File: base.py

package info (click to toggle)
orange3 3.40.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,908 kB
  • sloc: python: 162,745; ansic: 622; makefile: 322; sh: 93; cpp: 77
file content (884 lines) | stat: -rw-r--r-- 32,198 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
import inspect
import itertools
from collections.abc import Iterable
import re
import warnings
from typing import Callable, Optional, NamedTuple, Type

import numpy as np
import scipy

from Orange.data import Table, Storage, Instance, Value, Domain
from Orange.data.filter import HasClass
from Orange.data.table import DomainTransformationError
from Orange.data.util import one_hot
from Orange.misc.environ import cache_dir
from Orange.misc.wrapper_meta import WrapperMeta
from Orange.preprocess import Continuize, RemoveNaNColumns, SklImpute, Normalize
from Orange.statistics.util import all_nan
from Orange.util import Reprable, OrangeDeprecationWarning, wrap_callback, \
    dummy_callback


__all__ = ["Learner", "Model", "SklLearner", "SklModel",
           "ReprableWithPreprocessors"]


class ReprableWithPreprocessors(Reprable):
    def _reprable_omit_param(self, name, default, value):
        if name == "preprocessors":
            default_cls = type(self).preprocessors
            if value is default or value is default_cls:
                return True
            else:
                try:
                    return all(p1 is p2 for p1, p2 in
                               itertools.zip_longest(value, default_cls))
                except (ValueError, TypeError):
                    return False
        else:
            return super()._reprable_omit_param(name, default, value)


class Learner(ReprableWithPreprocessors):
    """The base learner class.

    Preprocessors can behave in a number of different ways, all of which are
    described here.
    If the user does not pass a preprocessor argument into the Learner
    constructor, the default learner preprocessors are used. We assume the user
    would simply like to get things done without having to worry about
    preprocessors.
    If the user chooses to pass in their own preprocessors, we assume they know
    what they are doing. In this case, only the user preprocessors are used and
    the default preprocessors are ignored.
    In case the user would like to use the default preprocessors as well as
    their own ones, the `use_default_preprocessors` flag should be set.

    Parameters
    ----------
    preprocessors : Preprocessor or tuple[Preprocessor], optional
        User defined preprocessors. If the user specifies their own
        preprocessors, the default ones will not be used, unless the
        `use_default_preprocessors` flag is set.

    Attributes
    ----------
    preprocessors : tuple[Preprocessor] (default None)
        The used defined preprocessors that will be used on any data.
    use_default_preprocessors : bool (default False)
        This flag indicates whether to use the default preprocessors that are
        defined on the Learner class. Since preprocessors can be applied in a
        number of ways
    active_preprocessors : tuple[Preprocessor]
        The processors that will be used when data is passed to the learner.
        This depends on whether the user has passed in their own preprocessors
        and whether the `use_default_preprocessors` flag is set.

        This property is needed mainly because of the `Fitter` class, which can
        not know in advance, which preprocessors it will need to use. Therefore
        this resolves the active preprocessors using a lazy approach.
    params : dict
        The params that the learner is constructed with.

    """
    supports_multiclass = False
    supports_weights = False
    #: A sequence of data preprocessors to apply on data prior to
    #: fitting the model
    preprocessors = ()

    class FittedParameter(NamedTuple):
        name: str
        label: str
        type: Type
        min: Optional[int] = None
        max: Optional[int] = None

    # Note: Do not use this class attribute.
    #       It remains here for compatibility reasons.
    learner_adequacy_err_msg = ''

    def __init__(self, preprocessors=None):
        self.use_default_preprocessors = False
        if isinstance(preprocessors, Iterable):
            self.preprocessors = tuple(preprocessors)
        elif preprocessors:
            self.preprocessors = (preprocessors,)

