1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
import unittest
import numpy as np
from Orange.data import Table, DiscreteVariable, Domain
from Orange.classification import LogisticRegressionLearner, TreeLearner
class TestModelMapping(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.iris = iris = Table("iris")
tables = []
ix = iris.X
y = np.hstack((np.zeros(50), np.ones(50)))
attrs = cls.iris.domain.attributes
classes = cls.iris.domain.class_var.values
for i, x in enumerate([ix[50:],
np.vstack((ix[:50], ix[100:])),
ix[:100]]):
class_var = DiscreteVariable(
"iris",
values=tuple(n for j, n in enumerate(classes) if j != i))
domain = Domain(attrs, class_var)
tables.append(Table.from_numpy(domain, x, y))
# pylint: disable=unbalanced-tuple-unpacking
cls.iris0, cls.iris1, cls.iris2 = tables
def test_larger_model(self):
# Train on all data, test on subset of values
# Probabilities should stay the same, but normalized
# Class predictions for existing classes should stay the same
def normalized(a):
n = np.sum(a, axis=1)
n[n == 0] = 1.0 / a.shape[1]
a[n == 0] = 1
return a / n[:, None]
for lrn in [TreeLearner, LogisticRegressionLearner]: # skl and non-skl
model = lrn()(self.iris)
val, prob = model(self.iris, model.ValueProbs)
val0, prob0 = model(self.iris0, model.ValueProbs)
vale = val[50:]
probe = normalized(prob[50:, 1:])
# No effect on class predictions
np.testing.assert_array_equal(
val0[vale != 0],
vale[vale != 0] - 1)
# Classes that to not exist are replaced with the most probable;
# don't use argmax because of possible ties
np.testing.assert_array_equal(
probe[vale == 0, val0[vale == 0].astype(int)],
np.max(probe[vale == 0], axis=1))
# Probabilities are not affected (but normalized)
np.testing.assert_almost_equal(prob0, probe)
# Same as above for other two classes ...
val1, prob1 = model(self.iris1, model.ValueProbs)
vale = np.hstack((val[:50], val[100:])).astype(float)
no1 = vale != 1
vale[vale == 2] -= 1
probe = np.vstack((prob[:50], prob[100:]))
probe = normalized(np.hstack((probe[:, :1], probe[:, 2:])))
np.testing.assert_array_equal(
val1[no1],
vale[no1])
np.testing.assert_array_equal(
probe[~no1, val1[~no1].astype(int)],
np.max(probe[~no1], axis=1))
np.testing.assert_almost_equal(prob1, probe)
val2, prob2 = model(self.iris2, model.ValueProbs)
vale = val[:100]
probe = normalized(prob[:100, :2])
np.testing.assert_array_equal(
val2[vale != 2],
vale[vale != 2])
np.testing.assert_array_equal(
probe[vale != 2, val2[vale != 2].astype(int)],
np.max(probe[vale != 2], axis=1))
np.testing.assert_almost_equal(prob2, probe)
def test_smaller_model(self):
for lrn in [LogisticRegressionLearner, TreeLearner]: # skl and non-skl
model = lrn()(self.iris0)
val0, prob0 = model(self.iris0, model.ValueProbs)
val, prob = model(self.iris, model.ValueProbs)
# Model can't predict class 0 in whole data
np.testing.assert_array_equal(val0, val[50:] - 1)
np.testing.assert_almost_equal(prob0, prob[50:, 1:])
# First 50 instances in whole data can be assigned anything 1 or 2
# and should not be nan
self.assertTrue(np.all((val[:50] == 1) + (val[:50] == 2)))
np.testing.assert_almost_equal(np.sum(prob, axis=1), 1)
np.testing.assert_almost_equal(prob[:, 0], 0)
model = lrn()(self.iris1)
val, prob = model(self.iris, model.ValueProbs)
val1, prob1 = model(self.iris1, model.ValueProbs)
np.testing.assert_array_equal(val1[:50], val[:50])
np.testing.assert_array_equal(val1[50:], val[100:] - 1)
np.testing.assert_almost_equal(prob1[:50, 0], prob[:50, 0])
np.testing.assert_almost_equal(prob1[:50, 1], prob[:50, 2])
np.testing.assert_almost_equal(prob1[50:, 0], prob[100:, 0])
np.testing.assert_almost_equal(prob1[50:, 1], prob[100:, 2])
