name derived from Learner type name"""
try:
return self.__name
except AttributeError:
name = self.__class__.__name__
if name.endswith('Learner'):
name = name[:-len('Learner')]
if name.endswith('Fitter'):
name = name[:-len('Fitter')]
if isinstance(self, SklLearner) and name.startswith('Skl'):
name = name[len('Skl'):]
name = name or 'learner'
# From http://stackoverflow.com/a/1176023/1090455 <3
self.name = re.sub(r'([a-z0-9])([A-Z])', r'\1 \2',
re.sub(r'(.)([A-Z][a-z]+)', r'\1 \2', name)).lower()
return self.name
@name.setter
def name(self, value):
self.__name = value
def __str__(self):
return self.name
class Model(Reprable):
supports_multiclass = False
supports_weights = False
Value = 0
Probs = 1
ValueProbs = 2
def __init__(self, domain=None, original_domain=None):
self.domain = domain
if original_domain is not None:
self.original_domain = original_domain
else:
self.original_domain = domain
self.used_vals = None
def predict(self, X):
if type(self).predict_storage is Model.predict_storage:
raise TypeError("Descendants of Model must overload method predict")
else:
Y = np.zeros((len(X), len(self.domain.class_vars)))
Y[:] = np.nan
table = Table(self.domain, X, Y)
return self.predict_storage(table)
def predict_storage(self, data):
if isinstance(data, Storage):
return self.predict(data.X)
elif isinstance(data, Instance):
return self.predict(np.atleast_2d(data.x))
raise TypeError("Unrecognized argument (instance of '{}')"
.format(type(data).__name__))
def get_backmappers(self, data):
backmappers = []
n_values = []
dataclasses = data.domain.class_vars
modelclasses = self.domain.class_vars
if not (modelclasses and dataclasses):
return None, [] # classless model or data; don't touch
if len(dataclasses) != len(modelclasses):
raise DomainTransformationError(
"Mismatching number of model's classes and data classes")
for dataclass, modelclass in zip(dataclasses, modelclasses):
if dataclass != modelclass:
if dataclass.name != modelclass.name:
raise DomainTransformationError(
f"Model for '{modelclass.name}' "
f"cannot predict '{dataclass.name}'")
else:
raise DomainTransformationError(
f"Variables '{modelclass.name}' in the model is "
"incompatible with the variable of the same name "
"in the data.")
n_values.append(dataclass.is_discrete and len(dataclass.values))
if dataclass is not modelclass and dataclass.is_discrete:
backmappers.append(dataclass.get_mapper_from(modelclass))
else:
backmappers.append(None)
if all(x is None for x in backmappers):
backmappers = None
return backmappers, n_values
def backmap_value(self, value, mapped_probs, n_values, backmappers):
if backmappers is None:
return value
if value.ndim == 2: # For multitarget, recursive call by columns
new_value = np.zeros(value.shape)
for i, n_value, backmapper in zip(
itertools.count(), n_values, backmappers):
new_value[:, i] = self.backmap_value(
value[:, i], mapped_probs[:, i, :], [n_value], [backmapper])
return new_value
backmapper = backmappers[0]
if backmapper is None:
return value
value = backmapper(value)
nans = np.isnan(value)
if not np.any(nans) or n_values[0] < 2:
return value
if mapped_probs is not None:
value[nans] = np.argmax(mapped_probs[nans], axis=1)
else:
value[nans] = np.random.RandomState(0).choice(
backmapper(np.arange(0, n_values[0] - 1)),
(np.sum(nans), ))
return value
def backmap_probs(self, probs, n_values, backmappers):
if backmappers is None:
return probs
if probs.ndim == 3:
new_probs = np.zeros((len(probs), len(n_values), max(n_values)),
dtype=probs.dtype)
for i, n_value, backmapper in zip(
itertools.count(), n_values, backmappers):
new_probs[:, i, :n_value] = self.backmap_probs(
probs[:, i, :], [n_value], [backmapper])
return new_probs
backmapper = backmappers[0]
if backmapper is None:
return probs
n_value = n_values[0]
new_probs = np.zeros((len(probs), n_value), dtype=probs.dtype)
for col in range(probs.shape[1]):
target = backmapper(col)
if not np.isnan(target):
new_probs[:, int(target)] = probs[:, col]
tots = np.sum(new_probs, axis=1)
zero_sum = tots == 0
new_probs[zero_sum] = 1
tots[zero_sum] = n_value
new_probs = new_probs / tots[:, None]
return new_probs
def data_to_model_domain(
self, data: Table, progress_callback: Callable = dummy_callback
) -> Table:
"""
Transforms data to the model domain if possible.