    # pylint: disable=R0201
    def fit(self, X, Y, W=None):
        raise RuntimeError(
            "Descendants of Learner must overload method fit or fit_storage")

    def fit_storage(self, data):
        """Default implementation of fit_storage defaults to calling fit.
        Derived classes must define fit_storage or fit"""
        X, Y, W = data.X, data.Y, data.W if data.has_weights() else None
        return self.fit(X, Y, W)

    def __call__(self, data, progress_callback=None):
        reason = self.incompatibility_reason(data.domain)
        if reason is not None:
            raise ValueError(reason)

        origdomain = data.domain

        if isinstance(data, Instance):
            data = Table(data.domain, [data])
        origdata = data

        if progress_callback is None:
            progress_callback = dummy_callback
        progress_callback(0, "Preprocessing...")
        try:
            cb = wrap_callback(progress_callback, end=0.1)
            data = self.preprocess(data, progress_callback=cb)
        except TypeError:
            data = self.preprocess(data)
            warnings.warn("A keyword argument 'progress_callback' has been "
                          "added to the preprocess() signature. Implementing "
                          "the method without the argument is deprecated and "
                          "will result in an error in the future.",
                          OrangeDeprecationWarning)

        if len(data.domain.class_vars) > 1 and not self.supports_multiclass:
            raise TypeError("%s doesn't support multiple class variables" %
                            self.__class__.__name__)

        progress_callback(0.1, "Fitting...")
        model = self._fit_model(data)
        model.used_vals = [np.unique(y).astype(int) for y in data.Y[:, None].T]
        if not hasattr(model, "domain") or model.domain is None:
            # some models set domain themself and it should be respected
            # e.g. calibration learners set the base_learner's domain which
            # would be wrongly overwritten if we set it here for any model
            model.domain = data.domain
        model.supports_multiclass = self.supports_multiclass
        model.name = self.name
        model.original_domain = origdomain
        model.original_data = origdata
        progress_callback(1)
        return model

    def _fit_model(self, data):
        if type(self).fit is Learner.fit:
            return self.fit_storage(data)
        else:
            X, Y, W = data.X, data.Y, data.W if data.has_weights() else None
            return self.fit(X, Y, W)

    def preprocess(self, data, progress_callback=None):
        """Apply the `preprocessors` to the data"""
        if progress_callback is None:
            progress_callback = dummy_callback
        n_pps = len(list(self.active_preprocessors))
        for i, pp in enumerate(self.active_preprocessors):
            progress_callback(i / n_pps)
            data = pp(data)
        progress_callback(1)
        return data

    @property
    def active_preprocessors(self):
        yield from self.preprocessors
        if (self.use_default_preprocessors and
                self.preprocessors is not type(self).preprocessors):
            yield from type(self).preprocessors

    @property
    def fitted_parameters(self) -> list:
        return []

    # pylint: disable=no-self-use
    def incompatibility_reason(self, _: Domain) -> Optional[str]:
        """Return None if a learner can fit domain or string explaining why it can not."""
        return None

    @property
    def name(self):
        """Return a short name derived from Learner type name"""
        try:
            return self.__name
        except AttributeError:
            name = self.__class__.__name__
            if name.endswith('Learner'):
                name = name[:-len('Learner')]
            if name.endswith('Fitter'):
                name = name[:-len('Fitter')]
            if isinstance(self, SklLearner) and name.startswith('Skl'):
                name = name[len('Skl'):]
            name = name or 'learner'
            # From http://stackoverflow.com/a/1176023/1090455 <3
            self.name = re.sub(r'([a-z0-9])([A-Z])', r'\1 \2',
                               re.sub(r'(.)([A-Z][a-z]+)', r'\1 \2', name)).lower()
            return self.name