self.assertTrue(np.all((val[50:100] == 0) + (val[50:100] == 2)))
np.testing.assert_almost_equal(np.sum(prob, axis=1), 1)
np.testing.assert_almost_equal(prob[:, 1], 0)
model = lrn()(self.iris2)
val, prob = model(self.iris, model.ValueProbs)
val2, prob2 = model(self.iris2, model.ValueProbs)
np.testing.assert_array_equal(val2, val[:100])
np.testing.assert_almost_equal(prob2, prob[:100, :2])
self.assertTrue(np.all((val[100:] == 0) + (val[100:] == 1)))
self.assertTrue(np.all(val[:50] < 2)) # also tests it's not nan
np.testing.assert_almost_equal(np.sum(prob, axis=1), 1)
np.testing.assert_almost_equal(prob[:, 2], 0)
def test_model_different(self):
def test_val_prob(val, prob):
np.testing.assert_almost_equal(np.sum(prob, axis=1), 1)
np.testing.assert_array_equal(
np.choose(val.astype(int), (prob[:, 0], prob[:, 1])),
np.max(prob, axis=1))
for lrn in [LogisticRegressionLearner, TreeLearner]: # skl and non-skl
model0 = lrn()(self.iris0)
valp0 = model0(self.iris0)
model1 = lrn()(self.iris1)
valp1 = model1(self.iris1)
model2 = lrn()(self.iris2)
valp2 = model2(self.iris2)
val1, prob1 = model0(self.iris1, model0.ValueProbs)
np.testing.assert_array_equal(val1[valp0 == 1], 1)
np.testing.assert_array_equal(prob1[valp0 == 1, 0], 0)
np.testing.assert_array_equal(prob1[valp0 == 1, 1], 1)
test_val_prob(val1, prob1)
val2, prob2 = model0(self.iris2, model0.ValueProbs)
np.testing.assert_array_equal(val2[valp0 == 1], 1)
np.testing.assert_array_equal(prob2[valp0 == 1, 0], 0)
np.testing.assert_array_equal(prob2[valp0 == 1, 1], 1)
np.testing.assert_almost_equal(np.sum(prob2, axis=1), 1)
test_val_prob(val2, prob2)
val0, prob0 = model1(self.iris0, model1.ValueProbs)
np.testing.assert_array_equal(val0[valp1 == 1], 1)
np.testing.assert_array_equal(prob0[valp1 == 1, 0], 0)
np.testing.assert_array_equal(prob0[valp1 == 1, 1], 1)
np.testing.assert_almost_equal(np.sum(prob0, axis=1), 1)
test_val_prob(val0, prob0)
val2, prob2 = model1(self.iris2, model1.ValueProbs)
np.testing.assert_array_equal(val2[valp1 == 0], 0)
np.testing.assert_array_equal(prob2[valp1 == 0, 0], 1)
np.testing.assert_array_equal(prob2[valp1 == 0, 1], 0)
np.testing.assert_almost_equal(np.sum(prob2, axis=1), 1)
test_val_prob(val2, prob2)
val0, prob0 = model2(self.iris0, model2.ValueProbs)
np.testing.assert_array_equal(val0[valp2 == 1], 0)
np.testing.assert_array_equal(prob0[valp2 == 1, 0], 1)
np.testing.assert_array_equal(prob0[valp2 == 1, 1], 0)
np.testing.assert_almost_equal(np.sum(prob0, axis=1), 1)
test_val_prob(val0, prob0)
val1, prob1 = model2(self.iris1, model2.ValueProbs)
np.testing.assert_array_equal(val1[valp2 == 0], 0)
np.testing.assert_array_equal(prob1[valp2 == 0, 0], 1)
np.testing.assert_array_equal(prob1[valp2 == 0, 1], 0)
np.testing.assert_almost_equal(np.sum(prob1, axis=1), 1)
test_val_prob(val1, prob1)
def test_no_common_values(self):
abc = DiscreteVariable("iris", values=tuple("abc"))
iris_abc = Table.from_numpy(
Domain(self.iris.domain.attributes, abc),
self.iris.X, self.iris.Y)
for lrn in [LogisticRegressionLearner,
TreeLearner]: # skl and non-skl
model = lrn()(self.iris)
val, prob = model(iris_abc, model.ValueProbs)
self.assertTrue(np.all(val >= 0))
self.assertTrue(np.all(val <= 2))
np.testing.assert_array_equal(prob, 1 / 3)
def test_sparse_matrix(self):
iris_sparse = self.iris.to_sparse()
for lrn in [LogisticRegressionLearner, TreeLearner]: # skl and non-skl
model = lrn()(iris_sparse)
pred = model(iris_sparse.X.tocsc())
self.assertTupleEqual((len(self.iris),), pred.shape)
pred = model(iris_sparse.X.tolil())
self.assertTupleEqual((len(self.iris),), pred.shape)
pred = model(iris_sparse.X.tocoo())
self.assertTupleEqual((len(self.iris),), pred.shape)
if __name__ == '__main__':
unittest.main()
|