Parameters
----------
data
Data to be transformed to the model domain
progress_callback
Callback - callable - to report the progress
Returns
-------
Transformed data table
Raises
------
DomainTransformationError
Error indicates that transformation is not possible since domains
are not compatible
"""
if data.domain == self.domain:
return data
progress_callback(0)
if self.original_domain.attributes != data.domain.attributes \
and data.X.size \
and not all_nan(data.X):
progress_callback(0.5)
new_data = data.transform(self.original_domain)
if all_nan(new_data.X):
raise DomainTransformationError(
"domain transformation produced no defined values")
progress_callback(0.75)
data = new_data.transform(self.domain)
progress_callback(1)
return data
progress_callback(0.5)
data = data.transform(self.domain)
progress_callback(1)
return data
def __call__(self, data, ret=Value):
multitarget = len(self.domain.class_vars) > 1
def one_hot_probs(value):
if not multitarget:
return one_hot(
value,
dim=len(self.domain.class_var.values)
if self.domain is not None else None
)
max_card = max(len(c.values) for c in self.domain.class_vars)
probs = np.zeros(value.shape + (max_card,), float)
for i in range(len(self.domain.class_vars)):
probs[:, i, :] = one_hot(value[:, i])
return probs
def extend_probabilities(probs):
"""
Since SklModels and models implementing `fit` and not `fit_storage`
do not guarantee correct prediction dimensionality, extend
dimensionality of probabilities when it does not match the number
of values in the domain.
"""
class_vars = self.domain.class_vars
max_values = max(len(cv.values) for cv in class_vars)
if max_values == probs.shape[-1]:
return probs
if not self.supports_multiclass:
probs = probs[:, np.newaxis, :]
probs_ext = np.zeros((len(probs), len(class_vars), max_values))
for c, used_vals in enumerate(self.used_vals):
for i, cv in enumerate(used_vals):
probs_ext[:, c, cv] = probs[:, c, i]
if not self.supports_multiclass:
probs_ext = probs_ext[:, 0, :]
return probs_ext
def fix_dim(x):
return x[0] if one_d else x
if not 0 <= ret <= 2:
raise ValueError("invalid value of argument 'ret'")
if ret > 0 and any(v.is_continuous for v in self.domain.class_vars):
raise ValueError("cannot predict continuous distributions")
# Convert 1d structures to 2d and remember doing it
one_d = True
if isinstance(data, Instance):
data = Table.from_list(data.domain, [data])
elif isinstance(data, (list, tuple)) \
and not isinstance(data[0], (list, tuple)):
data = [data]
elif isinstance(data, np.ndarray) and data.ndim == 1:
data = np.atleast_2d(data)
else:
one_d = False
# if sparse convert to csr_matrix
if scipy.sparse.issparse(data):
data = data.tocsr()
# Call the predictor
backmappers = None
n_values = []
if isinstance(data, (np.ndarray, scipy.sparse.csr_matrix)):
prediction = self.predict(data)
elif isinstance(data, Table):
backmappers, n_values = self.get_backmappers(data)
data = self.data_to_model_domain(data)
prediction = self.predict_storage(data)
elif isinstance(data, (list, tuple)):
data = Table.from_list(self.original_domain, data)
data = data.transform(self.domain)
prediction = self.predict_storage(data)
else:
raise TypeError("Unrecognized argument (instance of '{}')"
.format(type(data).__name__))
# Parse the result into value and probs
if isinstance(prediction, tuple):
value, probs = prediction
elif prediction.ndim == 1 + multitarget:
value, probs = prediction, None
elif prediction.ndim == 2 + multitarget:
value, probs = None, prediction
else:
raise TypeError(f"model returned a {prediction.ndim}-dimensional array")
# Ensure that we have what we need to return; backmap everything
if probs is None and (ret != Model.Value or backmappers is not None):
probs = one_hot_probs(value)
if probs is not None:
probs = extend_probabilities(probs)
probs = self.backmap_probs(probs, n_values, backmappers)
if ret != Model.Probs:
if value is None:
value = np.argmax(probs, axis=-1)
# probs are already backmapped
else:
value = self.backmap_value(value, probs, n_values, backmappers)
# Return what we need to
if ret == Model.Probs:
return fix_dim(probs)
if isinstance(data, Instance) and not multitarget:
value = [Value(self.domain.class_var, value[0])]
if ret == Model.Value:
return fix_dim(value)
else: # ret == Model.ValueProbs
return fix_dim(value), fix_dim(probs)
def __getstate__(self):
"""Skip (possibly large) data when pickling models"""
state = self.__dict__
if 'original_data' in state:
state = state.copy()
state['original_data'] = None
return state
class SklModel(Model, metaclass=WrapperMeta):
used_vals = None
def __init__(self, skl_model):
self.skl_model = skl_model
def predict(self, X):
value = self.skl_model.predict(X)
# SVM has probability attribute which defines if method compute probs
has_prob_attr = hasattr(self.skl_model, "probability")
if (has_prob_attr and self.skl_model.probability
or not has_prob_attr
and hasattr(self.skl_model, "predict_proba")):
probs = self.skl_model.predict_proba(X)
return value, probs
return value
def __repr__(self):
# Params represented as a comment because not passed into constructor
return super().__repr__() + ' # params=' + repr(self.params)
class SklLearner(Learner, metaclass=WrapperMeta):
"""
${skldoc}
Additional Orange parameters
preprocessors : list, optional
An ordered list of preprocessors applied to data before
training or testing.