    @name.setter
    def name(self, value):
        self.__name = value

    def __str__(self):
        return self.name


class Model(Reprable):
    supports_multiclass = False
    supports_weights = False
    Value = 0
    Probs = 1
    ValueProbs = 2

    def __init__(self, domain=None, original_domain=None):
        self.domain = domain
        if original_domain is not None:
            self.original_domain = original_domain
        else:
            self.original_domain = domain
        self.used_vals = None

    def predict(self, X):
        if type(self).predict_storage is Model.predict_storage:
            raise TypeError("Descendants of Model must overload method predict")
        else:
            Y = np.zeros((len(X), len(self.domain.class_vars)))
            Y[:] = np.nan
            table = Table(self.domain, X, Y)
            return self.predict_storage(table)

    def predict_storage(self, data):
        if isinstance(data, Storage):
            return self.predict(data.X)
        elif isinstance(data, Instance):
            return self.predict(np.atleast_2d(data.x))
        raise TypeError("Unrecognized argument (instance of '{}')"
                        .format(type(data).__name__))

    def get_backmappers(self, data):
        backmappers = []
        n_values = []

        dataclasses = data.domain.class_vars
        modelclasses = self.domain.class_vars
        if not (modelclasses and dataclasses):
            return None, []  # classless model or data; don't touch
        if len(dataclasses) != len(modelclasses):
            raise DomainTransformationError(
                "Mismatching number of model's classes and data classes")
        for dataclass, modelclass in zip(dataclasses, modelclasses):
            if dataclass != modelclass:
                if dataclass.name != modelclass.name:
                    raise DomainTransformationError(
                        f"Model for '{modelclass.name}' "
                        f"cannot predict '{dataclass.name}'")
                else:
                    raise DomainTransformationError(
                        f"Variables '{modelclass.name}' in the model is "
                        "incompatible with the variable of the same name "
                        "in the data.")
            n_values.append(dataclass.is_discrete and len(dataclass.values))
            if dataclass is not modelclass and dataclass.is_discrete:
                backmappers.append(dataclass.get_mapper_from(modelclass))
            else:
                backmappers.append(None)
        if all(x is None for x in backmappers):
            backmappers = None
        return backmappers, n_values

    def backmap_value(self, value, mapped_probs, n_values, backmappers):
        if backmappers is None:
            return value

        if value.ndim == 2:  # For multitarget, recursive call by columns
            new_value = np.zeros(value.shape)
            for i, n_value, backmapper in zip(
                    itertools.count(), n_values, backmappers):
                new_value[:, i] = self.backmap_value(
                    value[:, i], mapped_probs[:, i, :], [n_value], [backmapper])
            return new_value

        backmapper = backmappers[0]
        if backmapper is None:
            return value

        value = backmapper(value)
        nans = np.isnan(value)
        if not np.any(nans) or n_values[0] < 2:
            return value
        if mapped_probs is not None:
            value[nans] = np.argmax(mapped_probs[nans], axis=1)
        else:
            value[nans] = np.random.RandomState(0).choice(
                backmapper(np.arange(0, n_values[0] - 1)),
                (np.sum(nans), ))
        return value

    def backmap_probs(self, probs, n_values, backmappers):
        if backmappers is None:
            return probs

        if probs.ndim == 3:
            new_probs = np.zeros((len(probs), len(n_values), max(n_values)),
                                 dtype=probs.dtype)
            for i, n_value, backmapper in zip(
                    itertools.count(), n_values, backmappers):
                new_probs[:, i, :n_value] = self.backmap_probs(
                    probs[:, i, :], [n_value], [backmapper])
            return new_probs

        backmapper = backmappers[0]
        if backmapper is None:
            return probs
        n_value = n_values[0]
        new_probs = np.zeros((len(probs), n_value), dtype=probs.dtype)
        for col in range(probs.shape[1]):
            target = backmapper(col)
            if not np.isnan(target):
                new_probs[:, int(target)] = probs[:, col]
        tots = np.sum(new_probs, axis=1)
        zero_sum = tots == 0
        new_probs[zero_sum] = 1
        tots[zero_sum] = n_value
        new_probs = new_probs / tots[:, None]
        return new_probs

    def data_to_model_domain(
            self, data: Table, progress_callback: Callable = dummy_callback
    ) -> Table:
        """
        Transforms data to the model domain if possible.

        Parameters
        ----------
        data
            Data to be transformed to the model domain
        progress_callback
            Callback - callable - to report the progress

        Returns
        -------
        Transformed data table

        Raises
        ------
        DomainTransformationError
            Error indicates that transformation is not possible since domains
            are not compatible
        """
        if data.domain == self.domain:
            return data

        progress_callback(0)
        if self.original_domain.attributes != data.domain.attributes \
                and data.X.size \
                and not all_nan(data.X):
            progress_callback(0.5)
            new_data = data.transform(self.original_domain)
            if all_nan(new_data.X):
                raise DomainTransformationError(
                    "domain transformation produced no defined values")
            progress_callback(0.75)
            data = new_data.transform(self.domain)
            progress_callback(1)
            return data

        progress_callback(0.5)
        data = data.transform(self.domain)
        progress_callback(1)
        return data

    def __call__(self, data, ret=Value):
        multitarget = len(self.domain.class_vars) > 1

        def one_hot_probs(value):
            if not multitarget:
                return one_hot(
                    value,
                    dim=len(self.domain.class_var.values)
                    if self.domain is not None else None
                )

            max_card = max(len(c.values) for c in self.domain.class_vars)
            probs = np.zeros(value.shape + (max_card,), float)
            for i in range(len(self.domain.class_vars)):
                probs[:, i, :] = one_hot(value[:, i])
            return probs

        def extend_probabilities(probs):
            """
            Since SklModels and models implementing `fit` and not `fit_storage`
            do not guarantee correct prediction dimensionality, extend
            dimensionality of probabilities when it does not match the number
            of values in the domain.
            """
            class_vars = self.domain.class_vars
            max_values = max(len(cv.values) for cv in class_vars)
            if max_values == probs.shape[-1]:
                return probs

            if not self.supports_multiclass:
                probs = probs[:, np.newaxis, :]

            probs_ext = np.zeros((len(probs), len(class_vars), max_values))
            for c, used_vals in enumerate(self.used_vals):
                for i, cv in enumerate(used_vals):
                    probs_ext[:, c, cv] = probs[:, c, i]

            if not self.supports_multiclass:
                probs_ext = probs_ext[:, 0, :]
            return probs_ext

        def fix_dim(x):
            return x[0] if one_d else x

        if not 0 <= ret <= 2:
            raise ValueError("invalid value of argument 'ret'")
        if ret > 0 and any(v.is_continuous for v in self.domain.class_vars):
            raise ValueError("cannot predict continuous distributions")

        # Convert 1d structures to 2d and remember doing it
        one_d = True
        if isinstance(data, Instance):
            data = Table.from_list(data.domain, [data])
        elif isinstance(data, (list, tuple)) \
                and not isinstance(data[0], (list, tuple)):
            data = [data]
        elif isinstance(data, np.ndarray) and data.ndim == 1:
            data = np.atleast_2d(data)
        else:
            one_d = False

        # if sparse convert to csr_matrix
        if scipy.sparse.issparse(data):
            data = data.tocsr()

        # Call the predictor
        backmappers = None
        n_values = []
        if isinstance(data, (np.ndarray, scipy.sparse.csr_matrix)):
            prediction = self.predict(data)
        elif isinstance(data, Table):
            backmappers, n_values = self.get_backmappers(data)
            data = self.data_to_model_domain(data)
            prediction = self.predict_storage(data)
        elif isinstance(data, (list, tuple)):
            data = Table.from_list(self.original_domain, data)
            data = data.transform(self.domain)
            prediction = self.predict_storage(data)
        else:
            raise TypeError("Unrecognized argument (instance of '{}')"
                            .format(type(data).__name__))

        # Parse the result into value and probs
        if isinstance(prediction, tuple):
            value, probs = prediction
        elif prediction.ndim == 1 + multitarget:
            value, probs = prediction, None
        elif prediction.ndim == 2 + multitarget:
            value, probs = None, prediction
        else:
            raise TypeError(f"model returned a {prediction.ndim}-dimensional array")