Defaults to
`[RemoveNaNClasses(), Continuize(), SklImpute(), RemoveNaNColumns()]`
"""
__wraps__ = None
__returns__ = SklModel
_params = {}
preprocessors = default_preprocessors = [
HasClass(),
Continuize(),
RemoveNaNColumns(),
SklImpute()]
@property
def params(self):
return self._params
@params.setter
def params(self, value):
self._params = self._get_sklparams(value)
def _get_sklparams(self, values):
skllearner = self.__wraps__
if skllearner is not None:
spec = list(
inspect.signature(skllearner.__init__).parameters.keys()
)
# first argument is 'self'
assert spec[0] == "self"
params = {
name: values[name] for name in spec[1:] if name in values
}
else:
raise TypeError("Wrapper does not define '__wraps__'")
return params
def preprocess(self, data, progress_callback=None):
data = super().preprocess(data, progress_callback)
if any(v.is_discrete and len(v.values) > 2
for v in data.domain.attributes):
raise ValueError("Wrapped scikit-learn methods do not support " +
"multinomial variables.")
return data
def __call__(self, data, progress_callback=None):
m = super().__call__(data, progress_callback)
m.params = self.params
return m
def _initialize_wrapped(self):
# pylint: disable=not-callable
return self.__wraps__(**self.params)
def fit(self, X, Y, W=None):
clf = self._initialize_wrapped()
Y = Y.reshape(-1)
if W is None or not self.supports_weights:
return self.__returns__(clf.fit(X, Y))
return self.__returns__(clf.fit(X, Y, sample_weight=W.reshape(-1)))
def __getattr__(self, item):
try:
return self.params[item]
except (KeyError, AttributeError):
raise AttributeError(item) from None
# TODO: Disallow (or mirror) __setattr__ for keys in params?
def __dir__(self):
dd = super().__dir__()
return list(sorted(set(dd) | set(self.params.keys())))
class TreeModel(Model):
pass
class RandomForestModel(Model):
"""Interface for random forest models
"""
@property
def trees(self):
"""Return a list of Trees in the forest
Returns
-------
List[Tree]
"""
class KNNBase:
"""Base class for KNN (classification and regression) learners
"""
# pylint: disable=unused-argument
def __init__(self, n_neighbors=5, metric="euclidean", weights="uniform",
algorithm='auto', metric_params=None,
preprocessors=None):
super().__init__(preprocessors=preprocessors)
self.params = vars()
def fit(self, X, Y, W=None):
if self.params["metric_params"] is None and \
self.params.get("metric") == "mahalanobis":
self.params["metric_params"] = {"V": np.cov(X.T)}
return super().fit(X, Y, W)
class NNBase:
"""Base class for neural network (classification and regression) learners
"""
preprocessors = SklLearner.preprocessors + [Normalize()]
# pylint: disable=unused-argument,too-many-arguments
def __init__(self, hidden_layer_sizes=(100,), activation='relu',
solver='adam', alpha=0.0001, batch_size='auto',
learning_rate='constant', learning_rate_init=0.001,
power_t=0.5, max_iter=200, shuffle=True, random_state=None,
tol=0.0001, verbose=False, warm_start=False, momentum=0.9,
nesterovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9, beta_2=0.999,
epsilon=1e-08, preprocessors=None):
super().__init__(preprocessors=preprocessors)
self.params = vars()
class CatGBModel(Model, metaclass=WrapperMeta):
def __init__(self, cat_model, cat_features, domain):
super().__init__(domain)
self.cat_model = cat_model
self.cat_features = cat_features
def __call__(self, data, ret=Model.Value):
if isinstance(data, Table):
with data.force_unlocked(data.X):
return super().__call__(data, ret)
else:
return super().__call__(data, ret)
def predict(self, X):
if self.cat_features:
X = X.astype(str)
value = self.cat_model.predict(X).flatten()
if hasattr(self.cat_model, "predict_proba"):
probs = self.cat_model.predict_proba(X)
return value, probs
return value
def __repr__(self):
# Params represented as a comment because not passed into constructor
return super().__repr__() + ' # params=' + repr(self.params)
class CatGBBaseLearner(Learner, metaclass=WrapperMeta):
"""
${skldoc}
Additional Orange parameters
preprocessors : list, optional
An ordered list of preprocessors applied to data before
training or testing.