        # Ensure that we have what we need to return; backmap everything
        if probs is None and (ret != Model.Value or backmappers is not None):
            probs = one_hot_probs(value)
        if probs is not None:
            probs = extend_probabilities(probs)
            probs = self.backmap_probs(probs, n_values, backmappers)
        if ret != Model.Probs:
            if value is None:
                value = np.argmax(probs, axis=-1)
                # probs are already backmapped
            else:
                value = self.backmap_value(value, probs, n_values, backmappers)

        # Return what we need to
        if ret == Model.Probs:
            return fix_dim(probs)
        if isinstance(data, Instance) and not multitarget:
            value = [Value(self.domain.class_var, value[0])]
        if ret == Model.Value:
            return fix_dim(value)
        else:  # ret == Model.ValueProbs
            return fix_dim(value), fix_dim(probs)

    def __getstate__(self):
        """Skip (possibly large) data when pickling models"""
        state = self.__dict__
        if 'original_data' in state:
            state = state.copy()
            state['original_data'] = None
        return state


class SklModel(Model, metaclass=WrapperMeta):
    used_vals = None

    def __init__(self, skl_model):
        self.skl_model = skl_model

    def predict(self, X):
        value = self.skl_model.predict(X)
        # SVM has probability attribute which defines if method compute probs
        has_prob_attr = hasattr(self.skl_model, "probability")
        if (has_prob_attr and self.skl_model.probability
                or not has_prob_attr
                and hasattr(self.skl_model, "predict_proba")):
            probs = self.skl_model.predict_proba(X)
            return value, probs
        return value

    def __repr__(self):
        # Params represented as a comment because not passed into constructor
        return super().__repr__() + '  # params=' + repr(self.params)


class SklLearner(Learner, metaclass=WrapperMeta):
    """
    ${skldoc}
    Additional Orange parameters

    preprocessors : list, optional
        An ordered list of preprocessors applied to data before
        training or testing.
        Defaults to
        `[RemoveNaNClasses(), Continuize(), SklImpute(), RemoveNaNColumns()]`
    """
    __wraps__ = None
    __returns__ = SklModel
    _params = {}

    preprocessors = default_preprocessors = [
        HasClass(),
        Continuize(),
        RemoveNaNColumns(),
        SklImpute()]

    @property
    def params(self):
        return self._params

    @params.setter
    def params(self, value):
        self._params = self._get_sklparams(value)

    def _get_sklparams(self, values):
        skllearner = self.__wraps__
        if skllearner is not None:
            spec = list(
                inspect.signature(skllearner.__init__).parameters.keys()
            )
            # first argument is 'self'
            assert spec[0] == "self"
            params = {
                name: values[name] for name in spec[1:] if name in values
            }
        else:
            raise TypeError("Wrapper does not define '__wraps__'")
        return params

    def preprocess(self, data, progress_callback=None):
        data = super().preprocess(data, progress_callback)

        if any(v.is_discrete and len(v.values) > 2
               for v in data.domain.attributes):
            raise ValueError("Wrapped scikit-learn methods do not support " +
                             "multinomial variables.")

        return data

    def __call__(self, data, progress_callback=None):
        m = super().__call__(data, progress_callback)
        m.params = self.params
        return m

    def _initialize_wrapped(self):
        # pylint: disable=not-callable
        return self.__wraps__(**self.params)

    def fit(self, X, Y, W=None):
        clf = self._initialize_wrapped()
        Y = Y.reshape(-1)
        if W is None or not self.supports_weights:
            return self.__returns__(clf.fit(X, Y))
        return self.__returns__(clf.fit(X, Y, sample_weight=W.reshape(-1)))

    def __getattr__(self, item):
        try:
            return self.params[item]
        except (KeyError, AttributeError):
            raise AttributeError(item) from None

    # TODO: Disallow (or mirror) __setattr__ for keys in params?

    def __dir__(self):
        dd = super().__dir__()
        return list(sorted(set(dd) | set(self.params.keys())))


class TreeModel(Model):
    pass


class RandomForestModel(Model):
    """Interface for random forest models
    """

    @property
    def trees(self):
        """Return a list of Trees in the forest

        Returns
        -------
        List[Tree]
        """


class KNNBase:
    """Base class for KNN (classification and regression) learners
    """

    # pylint: disable=unused-argument
    def __init__(self, n_neighbors=5, metric="euclidean", weights="uniform",
                 algorithm='auto', metric_params=None,
                 preprocessors=None):
        super().__init__(preprocessors=preprocessors)
        self.params = vars()

    def fit(self, X, Y, W=None):
        if self.params["metric_params"] is None and \
                        self.params.get("metric") == "mahalanobis":
            self.params["metric_params"] = {"V": np.cov(X.T)}
        return super().fit(X, Y, W)


class NNBase:
    """Base class for neural network (classification and regression) learners
    """
    preprocessors = SklLearner.preprocessors + [Normalize()]

    # pylint: disable=unused-argument,too-many-arguments
    def __init__(self, hidden_layer_sizes=(100,), activation='relu',
                 solver='adam', alpha=0.0001, batch_size='auto',
                 learning_rate='constant', learning_rate_init=0.001,
                 power_t=0.5, max_iter=200, shuffle=True, random_state=None,
                 tol=0.0001, verbose=False, warm_start=False, momentum=0.9,
                 nesterovs_momentum=True, early_stopping=False,
                 validation_fraction=0.1, beta_1=0.9, beta_2=0.999,
                 epsilon=1e-08, preprocessors=None):
        super().__init__(preprocessors=preprocessors)
        self.params = vars()


class CatGBModel(Model, metaclass=WrapperMeta):
    def __init__(self, cat_model, cat_features, domain):
        super().__init__(domain)
        self.cat_model = cat_model
        self.cat_features = cat_features

    def __call__(self, data, ret=Model.Value):
        if isinstance(data, Table):
            with data.force_unlocked(data.X):
                return super().__call__(data, ret)
        else:
            return super().__call__(data, ret)

    def predict(self, X):
        if self.cat_features:
            X = X.astype(str)
        value = self.cat_model.predict(X).flatten()
        if hasattr(self.cat_model, "predict_proba"):
            probs = self.cat_model.predict_proba(X)
            return value, probs
        return value

    def __repr__(self):
        # Params represented as a comment because not passed into constructor
        return super().__repr__() + '  # params=' + repr(self.params)


class CatGBBaseLearner(Learner, metaclass=WrapperMeta):
    """
    ${skldoc}
    Additional Orange parameters

    preprocessors : list, optional
        An ordered list of preprocessors applied to data before
        training or testing.
        Defaults to
        `[RemoveNaNClasses(), RemoveNaNColumns()]`
    """
    supports_weights = True
    __wraps__ = None
    __returns__ = CatGBModel
    _params = {}
    preprocessors = default_preprocessors = [
        HasClass(),
        RemoveNaNColumns(),
    ]