Defaults to
`[RemoveNaNClasses(), RemoveNaNColumns()]`
"""
supports_weights = True
__wraps__ = None
__returns__ = CatGBModel
_params = {}
preprocessors = default_preprocessors = [
HasClass(),
RemoveNaNColumns(),
]
# pylint: disable=unused-argument,too-many-arguments,too-many-locals
def __init__(self,
iterations=None,
learning_rate=None,
depth=None,
l2_leaf_reg=None,
model_size_reg=None,
rsm=None,
loss_function=None,
border_count=None,
feature_border_type=None,
per_float_feature_quantization=None,
input_borders=None,
output_borders=None,
fold_permutation_block=None,
od_pval=None,
od_wait=None,
od_type=None,
nan_mode=None,
counter_calc_method=None,
leaf_estimation_iterations=None,
leaf_estimation_method=None,
thread_count=None,
random_seed=None,
use_best_model=None,
verbose=False,
logging_level=None,
metric_period=None,
ctr_leaf_count_limit=None,
store_all_simple_ctr=None,
max_ctr_complexity=None,
has_time=None,
allow_const_label=None,
classes_count=None,
class_weights=None,
one_hot_max_size=None,
random_strength=None,
name=None,
ignored_features=None,
train_dir=cache_dir(),
custom_loss=None,
custom_metric=None,
eval_metric=None,
bagging_temperature=None,
save_snapshot=None,
snapshot_file=None,
snapshot_interval=None,
fold_len_multiplier=None,
used_ram_limit=None,
gpu_ram_part=None,
allow_writing_files=False,
final_ctr_computation_mode=None,
approx_on_full_history=None,
boosting_type=None,
simple_ctr=None,
combinations_ctr=None,
per_feature_ctr=None,
task_type=None,
device_config=None,
devices=None,
bootstrap_type=None,
subsample=None,
sampling_unit=None,
dev_score_calc_obj_block_size=None,
max_depth=None,
n_estimators=None,
num_boost_round=None,
num_trees=None,
colsample_bylevel=None,
random_state=None,
reg_lambda=None,
objective=None,
eta=None,
max_bin=None,
scale_pos_weight=None,
gpu_cat_features_storage=None,
data_partition=None,
metadata=None,
early_stopping_rounds=None,
cat_features=None,
grow_policy=None,
min_data_in_leaf=None,
min_child_samples=None,
max_leaves=None,
num_leaves=None,
score_function=None,
leaf_estimation_backtracking=None,
ctr_history_unit=None,
monotone_constraints=None,
feature_weights=None,
penalties_coefficient=None,
first_feature_use_penalties=None,
model_shrink_rate=None,
model_shrink_mode=None,
langevin=None,
diffusion_temperature=None,
posterior_sampling=None,
boost_from_average=None,
text_features=None,
tokenizers=None,
dictionaries=None,
feature_calcers=None,
text_processing=None,
preprocessors=None):
super().__init__(preprocessors=preprocessors)
self.params = vars()
@property
def params(self):
return self._params
@params.setter
def params(self, value):
self._params = self._get_wrapper_params(value)
def _get_wrapper_params(self, values):
spec = list(inspect.signature(
self.__wraps__.__init__).parameters.keys())
return {name: values[name] for name in spec[1:] if name in values}
def __call__(self, data, progress_callback=None):
m = super().__call__(data, progress_callback)
m.params = self.params
return m
def fit_storage(self, data: Table):
with data.force_unlocked(data.X):
domain, X, Y, W = data.domain, data.X, data.Y.reshape(-1), None
if self.supports_weights and data.has_weights():
W = data.W.reshape(-1)
# pylint: disable=not-callable
clf = self.__wraps__(**self.params)
cat_features = [i for i, attr in enumerate(domain.attributes)
if attr.is_discrete]
if cat_features:
X = X.astype(str)
cat_model = clf.fit(X, Y, cat_features=cat_features, sample_weight=W)
return self.__returns__(cat_model, cat_features, domain)
def __getattr__(self, item):
try:
return self.params[item]
except (KeyError, AttributeError):
raise AttributeError(item) from None
def __dir__(self):
dd = super().__dir__()
return list(sorted(set(dd) | set(self.params.keys())))
class XGBBase(SklLearner):
"""Base class for xgboost (classification and regression) learners """
preprocessors = default_preprocessors = [
HasClass(),
Continuize(),
RemoveNaNColumns(),
]
def __init__(self, preprocessors=None, **kwargs):
super().__init__(preprocessors=preprocessors)
self.params = kwargs
@SklLearner.params.setter
def params(self, values: dict):
self._params = values
|