    # pylint: disable=unused-argument,too-many-arguments,too-many-locals
    def __init__(self,
                 iterations=None,
                 learning_rate=None,
                 depth=None,
                 l2_leaf_reg=None,
                 model_size_reg=None,
                 rsm=None,
                 loss_function=None,
                 border_count=None,
                 feature_border_type=None,
                 per_float_feature_quantization=None,
                 input_borders=None,
                 output_borders=None,
                 fold_permutation_block=None,
                 od_pval=None,
                 od_wait=None,
                 od_type=None,
                 nan_mode=None,
                 counter_calc_method=None,
                 leaf_estimation_iterations=None,
                 leaf_estimation_method=None,
                 thread_count=None,
                 random_seed=None,
                 use_best_model=None,
                 verbose=False,
                 logging_level=None,
                 metric_period=None,
                 ctr_leaf_count_limit=None,
                 store_all_simple_ctr=None,
                 max_ctr_complexity=None,
                 has_time=None,
                 allow_const_label=None,
                 classes_count=None,
                 class_weights=None,
                 one_hot_max_size=None,
                 random_strength=None,
                 name=None,
                 ignored_features=None,
                 train_dir=cache_dir(),
                 custom_loss=None,
                 custom_metric=None,
                 eval_metric=None,
                 bagging_temperature=None,
                 save_snapshot=None,
                 snapshot_file=None,
                 snapshot_interval=None,
                 fold_len_multiplier=None,
                 used_ram_limit=None,
                 gpu_ram_part=None,
                 allow_writing_files=False,
                 final_ctr_computation_mode=None,
                 approx_on_full_history=None,
                 boosting_type=None,
                 simple_ctr=None,
                 combinations_ctr=None,
                 per_feature_ctr=None,
                 task_type=None,
                 device_config=None,
                 devices=None,
                 bootstrap_type=None,
                 subsample=None,
                 sampling_unit=None,
                 dev_score_calc_obj_block_size=None,
                 max_depth=None,
                 n_estimators=None,
                 num_boost_round=None,
                 num_trees=None,
                 colsample_bylevel=None,
                 random_state=None,
                 reg_lambda=None,
                 objective=None,
                 eta=None,
                 max_bin=None,
                 scale_pos_weight=None,
                 gpu_cat_features_storage=None,
                 data_partition=None,
                 metadata=None,
                 early_stopping_rounds=None,
                 cat_features=None,
                 grow_policy=None,
                 min_data_in_leaf=None,
                 min_child_samples=None,
                 max_leaves=None,
                 num_leaves=None,
                 score_function=None,
                 leaf_estimation_backtracking=None,
                 ctr_history_unit=None,
                 monotone_constraints=None,
                 feature_weights=None,
                 penalties_coefficient=None,
                 first_feature_use_penalties=None,
                 model_shrink_rate=None,
                 model_shrink_mode=None,
                 langevin=None,
                 diffusion_temperature=None,
                 posterior_sampling=None,
                 boost_from_average=None,
                 text_features=None,
                 tokenizers=None,
                 dictionaries=None,
                 feature_calcers=None,
                 text_processing=None,
                 preprocessors=None):
        super().__init__(preprocessors=preprocessors)
        self.params = vars()

    @property
    def params(self):
        return self._params

    @params.setter
    def params(self, value):
        self._params = self._get_wrapper_params(value)

    def _get_wrapper_params(self, values):
        spec = list(inspect.signature(
            self.__wraps__.__init__).parameters.keys())
        return {name: values[name] for name in spec[1:] if name in values}

    def __call__(self, data, progress_callback=None):
        m = super().__call__(data, progress_callback)
        m.params = self.params
        return m

    def fit_storage(self, data: Table):
        with data.force_unlocked(data.X):
            domain, X, Y, W = data.domain, data.X, data.Y.reshape(-1), None
            if self.supports_weights and data.has_weights():
                W = data.W.reshape(-1)
            # pylint: disable=not-callable
            clf = self.__wraps__(**self.params)
            cat_features = [i for i, attr in enumerate(domain.attributes)
                            if attr.is_discrete]
            if cat_features:
                X = X.astype(str)
            cat_model = clf.fit(X, Y, cat_features=cat_features, sample_weight=W)
            return self.__returns__(cat_model, cat_features, domain)

    def __getattr__(self, item):
        try:
            return self.params[item]
        except (KeyError, AttributeError):
            raise AttributeError(item) from None

    def __dir__(self):
        dd = super().__dir__()
        return list(sorted(set(dd) | set(self.params.keys())))


class XGBBase(SklLearner):
    """Base class for xgboost (classification and regression) learners """
    preprocessors = default_preprocessors = [
        HasClass(),
        Continuize(),
        RemoveNaNColumns(),
    ]

    def __init__(self, preprocessors=None, **kwargs):
        super().__init__(preprocessors=preprocessors)
        self.params = kwargs

    @SklLearner.params.setter
    def params(self, values: dict):
        self._params = values